轻子普适性理论研究

第4届LHCb前沿物理研讨会

袁兴博

华中师范大学

see also PeiLian Li, Pei-Rong Li, Chengping Shen, Liang Sun's talks

烟台大学,烟台,2024.07.29

Introduction **Lepton Flavour Universality Test**

 π, K, τ system, W, Z boson, $R_{D^{(*)}}$ and $R_{K^{(*)}}$

Implications for New Physics

Connections to other anomalies $\begin{cases} (g-2)_{\mu} \text{ anomaly} \\ B^+ \to K^+ \nu \bar{\nu} \text{ excess at Belle II} \\ \text{Cabibbo angle anomaly} \end{cases}$

Origin of LFU violation

Summary

Introduction **Lepton Flavour Universality Test**

 π, K, τ system, W, Z boson, $R_{D^{(*)}}$ and $R_{K^{(*)}}$

Implications for New Physics

Connections to other anomalies $\begin{cases} (g-2)_{\mu} \text{ anomaly} \\ B^+ \to K^+ \nu \bar{\nu} \text{ excess at Belle II} \\ \text{Cabibbo angle anomaly} \end{cases}$

Origin of LFU violation

Summary

Standard Model of Particle Physics

Gauge theory based on $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$

John Ellis

François Englert and Peter Higgs 2013 Nobel

Physics beyond the Standard Model

Problems of the SM \implies Physics beyond the SM

$$+ \ldots = \frac{c}{16\pi^2} \Lambda^2$$

$$^2 = 125 \,\mathrm{GeV}^2$$

Theories beyond the SM

Experimental Searches

Direct Searches

energy frontier

almost model independent

 \blacktriangleright probe $m_{\rm NP} < E_{\rm collider}$

Indirect Searches

- precision (intensity) frontier
- model dependent
- **>** probe very large $m_{\rm NP}$

当前的对撞机

CERN的大型强子对撞机(LHC, 14TeV)

22年7月5日,ATLAS探测器中的1个pp对撞事例

Experimental Searches 上一代对撞机

Direct Searches

energy frontier

almost model independent

ightarrow probe $m_{\rm NP} < E_{\rm collider}$

Indirect Searches

- precision (intensity) frontier
- model dependent
- \triangleright probe very large $m_{\rm NP}$
- Flavour physics

日本高能加速器上的Belle (1999-2010)

美国斯坦福直线加速器上的BaBar (1999-2008)

- ▶ 共产生约10⁹BĀ 事例
- ▶ 证实了SM中CP破缺的KM机制

Nobel Prize 2008 for

Makoto Kobayashi

Toshihide Maskawa

当前的对撞机

LHC上的LHCb实验

Flavour Physics

Flavour universal

- \blacktriangleright couplings $\propto \delta_{ii}$ in flavour space
- example: strong and electromagnetic interactions
- consequence of gauge invariance

Flavour diagonal

- couplings $\propto \lambda_i \delta_{ii}$ (diagonal, but not necessarily universal)
- example: Yukawa interactions

Flavour violation (changing)

- couplings involve different quarks
- ▶ no flavour violation in lepton sector ($m_{\nu} = 0$)
- example: W^{\pm} interactions in quark section

Flavour Changing Neutral Current (FCNC)

- absent at the tree-level
- arise at the one-loop, but suppressed by GIM mechanism

Why flavour physics

- New physics $\iff \mathcal{O}(10^9) B\bar{B}$ events at BaBar and Belle
- structure of CKM and mass
- ► CP violation
- strong interaction

experimental status

no evidence of NP $> 5\sigma$ but, anomalies $2 \sim 4\sigma$

CKM matrix

Cabibbo–Kobayashi–Maskawa matrix

- ► 3 mixing angules and 1 CP phase
- CP violation in the Standard Model

not enough to explain the baryon asymmetry in our universe

new CP violation sources

penguin diagram

Introduction **Lepton Flavour Universality Test** π, K, τ system, W, Z boson, $R_{D^{(*)}}$ and $R_{K^{(*)}}$

Implications for New Physics

Connections to other anomalies $\begin{cases} (g-2)_{\mu} \text{ anomaly} \\ B^+ \to K^+ \nu \bar{\nu} \text{ excess at Belle II} \\ \text{Cabibbo angle anomaly} \end{cases}$

Origin of LFU violation

Summary

LFU test

Z boson decay

$\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-)$							Γ_2/Γ_1
VALUE	<u>DOCUI</u>	MENT ID		TECN	COMME	NT	-
1.0001 ± 0.0024 OUR AVE	RAGE						
0.9974 ± 0.0050	¹ AABC	DUD	17Q	ATLS	$E_{\rm cm}^{pp} =$	7 TeV	
1.0009 ± 0.0028	² LEP-S	SLC	06		$E_{\rm cm}^{ee} =$	88–94 GeV	
$\Gamma(au^+ au^-)/\Gamma(e^+e^-)$							Γ_3/Γ_1
VALUE		DOCUM	IENT IL)	TECN	COMMENT	
1.0020 ± 0.0032 OUR AVE	RAGE						
1.02 ± 0.06		¹ AAIJ		18 AR	LHCB	$E_{\rm cm}^{pp} = 8 { m TeV}$	
1.0019 ± 0.0032		² LEP-S	LC	06		$E_{cm}^{ee} = 88-94$	GeV
$\Gamma(au^+ au^-)/\Gamma(\mu^+\mu^-)$							Γ_3/Γ_2
VALUE		DOCUM	IENT IL)	TECN	COMMENT	
1.0010 ± 0.0026 OUR AVE	RAGE						
1.01 ± 0.05		¹ AAIJ		18 AR	LHCB	$E_{cm}^{pp} = 8 \text{ TeV}$	
1.0010 ± 0.0026		² LEP-S	LC	06		$E_{cm}^{ee} = 88-94$	GeV

LFU test

$> \pi$ decay

$$R_{e/\mu}^{P} = \frac{\Gamma[P \to e\bar{\nu}_{e}(\gamma)]}{\Gamma[P \to \mu\bar{\nu}_{\mu}(\gamma)]}$$

$$K \text{ decay}$$

$$R_{e/\mu}^{K} = \frac{\Gamma[K^{+} \to e^{+}\nu(\gamma)]}{\Gamma[K^{+} \to \mu^{+}\nu(\gamma)]}$$

$$R_{e/\mu}^{K \to \pi} = \frac{\Gamma[K \to \pi e\nu(\gamma)]}{\Gamma[K \to \pi \mu\nu(\gamma)]}$$

$$\tau \text{ decay}$$

$$\left(\frac{A_{\mu}}{A_{e}}\right)_{R^{\pi}_{e/\mu}} = 1.0010 \pm 0.0$$

$$\left(\frac{A_{\mu}}{A_{e}}\right)_{R_{e/\mu}^{K}} = 0.9978 \pm 0.0$$

$$\left(\frac{A_{\mu}}{A_{e}}\right)_{R_{e/\mu}^{K_{L}\to\pi}} = 1.0022 \pm 0.0024 \qquad \left(\frac{A_{\mu}}{A_{e}}\right)_{R_{e/\mu}^{K\pm\to\pi^{\pm}}} = 0.9995 \pm 0.0026$$

$$R_{\tau/e}^{\tau} = \frac{\text{Br}(\tau^{-} \to \mu^{-} \bar{\nu_{\mu}} \nu_{\tau})}{\text{Br}(\mu^{-} \to e^{-} \bar{\nu_{e}} \nu_{\mu})} \qquad \left(\frac{A_{\tau}}{A_{e}}\right)_{\tau} = 1.0029 \pm 0.001$$

