New physics implications from B physics

- selected topics -

李新强 华中师范大学

第四届LHCb前沿物理研讨会,2024/07/028,青岛

Outline

- □ Introduction
- □ Tree-level FCCC B decays
- Neutral B-meson mixings
- □ Rare FCNC B decays

□ Hadronic B decays

□ Summary

B physics theory: precision era

□ Much progress achieved thanks to various multi-loop techniques, EFTs and LQCD, ...

B physics experiments

\Box Super B-factories (e^+e^-): Belle II

□ Hadron colliders (*pp*): LHCb @LHC

Role of flavor physics in indirectly probing NP

□ Flavor physics plays a key in indirectly probing NP beyond the SM

GIM mechanism in K⁰→µµ	CP violation, $K_{L^0} \rightarrow \Pi \Pi$	$B^0 \leftarrow \rightarrow B^0$ mixing
Weak Interactions with Lepton-Hadron Symmetry* S. L. GLASHOW, J. LLOPOULOS, AND L. MAIANI† Lyman Laboratory of Physics, Harvard University, Cambridge, Massachuseits 02139 (Received 5 March 1970) We propose a model of weak interactions in which the currents are constructed out of four basic quark fields and interact with a charged massive vector boson. We show, to all orders in perturbation theory, that the leading divergences do not violate any strong-interaction symmetry and the next to the leading divergences respect all observed weak-interaction selection rules. The model features a remarkable symmetry between leptons and quarks. The extension of our model to a complete Yang-Mills theory is discussed. splitting, beginning at order $G(G\Lambda^2)$, as well as con- tributions to such unobserved decay modes as $K_2 \rightarrow$ $\mu^+ + \mu^-$, $K^+ \rightarrow \pi^+ + l + \tilde{l}$, etc., involving neutral lepton	 27 JULY 1964 EVIDENCE FOR THE 2π DECAY OF THE K₂⁰ MESON*[†] J. H. Christenson, J. W. Cronin,[‡] V. L. Fitch,[‡] and R. Turlay[§] Princeton University, Princeton, New Jersey (Received 10 July 1964) This Letter reports the results of experimental studies designed to search for the 2π decay of the 	DESY 87-029 April 1987 OBSERVATION OF B⁰ - \overline{B}^0 MIXING <i>The ARGUS Collaboration</i> In summary, the combined evidence of the investigation of B^0 meson pairs, lepton pairs and B^0 meson-lepton events on the $\Upsilon(4S)$ leads to the conclusion that $B^0 \cdot \overline{B}^0$ mixing has been observed and is substantial.
We wish to propose a simple model in which the divergences are properly ordered. Our model is founded in a quark model, but one involving four, not three, fundamental fermions; the weak interactions are medinew quantum number \mathfrak{C} for charm. why $\frac{\Gamma(K_L \rightarrow \mu^+ \mu^-)}{\Gamma(K^- \rightarrow \mu^- \overline{\nu}_{\mu})} \simeq 10^{-8}$?	three-body decays of the K_2^0 . The presence of a two-pion decay mode implies that the K_2^0 meson is not a pure eigenstate of CP . Expressed as $K_2^0 = 2^{-1/2} [(K_0 - K_0) + \epsilon (K_0 + K_0)]$ then $ \epsilon ^2 \cong R_T^{\tau} 1^{\tau} 2$	ParametersComments $r > 0.09 90\%CL$ This experiment $x > 0.44$ This experiment $B^{\frac{1}{2}}f_B \approx f_x < 160 \text{ MeV}$ B meson (\approx pion) decay constant $m_b < 5 \text{GeV/c}^2$ b-quark mass $\tau_b < 1.4 \cdot 10^{-12}$ sB meson lifetime $ V_{td} < 0.018$ Kobayashi-Maskawa matrix element $p_{OCD} < 0.86$ QCD correction factor [17] $m_t > 50 \text{GeV/c}^2$ t quark mass
Glashow, Iliopoulos, Maiani, Phys.Rev. D2 (1970) 128	Christenson, Cronin, Fitch, Turlay, Phys.Rev.Lett. 13 (1964) 18-140	ARGUS Coll. Phys.Lett.B192:245,1987
Rare decay implies charm quark	CP violation implies 3rd family	Mixing implies a heavy top quar

2024/07/29

李新强 NP implications from B physics

NP signals by precision flavor physics

□ To resolve the SM shortcomings, NP needed with new sources of flavor & CP violation

[A. Buras and J. Girrbach,1306.3755]

With precision data & theory predictions, could we firstly find any NP signals in flavor physics?

- ✓ extra Higgses ⇒ Higgs-mediated FCNC's at tree-level, and helicity suppression absent
- ✓ squarks/gluinos ⇒ FCNC quark-squark-gluino
 coupling, and no CKM/GIM suppression
- ✓ vector-like quarks \Rightarrow FCNC couplings of an extra Z', with possibly new CPV sources
- ✓ $SU(2)_R$ gauge bosons ⇒ helicity suppression possibly absent
 - $\checkmark\,$ observables with strong NP sensitivity
 - \checkmark clean and high theory prediction
 - $\checkmark\,$ accessible to current experiments

Tree-level FCCC B decays

Sum rule for R(D), $R(D^*)$ & $R(\Lambda_c)$:

b & c not unique but determined by setting a desired condition so that $\delta_H(C_i)$ becomes small

$$rac{R_H}{R_H^{
m SM}} = b rac{R_P}{R_P^{
m SM}} + c rac{R_V}{R_V^{
m SMM}} + \delta_H(C_i)$$

$$b + c = 1 \& a_P^{VS}b + a_V^{VS}c = a_H^{VS_1} \blacksquare$$

 $\left|1 + C_{V_L}^{q\tau}\right|^2$ Re[(1 + C_{V_L}^{q\tau})C_{S_L}^{q\tau*}]

model-independent and holds for any tau-philic NP

□ State-of-the-art prediction: [Duan, Li, and Watanabe, w.i.p]

$$rac{R_{\Lambda_c}}{R_{\Lambda_c}^{SM}} = (0.270 \pm 0.015) rac{R_D}{R_D^{SM}} + (0.