$$R_{\tau/\mu}^{\tau} = \frac{\text{Br}(\tau^{-} \to e^{-} \bar{\nu_{e}} \nu_{\tau})}{\text{Br}(\mu^{-} \to e^{-} \bar{\nu_{e}} \nu_{\mu})} \qquad \left(\frac{A_{\tau}}{A_{\mu}}\right)_{\tau} = 1.0010 \pm 0.001$$

$$R_{\mu/e}^{\tau} = \frac{\text{Br}(\tau^{-} \to \mu^{-} \bar{\nu_{\mu}} \nu_{\tau})}{\text{Br}(\tau^{-} \to e^{-} \bar{\nu_{e}} \nu_{\tau})} \qquad \left(\frac{A_{\mu}}{A_{e}}\right)_{\tau} = 1.0018 \pm 0.001$$

$$R_{\tau/\mu}^{\tau\pi(K)} = \frac{\text{Br}[\tau \to \pi(K)\nu_{\tau}]}{\text{Br}[\pi(K) \to \mu\nu_{\mu}]} \qquad \left(\frac{A_{\tau}}{A_{\mu}}\right)_{\pi} = 0.9964 \pm 0.003$$

- A. Pich, Prog. Part. Nucl. Phys. 75 (2014) 41
- B. Bryman, Cirigliano, Crivellin, Inguglia, Annu. Rev. Nucl. Part. Sci. 2022. 72:69-91

0009

0018

 R_D and R_{D*} anomalies: exp

LFU Violation ratio:

$$R(D^{(*)}) = \frac{\mathfrak{B}(B \to D^{(*)}\tau\nu)}{\mathfrak{B}(B \to D^{(*)}\ell\nu)} \quad (\ell$$

LFUV: τ v.s. e, μ

- QCD and EW contributions factorized
- tiny theoretical uncertainties

R_D and R_{D^*} anomalies

- Anomalies mainly from BaBar measurement
- **LHCb 2022: muonic tau,** 3 fb^{-1} @Run I
- **LHCb 2023: hadronic tau,** 2 fb^{-1} @Run II
- Outlook
 - Analysis based on Run I + II (9 fb^{-1})
 - ► R_{Λ_c} , R_{D_s} , R_D
 - ► Belle II

18

16

14

12

10-

[%]

Fotal uncertainty

R_D and R_{D*} anomalies: theory

uncertainty: current theo $\approx \exp(2040)$

$$R_{D^{(*)}} = \frac{\Gamma(B \to D^{(*)}\tau\nu)}{\Gamma(B \to D^{(*)}\ell\nu)}$$
$$R_{D} = \frac{\int_{m_{\tau}^{2}}^{q_{\max}^{2}} \frac{d\Gamma(B \to D\tau\nu)}{dq^{2}}}{\int_{m_{\ell}^{2}}^{q_{\max}^{2}} \frac{d\Gamma(B \to D\ell\nu)}{dq^{2}}}$$

form factor in $q^2 \in (m_\ell^2, m_\tau^2)$ not cancelled

$$\tilde{R}_{D} = \frac{\int_{m_{\tau}^{2}}^{q_{\max}^{2}} \frac{d\Gamma(B \to D\tau\nu)}{dq^{2}}}{\int_{m_{\tau}^{2}}^{q_{\max}^{2}} \frac{d\Gamma(B \to D\ell\nu)}{dq^{2}}}$$

form factors in the same region

$$r_D(q^2) = \frac{\frac{d\Gamma(B \to D\tau\nu)}{dq^2}}{\frac{d\Gamma(B \to D\ell\nu)}{dq^2}}$$

Form factors could not be a problem for $R_{D^{(*)}}$ in the future, form factor fully cancelled, for large data samples but still important for angular observables e.g., $P_{\tau}(D^*)$ and $F_{L,\tau}(D^*)$.

 $b \rightarrow s \ell^+ \ell^- decays$

Flavour-Changing Neutral Current (FCNC)

- ► Tree-level: forbidden
- ► Loop-level: suppressed by GIM, $\mathscr{B} \leq \mathscr{O}(10^{-6})$
- Many observables: branching ratio, angular distribution, LFV ratio
- NP effects can be sizable compared to the SM amplitude
- This transition is LFU in the SM

⇒ Sensitive to New Physics

stribution, LFV ratio I amplitude

 $b \rightarrow s \ell^+ \ell^-$: theory

Effective Hamiltonian

$$\mathscr{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \bigg(\sum_{i=1,\dots,6} C_i O_i + C_{7\gamma} O_{7\gamma} + C_{8g} O_{8g} \sum_{\ell} C_i O_{\ell} \bigg) \bigg|_{\ell}$$

Effective operator

$$\begin{split} O_1 &= (\bar{s}\gamma_\mu P_L T^a c) (\bar{c}\gamma^\mu P_L T^a b) \quad O_7^{(\prime)} = \frac{m_b}{e} (\bar{s}\sigma_{\mu\nu} P_{R(L)} b) F^{\mu\nu} \,, \quad O_9^{(\prime)\ell} \\ O_2 &= (\bar{s}\gamma_\mu P_L c) (\bar{c}\gamma^\mu P_L b) \qquad C_7^{\rm SM} \simeq -0.3 \,, \qquad C_9^{\rm SM} \end{split}$$

Feynman Diagram

 $\sum_{\ell} \sum_{i=9,10,P,S} (C_i^{\ell} O_i^{\ell} + C_i^{\prime \ell} O_i^{\prime \ell}))$

$$= (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\ell), \quad O_{10}^{(\prime)\ell} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \quad O_{S}^{(\prime\ell)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\ell)$$

$$\simeq 4, \qquad \qquad C_{10}^{SM} \simeq -4. \qquad \qquad O_{P}^{(\prime\ell)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\gamma_{5}\ell)$$

 $h \rightarrow s \ell^+ \ell^-$: theory

Effective Hamiltonian

$$\mathscr{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \left(\sum_{i=1,\dots,6} C_i O_i + C_{7\gamma} O_{7\gamma} + C_{8g} O_{8g} \sum_{\ell} \sum_{i=9,10,P,S} \left(C_i^{\ell} O_i^{\ell} + C_i^{\prime\ell} O_i^{\prime\ell} \right) \right)$$

Effective operator

 $O_{1} = (\bar{s}\gamma_{\mu}P_{L}T^{a}c)(\bar{c}\gamma^{\mu}P_{L}T^{a}b) \quad O_{7}^{(\prime)} = \frac{m_{b}}{e}(\bar{s}\sigma_{\mu\nu}P_{R(L)}b)F^{\mu\nu}, \quad O_{9}^{(\prime)\ell} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\ell), \quad O_{10}^{(\prime)\ell} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \quad O_{S}^{(\prime\ell)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\ell')$ $C_{10}^{\rm SM} \simeq -4$. $O_P^{(\prime\ell)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\gamma_5\ell)$ $O_2 = (ar{s} \gamma_\mu P_L c) (ar{c} \gamma^\mu P_L b) \qquad C_7^{
m SM} \simeq -0.3 \,,$ $C_9^{
m SM}\simeq 4\,,$

 $\textbf{Amplitude:} \quad \mathcal{M}(B \to M\ell\ell) = \langle M\ell\ell | \mathcal{H}_{eff} | B \rangle = \mathcal{N} \left[\left(\mathcal{A}_{V}^{\mu} + \mathcal{H}^{\mu} \right) \, \bar{u}_{\ell} \gamma_{\mu} v_{\ell} + \mathcal{A}_{A}^{\mu} \, \bar{u}_{\ell} \gamma_{\mu} \gamma_{5} v_{\ell} + \mathcal{A}_{S} \, \bar{u}_{\ell} v_{\ell} + \mathcal{A}_{P} \, \bar{u}_{\ell} \gamma_{5} v_{\ell} \right]$

Local: В

 $\mathcal{A}^{\mu}_{\Lambda} = \mathcal{C}_{10} \langle M | \bar{s} \gamma^{\mu} P_L b | B \rangle + (P_L \leftrightarrow P_R, C_i \to C'_i)$ $\mathcal{A}_{S,P} = \mathcal{C}_{S,P} \langle M | \bar{s} P_R b | B \rangle + (P_L \leftrightarrow P_R, C_i \to C'_i)$

From talk by B. Capdevila, M. Fedele, S. Neshatpour, P. Stangl

Wilson Coefficient

- perturbative
- short-distance physics
- q^2 independent
- NNLO QCD + NLO EW@SM
- parameterization of heavy NP

 $-C_i = C_i^{\rm SM} + C_i^{\rm NP}$

 $\mathcal{A}_{V}^{\mu} = -\frac{2im_{b}}{a^{2}} C_{7} \langle M | \bar{s} \sigma^{\mu\nu} q_{\nu} P_{R} b | B \rangle + C_{9} \langle M | \bar{s} \gamma^{\mu} P_{L} b | B \rangle + (P_{L} \leftrightarrow P_{R}, C_{i} \to C_{i}')$

Matrix Element

- non-perturbative
- long-distance physics
- q^2 dependent
- theoretically challenging
- main source of uncertainties

 $b \rightarrow s \ell^+ \ell^-$: theory

 $h \rightarrow s \ell^+ \ell^-$: observables

Angular Distribution

Lepton Flavour Universality (LFU) ratio

function of $(C_{7\gamma}, C_9, C_{10})$

$$R_{K} = \frac{\mathscr{B}(B \to K\mu^{+}\mu^{-})}{\mathscr{B}(B \to Ke^{+}e^{-})}$$

 $ightarrow R_{K}^{\mathrm{SM}} \approx 1$

Hadronic uncertainties cancel

 $\triangleright \mathcal{O}(10^{-2})$ QED correction

deviation from unity

Physics beyond the SM

 $+\frac{1}{4}(1-F_{L})\sin^{2}\theta_{k}\cos 2\theta_{\ell}-F_{L}\cos^{2}\theta_{k}\cos 2\theta_{\ell}$ $+\dot{S}_3 \sin^2 \theta_k \sin^2 \theta_\ell \cos 2\phi + S_4 \sin 2\theta_k \sin 2\theta_\ell \cos \phi$ $+S_5 \sin 2\theta_k \sin \theta_\ell \cos \phi + \frac{4}{3}A_{FB} \sin^2 \theta_k \cos \theta_\ell$ $+S_7 \sin 2\theta_k \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_k \sin 2\theta_\ell \sin \phi$ $+S_9 \sin^2 \theta_k \sin^2 \theta_\ell \sin 2\phi$],

 $P_1 = \frac{2S_3}{1 - F_L}$ $P_2 = \frac{2}{3} \frac{A_{\rm FB}}{1 - F_L}$ I - I'L $\frac{S_{j=4,5,7,8}}{F_L(1-F_L)}$ $P'_{i=4,5,6,8}$

 $F_L, A_{FB}, S_i = f(C_7, C_9, C_{10}),$ combinations of K^{*0} decay amplitudes

angular observables

$b \rightarrow s\ell\ell$ anomalies@mid.2022: branching ratio

- **EXP** below SM
- \blacktriangleright Low q^2
- Theoretical Uncertainties: 6

$b \rightarrow s \ell \ell$ anomalies@mid.2022: angular distribution

$b \rightarrow s \ell \ell$ anomalies@mid.2022: lepton flavour universality ratio

$$R_{K^+} = \frac{\mathfrak{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathfrak{B}(B^+ \to K^+ e^+ e^-)}$$

- $ightarrow R_H^{\rm SM} pprox 1$ Hadronic uncertainties cancel $\triangleright \mathcal{O}(10^{-2})$ QED correction
- Theoretical Uncertainties:
 - branching ratio:
 - angular distribution: 😢
 - LFV ratio:

deviation from unity **Physics beyond the SM**

(i)

•••

$b \rightarrow s \ell \ell$ anomalies@mid.2022: lepton flavour universality ratio

$b \rightarrow s\ell\ell$ anomalies@2023

$b \rightarrow s\ell\ell$ anomalies@mid.2024

> Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$ at LHCb ^{LHCb-Paper-2024-022} R.S.Coutinho's talk@ICHEP

 $\mathscr{B}_{exp} < 1.8 \times 10^{-3}$ is still far from the SM prediction 1.0×10^{-7}

- Based on full Run I + II data
- Performed in [1.1, 6.0(7.0)] GeV² region

$$\blacktriangleright Q_i = P_i^{(\mu)} - P_i^{(e)}$$

All consistent with SM

Flavour anomalies: New Physics interpretation $\blacktriangleright b \rightarrow s \ell^+ \ell^-$ anomalies $\mu_{\rm NP}$ -??? 7 - branching ratio: $\mathfrak{B}(B_s \to \phi \mu^+ \mu^-), \dots$ - angular distribution: P'_5 in $B \to K^* \mu^+ \mu^-$, ... **SMEFT: SM Effective Field Theory** $> b \rightarrow c \tau \nu$ anomalies $\mu_{\rm EW}$ - LFUV ratios (τ vs. μ , e) in $B \rightarrow D^{(*)} \tau \nu$, $\boldsymbol{\mu}_{\boldsymbol{b}} + O_{\text{VLL}} = (\bar{c}\gamma^{\mu}P_{L}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu) \quad O_{S_{R}} = (\bar{c}_{L}b_{R})(\bar{\ell}_{R}v_{\tau L})$

Flavour anomalies: New Physics interpretation

$b \rightarrow s \ell \ell global fit@mid.2023$

Recent Global Fit

		All		
1D Hyp.	Best fit	$1\sigma/2\sigma$	$\operatorname{Pull}_{\mathrm{SM}}$	p-value
$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	-0.67	$egin{array}{c} [-0.82, -0.52] \ [-0.98, -0.37] \end{array}$	4.5	20.2%
$\mathcal{C}_{9\mu}^{ m NP}=-\mathcal{C}_{10\mu}^{ m NP}$	-0.19	[-0.25, -0.13] [-0.32, -0.07]	3.1	9.9%

	All			
2D Hyp.	Best fit	$\operatorname{Pull}_{\mathrm{SM}}$	p-value	
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10\mu}^{\mathrm{NP}})$	(-0.82, -0.17)	4.4	21.9%	
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{7'})$	(-0.68, +0.01)	4.2	19.4%	
$(\mathcal{C}_{9\mu}^{ m NP},\mathcal{C}_{9'\mu})$	(-0.78, +0.21)	4.3	20.7%	
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10'\mu})$	(-0.76, -0.12)	4.3	20.5%	
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{9e}^{ ext{NP}})$	(-1.17, -0.97)	5.6	40.3%	

Scenario		Best-fit point 1σ		$\operatorname{Pull}_{\mathrm{SM}}$	p-value
Scenario 0	$\mathcal{C}_{9\mu}^{ ext{NP}} = \mathcal{C}_{9e}^{ ext{NP}} = \mathcal{C}_{9}^{ ext{U}}$	-1.17	[-1.33, -1.00]	5.8	39.9 %
	$\mathcal{C}_{9\mu}^{\mathrm{V}}$	-1.02	$\left[-1.43,-0.61\right]$		
Scenario 5	$\mathcal{C}^{\mathrm{V}}_{10\mu}$	-0.35	[-0.75, -0.00]	4.1	21.0%
	$\mathcal{C}_9^{\mathrm{U}}=\mathcal{C}_{10}^{\mathrm{U}}$	+0.19	[-0.16, +0.58]		
Sconario 6	$\mathcal{C}_{9\mu}^{\mathrm{V}}=-\mathcal{C}_{10\mu}^{\mathrm{V}}$	-0.27	$\left[-0.34,-0.20\right]$	4.0	180%
Scenario 0	$\mathcal{C}_9^{\mathrm{U}}=\mathcal{C}_{10}^{\mathrm{U}}$	-0.41	$\left[-0.53,-0.29\right]$	4.0	10.0 /0
Sconario 7	$\mathcal{C}_{9\mu}^{\mathrm{V}}$	-0.21	$\left[-0.39, -0.02 ight]$	5.6	10.2%
Scenario 1	$\mathcal{C}_9^{\mathrm{U}}$	-0.97	[-1.21, -0.72]	5.0	40周衔,
Sconario 8	$\mathcal{C}_{9\mu}^{\mathrm{V}}=-\mathcal{C}_{10\mu}^{\mathrm{V}}$	-0.08	[-0.14, -0.02]	5.6	11 1 %
Scenario o	$\mathcal{C}_9^{\mathrm{U}}$	-1.10	[-1.27, -0.91]	0.0	41.1 /0

 C_{9_0} C_{9_0}

所有的good fit 都不包含大的C10 不包含C10意味着可以用non-local matrix解释?

Ciuchini et al 2212.10516 Alguero et al 2304.07330 Qiaoyi Wen, Fanrong Xu 2305.19038

$$O_9 = (\bar{b}\gamma^\mu P_L s)(\bar{\ell}\gamma_\mu \ell)$$

$$O_{10} = (\bar{b}\gamma^{\mu}P_L s)(\bar{\ell}\gamma_{\mu}\gamma_5\ell)$$

 $\mathscr{B}(B_s \to \mu^+ \mu^-)$ consistent with SM $(C_{10} \text{ can't be too large})$

$$C_{e} = C_{9}^{U}$$

 $C_{\mu} = C_{9}^{U} + C_{9}^{V}$

Charm-loop contribution

$$C_{9e} = C_{9\mu} = \mathbf{0}$$

> Charm-loop contribution is expected to be $\Delta C_{\mathbf{q}}^{U}(q^{2})$, but not $\Delta C_{\mathbf{q}}^{U}$

Solution Global fit prefer to $C_{9e} = C_{9\mu} \neq C_9^{SM} \iff \mathscr{B}(B_s \to \mu^+ \mu^-)_{exp}$ is consistent with SM **Charm-loop could mimic** $C_{9e} = C_{9\mu}$ $O_9 = (\bar{b}\gamma^{\mu}P_L s)(\bar{\ell}\gamma_{\mu}\ell)$ $O_{10} = (\bar{b}\gamma^{\mu}P_L s)(\bar{\ell}\gamma_{\mu}\gamma_5\ell)$ $C_9^{\text{SM}} + \Delta C_q^{U, \text{ charm loop}} + \Delta C_q^{U, \text{NP}}$

-1.0

Introduction **Lepton Flavour Universality Test**

 π, K, τ system, W, Z boson, $R_{D^{(*)}}$ and $R_{K^{(*)}}$

Implications for New Physics

Connections to other anomalies $\begin{cases} (g-2)_{\mu} \text{ anomaly} \\ B^+ \to K^+ \nu \bar{\nu} \text{ excess at Belle II} \\ \text{Cabibbo angle anomaly} \end{cases}$

Origin of LFU violation

Summary

2)_µ

Aoyama, Hayakawa, Kinoshita, Nio (2012-2019)

$$a_{\mu} = (g - 2)/2$$

7116 ± 184

$a_{\mu}^{HLbL} \times 10^{11}$	LO
Phenomenology	92 ± 19
Lattice QCD	79 ± 35

 $a_{\mu}^{
m QED}$ 116 140 973.321 (23) = 413 217.626 (7) 30 141.902 (33) +381.004 (17) +5.078 (6) +116 584 718.931 (104) = 12000+ Feynman diagrams Analytical calculation @ α^2 , α^3

Partly analytical @ α^4 Numerical @ α^5

$(-2)_{\mu}$ $(g \cdot$

unit: 10^{-11}

Bohr magneton

 $a_{\mu}^{\rm SM} = 116591810 \pm 43$ $a_{\mu}^{\rm exp} = 116592061 \pm 41$

$$a_{\mu} = (g-2)/2$$

+ ...

$a_{\mu}^{HLbL} \times 10^{11}$	LO
Phenomenology	92 ± 19
Lattice QCD	79 ± 35

•
$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = 251 \pm 59$$

4.2 sigma difference !!!

Experiment	Beam	Measurement	$\delta \mathbf{a}_{\mu}/\mathbf{a}_{\mu}$	Required th. terms
Columbia-Nevis (57)	μ^+	g=2.00±0.10		g=2
Columbia-Nevis (59)	μ^+	0.001 13(+16)(-12)	12.4%	α/π
CERN 1 (61)	μ^+	0.001 145(22)	1.9%	α/π
CERN 1 (62)	μ^+	0.001 162(5)	0.43%	$(\alpha/\pi)^2$
CERN 2 (68)	μ^+	0.001 166 16(31)	265 ppm	$(\alpha/\pi)^3$
CERN 3 (75)	μ^{\pm}	0.001 165 895(27)	23 ppm	$(\alpha/\pi)^3$ + had
CERN 3 (79)	μ^{\pm}	0.001 165 911(11)	7.3 ppm	$(\alpha/\pi)^3$ + had
BNL E821 (00)	μ^+	0.001 165 919 1(59)	5 ppm	$(\alpha/\pi)^3$ + had
BNL E821 (01)	μ^+	0.001 165 920 2(16)	1.3 ppm	$(\alpha/\pi)^4$ + had + weak
BNL E821 (02)	μ^+	0.001 165 920 3(8)	0.7 ppm	$(\alpha/\pi)^4$ + had + weak + ?
BNL E821 (04)	μ^-	0.001 165 921 4(8)(3)	0.7 ppm	$(\alpha/\pi)^4$ + had + weak + ?
FNAL Run1 (21)	μ^+	0.001 165 920 40(54)	0.46 ppm	$(\alpha/\pi)^4$ + had + weak + ?
32				

RBC and UKQCD, 2301.08696

$(g-2)_{\mu}$ and $b \rightarrow s\ell\ell$ anomaly

Recent Global Fit

		All		
1D Hyp.	Best fit	$1\sigma/2\sigma$	$\operatorname{Pull}_{\mathrm{SM}}$	p-value
$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	-0.67	$egin{array}{c} [-0.82, -0.52] \ [-0.98, -0.37] \end{array}$	4.5	20.2%
$\mathcal{C}_{9\mu}^{ m NP}=-\mathcal{C}_{10\mu}^{ m NP}$	-0.19	[-0.25, -0.13] [-0.32, -0.07]	3.1	9.9%

	All			
2D Hyp.	Best fit	$\operatorname{Pull}_{\mathrm{SM}}$	p-value	
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10\mu}^{\mathrm{NP}})$	(-0.82, -0.17)	4.4	21.9%	
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{7'})$	(-0.68, +0.01)	4.2	19.4%	
$(\mathcal{C}_{9\mu}^{ m NP},\mathcal{C}_{9'\mu})$	(-0.78, +0.21)	4.3	20.7%	
$(\mathcal{C}_{9\mu}^{ m NP},\mathcal{C}_{10'\mu})$	(-0.76, -0.12)	4.3	20.5%	
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{9e}^{ ext{NP}})$	(-1.17, -0.97)	5.6	40.3%	

Scenario		Best-fit point	1σ	$\operatorname{Pull}_{\mathrm{SM}}$	p-value
Scenario 0	$\mathcal{C}_{9\mu}^{ ext{NP}} = \mathcal{C}_{9e}^{ ext{NP}} = \mathcal{C}_{9}^{ ext{U}}$	-1.17	[-1.33, -1.00]	5.8	39.9 %
	$\mathcal{C}_{9\mu}^{\mathrm{V}}$	-1.02	$\left[-1.43,-0.61\right]$		
Scenario 5	$\mathcal{C}^{\mathrm{V}}_{10\mu}$	-0.35	[-0.75, -0.00]	4.1	21.0%
	$\mathcal{C}_9^{\mathrm{U}}=\mathcal{C}_{10}^{\mathrm{U}}$	+0.19	[-0.16, +0.58]		
Sconario 6	$\mathcal{C}_{9\mu}^{\mathrm{V}}=-\mathcal{C}_{10\mu}^{\mathrm{V}}$	-0.27	$\left[-0.34,-0.20\right]$	4.0	180%
Scenario 0	$\mathcal{C}_9^{\mathrm{U}}=\mathcal{C}_{10}^{\mathrm{U}}$	-0.41	$\left[-0.53,-0.29\right]$	4.0	10.0 /0
Sconario 7	$\mathcal{C}_{9\mu}^{\mathrm{V}}$	-0.21	[-0.39, -0.02]	5.6	10 3 %
Scenario 1	$\mathcal{C}_9^{\mathrm{U}}$	-0.97	[-1.21, -0.72]	5.0	40.3 /0
Seconario 8	$\mathcal{C}_{9\mu}^{\mathrm{V}}=-\mathcal{C}_{10\mu}^{\mathrm{V}}$	-0.08	[-0.14, -0.02]	5.6	11 1 07
Scenario o	$\mathcal{C}_9^{\mathrm{U}}$	-1.10	[-1.27, -0.91]	5.0	41.1 70

Ciuchini et al 2212.10516 Alguero et al 2304.07330 Qiaoyi Wen, Fanrong Xu 2305.19038

$b \rightarrow s \nu \bar{\nu}$: exp & theory

2021 Apr

2023 Aug

${\mathop{\rm SM}_{0.497\pm0.037}}$	$\operatorname{Average}_{1.3\pm0.4}$ Gani	ev@EPS-HEP, 23 Aug 2023/Be	lle II, 2311.14647	ם ג Iav
		Belle II (362 fb ⁻¹ , combined $_{2.3\pm0.7}$ This analysis, preliminary) 2 P	;hua !2, 2 ?ubl
	- O	Belle II (362 fb ⁻¹ , hadronic) 1.1 ± 1.1 This analysis, preliminary	2 R	ם µ Rev
		Belle II (362 fb ⁻¹ , inclusive) $_{2.7\pm0.7}$ This analysis, preliminary	B P	ielle iubl
	0	Belle II (63 fb ⁻¹ , inclusive) 1.9 ± 1.5 PRL127, 181802) n
	•	Belle (711 fb ⁻¹ , semileptonic $_{1.0\pm0.6}$ PRD96, 091101	F e	ran -Pr
	•		C	ם ב Cor
	-	BaBar (418 fb ⁻¹ , semilepton $_{0.2\pm0.8}$ PRD82, 112002	ic)	eng -Pr
-		BaBar (429 fb ⁻¹ , hadronic) 1.5 ± 1.3 PRD87, 112005	R S e	≀ec 5hu- ;-Pr
0	2 4	6 8	10	Ъ к
	$10^5 imes Br($	$B^+ \rightarrow K^+ \nu \overline{\nu})$		

Impact of B→K

Thomas E. Browde Bhubaneswar, Inst Published in: Phys 🖾 pdf 🛛 🖉 DO

Phenomenological study of a gauged L_{μ} - L_{τ} model with a scalar leptoqua

Chuan-Hung Chen (Taiwan, Natl. Cheng Kung U. and NCTS, Taipei), Cheng-Wei Chiang (7 Wei Su (Taiwan, Natl. Taiwan U.) (May 16, 2023) Published in: *Phys.Rev.D* 109 (2024) 5, 5 • e-Print: 2305.09256 [hep-ph] 🖾 pdf 🕜 DOI 🖃 cite 📑 claim

Higgs portal interpretation of the Belle II $B^+ \rightarrow K^+ \nu \nu$ measurement David McKeen (TRIUMF), John N. Ng (TRIUMF), Douglas Tuckler (TRIUMF and Simon Fras Published in: Phys.Rev.D 109 (2024) 7, 075006 • e-Print: 2312.00982 [hep-ph]

🖟 pdf 🕜 DOI 🖃 cite 🔂 claim

Light new physics in $B \to K^{(*)} \nu \nu$? Wolfgang Altmannshofer (UC, Santa Cruz, Inst. Part. Phys.), Andreas Crivellin (Zurich U.), Inguglia (Vienna, OAW), Jorge Martin Camalich (IAC, La Laguna) (Nov 24, 2023) Published in: Phys.Rev.D 109 (2024) 7, 075008 • e-Print: 2311.14629 [hep-ph] 🖻 pdf 🕜 DOI 🖃 cite 🗒 claim

 $B \rightarrow K \nu \nu$, MiniBooNE and muon g - 2 anomalies from a dark sector Alakabha Datta (Mississippi U. and SLAC and UC, Santa Cruz), Danny Marfatia (Hawaii U.) 2023) Published in: *Phys.Rev.D* 109 (2024) 3, L031701 • e-Print: 2310.15136 [hep-ph] 🖟 pdf 🕜 DOI 🖃 cite 🔂 claim

 $B o K^*M_X$ vs $B o KM_X$ as a probe of a scalar-mediator dark mat Alexander Berezhnoy (SINP, Moscow), Dmitri Melikhov (SINP, Moscow and Dubna, JINR at Published in: EPL 145 (2024) 1, 14001 • e-Print: 2309.17191 [hep-ph] pdf 🔗 DOI 📑 cite 🗟 claim

vor anomalies in leptoquark model with gauged $U(1)_{L_{u}-L_{\tau}}$

ian-Hung Chen (Taiwan, Natl. Cheng Kung U. and Unlisted, TW), Cheng-Wei Chiang (T 2023) lished in: Phys.Rev.D 109 (2024) 7, 075004 · e-Print: 2309.12904 [hep-ph] pdf 🖉 DOI 🖃 cite 🗟 claim

visiting models that enhance $B^+ \to K^+ \nu p$ in light of the new Belle II mea e-II Collaboration • Xiao-Gang He (Tsung-Dao Lee Inst., Shanghai and Taiwan, Natl. Ta lished in: Phys.Rev.D 109 (2024) 7, 075019 · e-Print: 2309.12741 [hep-ph] pdf 🔗 DOI 🖃 cite 📑 claim

new look at b
ightarrow s observables in 331 models

cesco Loparco (Jan 22, 2024) rint: 2401.11999 [hep-ph] pdf 🔁 cite 🗟 claim

relating $B o K^{(*)}
u ar{
u}$ and flavor anomalies in SMEFT J-Zhi Chen, Qiaoyi Wen, Fanrong Xu (Jan 21, 2024) rint: 2401.11552 [hep-ph] pdf 🔁 cite 🗟 claim

cent $B^+\!
ightarrow K^+
uar{
u}$ Excess and Muon g-2 Illuminating Light Dark Se J-Yu Ho, Jongkuk Kim, Pyungwon Ko (Jan 18, 2024) Print: 2401.10112 [hep-ph]

(νν ⁻	ίνν ⁻ measurements on beyond the Standard Model theories				
er (H t. Ph s. <i>R</i> ev	er (Hawaii U.), Nilendra G. Deshpande (Oregon U.), Rusa Mandal (Siegen U.), Rahul Sinha (IMSc, Chennai and Phys.) (Jul 2, 2021) .Rev.D 104 (2021) 5, 053007 • e-Print: 2107,01080 [hep-ph]				
OI	[∃ cite	🗟 claim	C reference search		

30+ theory papers !	Explaining the $B^+ o K^+ u ar{ u}$ excess via a massles E. Gabrielli, L. Marzola, K. Müürsepp, M. Raidal (Feb 8, 2024)
Jark #42 Taiwan, Natl. Taiwan U. and NCTS, Taipei), Chun-	pdf ⊡ cite ि claim
\Box reference search \ominus 3 citations	Decoding the $B o K u u$ excess at Belle II: kinema Kåre Fridell, Mitrajyoti Ghosh, Takemichi Okui, Kohsaku Tobioka e-Print: 2312.12507 [hep-ph]
#29 ser U.) (Dec 1, 2023)	🖾 pdf 🖃 cite 🗟 claim
ि reference search € 10 citations #30	Understanding the first measurement of $B(B \rightarrow K \nu n)$ Lukas Allwicher (Zurich U.), Damir Becirevic (IJCLab, Orsay), G Orsay), Olcyr Sumensari (IJCLab, Orsay) (Sep 5, 2023) Published in: <i>Phys.Lett.B</i> 848 (2024) 138411 • e-Print: 2309.0
, Huw Haigh (Vienna, OAW), Gianluca	🖾 pdf 🕜 DOI 🖃 cite 🗒 claim
ि reference search #31 /, Lopamudra Mukherjee (Nankai U.) (Oct 23,	Implications of an enhanced $B \to K\nu\nu$ branching rateRigo Bause (Tech. U., Dortmund (main)), Hector Gisbert (INFN, Sussex U.) (Aug 31, 2023)Published in: Phys.Rev.D 109 (2024) 1, 015006 • e-Print: 2300Published in: Phys.Rev.D 109 (2024) 1, 015006 • e-Print: 2300Published in: Phys.Rev.D 109 (2024) 1, 015006 • e-Print: 2300Published in: Phys.Rev.D 109 (2024) 1, 015006 • e-Print: 2300
$\[\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	B meson anomalies and large $B^+ o K^+ u \overline{ u}$ in not Peter Athron (Nanjing Normal U.), R. Martinez (Colombia, U. Na Published in: <i>JHEP</i> 02 (2024) 121 • e-Print: 2308.13426 [hep
tter scenario #33	[∄ pdf ⊘ DOI 🖃 cite 📑 claim
nd Vienna U.) (Sep 29, 2023) ित्र reference search	SMEFT predictions for semileptonic processes Siddhartha Karmakar, Amol Dighe, Rick S. Gupta (Apr 15, 2024
#34	e-Print: 2404.10061 [hep-ph]
Taiwan, Natl. Taiwan U. and Unlisted, TW) (Sep	Implications of $B o K u ar u$ under Rank-One Flavor David Marzocca, Marco Nardecchia, Alfredo Stanzione, Claudio
$\overline{\mathbb{R}}$ reference search \Im 9 citations	e-Print: 2404.06533 [hep-ph]
asurement #35 aiwan U.) et al. (Sep 22, 2023)	The quark flavor-violating ALPs in light of B me
\mathbb{F}_{Q} reference search \mathfrak{S} 16 citations	Yuan (Nankai U.) (Feb 21, 2024)
#18	Published in: <i>JHEP</i> 05 (2024) 232 • e-Print: 2402.14232
☐ reference search	Scalar dark matter explanation of the excess in the Xiao-Gang He, Xiao-Dong Ma, Michael A. Schmidt, German Va e-Print: 2403.12485 [hep-ph] pdf cite cite claim
ि	Status and prospects of rare decays at Belle-II Elisa Manoni (Mar 12, 2024) Published in: <i>PoS</i> WIFAI2023 (2024) 024 • Contribution to: WI
	🖹 pdf 🕜 DOI 🖃 cite 📑 claim
	Rare B and K decays in a scotogenic model

odf 🖃 cite 🗟 claim \Box reference search \bigcirc 4 citations

A tale of invisibility: constraints on new physics in $b \rightarrow svv$ Tobias Felkl (New South Wales U.), Sze Lok Li (New South Wales U.), Michael A. Schmidt (New Published in: <i>JHEP</i> 12 (2021) 118 • e-Print: 2111.04327 [hep-ph]	ew South Wales U.) (Nov 8, 2	#65 2021)
ב א ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב	a reference search	
Explaining the $B^+ o K^+ uar u$ excess via a massless dark photon E. Gabrielli, L. Marzola, K. Müürsepp, M. Raidal (Feb 8, 2024) e-Print: 2402.05901 [hep-ph]		#16
🗈 pdf 🖃 cite 🗐 claim	a reference search	 ➔ 4 citations
Decoding the $B \to K \nu \nu$ excess at Belle II: kinematics, operators, and ma Kåre Fridell, Mitrajyoti Ghosh, Takemichi Okui, Kohsaku Tobioka (Dec 19, 2023) e-Print: 2312.12507 [hep-ph]	ISSES	#27
Ď pdf 🖃 cite 🕞 claim	বি reference search	➔ 10 citations
Understanding the first measurement of $B(B \rightarrow K\nu\nu)$ Lukas Allwicher (Zurich U.), Damir Becirevic (IJCLab, Orsay), Gioacchino Piazza (IJCLab, Orsay), Olcyr Sumensari (IJCLab, Orsay) (Sep 5, 2023) Published in: <i>Phys.Lett.B</i> 848 (2024) 138411 • e-Print: 2309.02246 [hep-ph]	say), Salvador Rosauro-Alcar	#38 az (IJCLab,
🗜 pdf 🔗 DOI 🖃 cite 🗟 claim	বি reference search	
Implications of an enhanced $B \rightarrow K\nu\nu$ branching ratio Rigo Bause (Tech. U., Dortmund (main)), Hector Gisbert (INFN, Padua and Padua U.), Gudru Sussex U.) (Aug 31, 2023) Published in: <i>Phys.Rev.D</i> 109 (2024) 1, 015006 • e-Print: 2309.00075 [hep-ph]	n Hiller (Tech. U., Dortmund	#39 (main) and
🗅 pdf 🕜 DOI 🖃 cite 🔂 claim	c reference search	
B meson anomalies and large $B^+ \to K^+ \nu \overline{\nu}$ in non-universal U(1)' model Peter Athron (Nanjing Normal U.), R. Martinez (Colombia, U. Natl.), Cristian Sierra (Nanjing N Published in: <i>JHEP</i> 02 (2024) 121 · e-Print: 2308.13426 [hep-ph] pdf \mathscr{O} DOI \Box cite \Box claim	S Normal U.) (Aug 25, 2023)	+40 € 22 citations
		-
SMEFT predictions for semileptonic processes Siddhartha Karmakar, Amol Dighe, Rick S. Gupta (Apr 15, 2024) e-Print: 2404.10061 [hep-ph]		#4
▶ pdf 🖃 cite 🕞 claim	ि reference search	➔ 0 citations
Implications of $B o K uar u$ under Rank-One Flavor Violation hypothesis David Marzocca, Marco Nardecchia, Alfredo Stanzione, Claudio Toni (Apr 9, 2024) e-Print: 2404.06533 [hep-ph]		#5
🛿 pdf 🖃 cite 🗟 claim	🗟 reference search	e 0 citations
The quark flavor-violating ALPs in light of B mesons and hadron coll Tong Li (Nankai U.), Zhuoni Qian (Hangzhou Normal U.), Michael A. Schmidt (Sydney Yuan (Nankai U.) (Feb 21, 2024) Published in: JHEP 05 (2024) 232 • e-Print: 2402 14232 [hep-ph]	liders y U. and New South Wales	#20 U.), Man
DOI ☐ cite ☐ claim	ि reference search	
Scalar dark matter explanation of the excess in the Belle II B^+\to K^+ + \n Xiao-Gang He, Xiao-Dong Ma, Michael A. Schmidt, German Valencia, Raymond R. Volkas (M	nbox{invisible} measure	ement #9
pdf ⊡ cite 🕞 claim	C reference search	
Status and prospects of rare decays at Belle-II Elisa Manoni (Mar 12, 2024)		#10
Published in: PoS WIFAI2023 (2024) 024 · Contribution to: WIFAI 2023, 024	🗟 reference search	➔ 0 citations
Rare B and K decays in a scotogenic model		#11
Chuan-Hung Chen, Cheng-Wei Chiang (Mar 5, 2024) e-Print: 2403.02897 [hep-ph]		
▶ pdf	न्तु reference search	

he quark flavor-violating ALPs in light of B mesons and hadron colliders
ng Li (Nankai U.), Zhuoni Qian (Hangzhou Normal U.), Michael A. Schmidt (Sydney U. and New South Wales Ian (Nankai U.) (Feb 21, 2024)
ublished in: JHEP 05 (2024) 232 • e-Print: 2402.14232 [hep-ph]

کے pdf	[→ cite	🗟 claim	a reference s

$b \rightarrow s \nu \bar{\nu}$: exp & theory

2021 Apr

2023 Aug

$b \rightarrow s \nu \bar{\nu}$: exp & theory

	Observable	SM	Exp	Unit
	$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})$	4.16 ± 0.57	$23\pm5^{+5}_{-4}$	10^{-6}
	$\mathcal{B}(B^0 \to K^0 \nu \bar{\nu})$	3.85 ± 0.52	< 26	10^{-6}
L S	$\mathcal{B}(B^+ \to K^{*+} \nu \bar{\nu})$	9.70 ± 0.94	< 61	10^{-6}
$D \rightarrow S$	$\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})$	9.00 ± 0.87	< 18	10^{-6}
	$\mathcal{B}(B_s \to \phi \nu \bar{\nu})$	9.93 ± 0.72	< 5400	10^{-6}
	$\mathcal{B}(B_s \to \nu \bar{\nu})$	≈ 0	< 5.9	10^{-4}
	$\mathcal{B}(B^+ \to \pi^+ \nu \bar{\nu})$	1.40 ± 0.18	< 140	10^{-7}
	${\cal B}(B^0 o \pi^0 u ar u)$	6.52 ± 0.85	< 900	10^{-8}
$b \rightarrow d$	$\mathcal{B}(B^+ \to \rho^+ \nu \bar{\nu})$	4.06 ± 0.79	< 300	10^{-7}
	${\cal B}(B^0 o ho^0 u ar u)$	1.89 ± 0.36	< 400	10^{-7}
	${\cal B}(B^0 o u ar u)$	≈ 0	< 1.4	10^{-4}
$c \rightarrow d$	$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$	8.42 ± 0.61	$10.6^{+4.0}_{-3.4}\pm0.9$	10^{-11}
$s \rightarrow u$	$\mathcal{B}(K_L o \pi^0 u ar{ u})$	3.41 ± 0.45	< 300	10^{-11}

 $B^0 \rightarrow K^{*0} \nu \bar{\nu}$ can put strong constraints on related **BSM** effects.

$b \rightarrow s \nu \bar{\nu}$: SMEFT

B.F.Hou, X.Q.Li, M.Shen, Y.D.Yang, XBY, 2402.19208

SMEFT notation:
$$l = \begin{pmatrix} \nu \\ e \end{pmatrix}_L$$
, $q = \begin{pmatrix} u \\ d \end{pmatrix}_L$, d

$$O_{9,ij}' = (\bar{b}\gamma^{\mu}P_R s)(\bar{\ell}_i\gamma_{\mu}\ell_j)$$
$$O_{10,ij}' = (\bar{b}\gamma^{\mu}P_R s)(\bar{\ell}_i\gamma_{\mu}\gamma_5\ell_j)$$

Cabibbo Angle Anomaly

► unitarity of CKM: $VV^{\dagger} = V^{\dagger}V = 1$

unitarity triangle

ct

All measurements agree with the CKM picture in the SM !!! However, ...

Cabibbo Angle Anomaly

$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

 $|V_{ud}|^2_{\text{global}} + |V_{us}|^2_{\text{global}} + |V_{ub}|^2 - 1 = -0.00151(53)$ $|V_{ud}|^2_{\beta} + |V_{us}|^2_{K_{\ell_3}} + |V_{ub}|^2 - 1$ = -0.00176(54), $|V_{ud}|^2_{\beta} + |V_{us}|^2_{K_{u2}/\pi_{u2},\beta} + |V_{ub}|^2 - 1 = -0.000\,98(56)\,,$ $|V_{ud}|^2_{K_{u2}/\pi_{u2}, K_{\ell_3}} + |V_{us}|^2_{K_{\ell_3}} + |V_{ub}|^2 - 1 = -0.0163(62),$

Cabibbo Angle Anomaly

From unitarity for the first row of CKM ($|V_{\mu b}|^2 \sim 10^{-5}$)

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

From data

Crivellin, Kirk, Kitahara, Mescia, 2212.06862

 $|V_{ud}|^2_{\text{global}} + |V_{us}|^2_{\text{global}} + |V_{ub}|^2 - 1 = -0.00151(53)$

Connection to LFUV

Crivellin, Hoferichter, 2002.07184

 $|V_{us}|_{\text{global}} = 0.224\,05(35)$ V_{ud} from β decay: $n \begin{cases} \frac{1}{d} \\ \frac{1}{d} \end{cases}$ d > pThey are $G_F^0 \cdot (1 + \epsilon_e) \cdot V_{ud}^0 = G_F \cdot (1 - \epsilon_\mu) \cdot V_{ud}^0$ $G_F = G_F^0 (1 + \epsilon_e + \epsilon_u)$ G_F from μ decay: $g_2(1+\epsilon_\mu)$ $g_2(1+\epsilon_e)$

 $V_{\mu d}^{\beta}$ can receive the contribution from ϵ_{μ} , but no ϵ_{e}

42

Observable	Measurement
$\frac{K \to \pi \mu \bar{\nu}}{K \to \pi e \bar{\nu}} \simeq 1 + \varepsilon_{\mu\mu} - \varepsilon_{ee}$	1.0010(25) [77]
$\frac{K \to \mu \nu}{K \to e \nu} \simeq 1 + \varepsilon_{\mu\mu} - \varepsilon_{ee}$	0.9978(18) $[3, 78, 79]$
$\frac{\pi \to \mu \nu}{\pi \to e \nu} \simeq 1 + \varepsilon_{\mu\mu} - \varepsilon_{ee}$	$1.0010(9) \ [3, \ 80\ -\ 82]$
$\frac{\tau \to \mu \nu \bar{\nu}}{\tau \to e \nu \bar{\nu}} \simeq 1 + \varepsilon_{\mu\mu} - \varepsilon_{ee}$	1.0018(14) $[3, 32]$
$\frac{W \to \mu \bar{\nu}}{W \to e \bar{\nu}} \simeq 1 + \varepsilon_{\mu\mu} - \varepsilon_{ee}$	0.9960(100) [83, 84]
$\frac{B \to D^{(*)} \mu \nu}{B \to D^{(*)} e \nu} \simeq 1 + \varepsilon_{\mu \mu} - \varepsilon_{ee}$	0.9890(120) [85]
$R(V_{us}) \simeq 1 - \left(\frac{V_{ud}}{V_{us}}\right)^2 \varepsilon_{\mu\mu}$	0.9891(33) [11]
	0.9927(39) [14]

Origin of LFU LFU in SM

$$\bar{\ell}'_{R} \gamma^{\mu} Z_{\mu} Y \ell'_{R} \propto \begin{bmatrix} \bar{e}'_{R} & \bar{\mu}'_{R} & \bar{\tau}'_{R} \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} e'_{R} \\ \mu'_{R} \\ \tau'_{R} \end{bmatrix} = \begin{bmatrix} \bar{e}_{R} & \bar{\mu}_{R} & \bar{\tau}_{R} \end{bmatrix} U_{R}^{\dagger} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} U_{R} \begin{bmatrix} e_{R} \\ \mu_{R} \\ \tau_{R} \end{bmatrix} = \begin{bmatrix} \bar{e}_{R} & \bar{\mu}_{R} & \bar{\tau}_{R} \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\text{hypercharge of } U(1)_{Y}$$

$$Y_{e_{R}} = Y_{\mu_{R}} = Y_{\tau_{R}} = -1$$

$$\begin{array}{c} \ell'_{R} = U_{R} \ell_{R} \\ U_{R} : \text{ complex } 3 \times 3 \text{ unitary matrix} \end{array}$$

$$\begin{array}{c} flavour \text{ universal} \\ flavour universal \\ flavour flavour flavour flavour \\ flavour fl$$

LFUV in BSM

$$\bar{\ell}'_{R} \gamma^{\mu} Z'_{\mu} Y' \ell'_{R} \propto \begin{bmatrix} \bar{e}'_{R} & \bar{\mu}'_{R} & \bar{\tau}'_{R} \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} e'_{R} \\ \mu'_{R} \\ \tau'_{R} \end{bmatrix} = \begin{bmatrix} \bar{e}_{R} & \bar{\mu}_{R} & \bar{\tau}_{R} \end{bmatrix} U_{R}^{\dagger} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} U_{R} \begin{bmatrix} e_{R} \\ \mu_{R} \\ \tau_{R} \end{bmatrix} = \begin{bmatrix} \bar{e}_{R} & \bar{\mu}_{R} & \bar{\tau}_{R} \end{bmatrix} \begin{bmatrix} \epsilon_{11} & \epsilon_{12} & \epsilon_{13} \\ \epsilon_{21} & \epsilon_{22} & \epsilon_{23} \\ \epsilon_{31} & \epsilon_{32} & \epsilon_{33} \end{bmatrix} \begin{bmatrix} e_{R} \\ \mu_{R} \\ \tau_{R} \end{bmatrix}$$

$$\text{hypercharge of } U(1)'$$

 $Y'_{e_R} \neq Y'_{\mu_R} \neq Y'_{\tau_R}$

We learn that

$$b \to s\mu\mu/b \to see \neq SM \Longrightarrow \begin{cases} b \to \\ b \to \end{cases}$$

but flavour violation usually can't be avoided.

 $se\mu, b \rightarrow se\tau, b \rightarrow s\mu\tau$ $d\mu\mu/b \rightarrow dee, s \rightarrow d\mu\mu/s \rightarrow dee, b\bar{b} \rightarrow \mu\mu/b\bar{b} \rightarrow ee, \dots$

 $b \to c\tau\nu/b \to c\mu\nu \neq SM \Longrightarrow b \to u\tau\nu/b \to u\mu\nu, c \to s\tau\nu/c \to s\mu\nu, \dots$

... ...

C.S.Kim, **XBY**, Y.J.Zheng, 1602.08107

Introduction **Lepton Flavour Universality Test**

 π, K, τ system, W, Z boson, $R_{D^{(*)}}$ and $R_{K^{(*)}}$

Implications for New Physics

Connections to other anomalies $\begin{cases} (g-2)_{\mu} \text{ anomaly} \\ B^+ \to K^+ \nu \bar{\nu} \text{ excess at Belle II} \\ \text{Cabibbo angle anomaly} \end{cases}$

Origin of LFU violation

Summary

Summary

Definition of Pull

To quantify the level of agreement between a given hypothesis and the data, we compute the corresponding p-value of goodness-of-fit:

$$p = \int_{\chi^2_{\rm min}}^{\infty} d\chi^2 f(\chi^2; n_{\rm dof}), \qquad (8)$$

where $n_{dof} = N_{obs} - n$. Finally, to compare the descriptions offered by two different nested hypotheses H_0 and H_1 (with n_{H_0} , n_{H_1} the respective number of degrees of freedom and $n_{H_0} < n_{H_1}$), we compute their relative Pull, measured in units of Gaussian standard deviations (σ):

$$\operatorname{Pull}_{H_0H_1} = \sqrt{2} \operatorname{Erf}^{-1} \left[F(\Delta \chi^2_{H_0H_1}; n_{\mathrm{H_0H_1}}) \right], \tag{9}$$

with $\Delta \chi^2_{H_0H_1} = \chi^2_{H_0,\min} - \chi^2_{H_1,\min}$, $n_{H_0H_1} = n_{H_1} - n_{H_0}$, F the χ^2 cumulative distribution function and Erf⁻¹ the inverse error function. Most of the time, we compare a given NP scenario with the SM case, denoting the result as Pull_{SM} unless there is a risk of ambiguity. Our statistical Non-local matrix element

$$\begin{aligned} \mathcal{A}_{\lambda}^{L,R} &= \mathcal{N}\left\{ \left[(\mathcal{C}_{9} \pm \mathcal{C}_{9}') \mp (\mathcal{C}_{10} \pm \mathcal{C}_{10}') \right] \mathcal{F}_{\lambda}(q^{2},k^{2}) \right. \\ &+ \frac{2m_{b}M_{B}}{q^{2}} \left[(\mathcal{C}_{7} \pm \mathcal{C}_{7}') \mathcal{F}_{\lambda}^{T}(q^{2},k^{2}) - 16\pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}(q^{2},k^{2}) \right] \right\} \end{aligned}$$

A. $(g-2)_{\mu}$ and $(g-2)_{e}$

According to the window observable theory [53, 54] and the SM prediction [55], the current disagreement concerning the Δa_{μ} designations has emerged as follows [55–58]:

$$\Delta a_{\mu}^{\text{window}} = (1.81 \pm 0.47) \times 10^{-9},$$

On the other hand, the electron magnetic dipole moment [59] with its experiment measurement through Rb in 2020 [60, 61], the discrepancy with SM prediction can be expressed as follows:

$$\Delta a_e^{\rm Rb} = 34(16) \times 10^{-14},$$

whereas the Cs atoms measurement method search has obtained a lower bound [62],

$$\Delta a_e^{\rm Cs} = -102(26) \times 10^{-14},$$

(19)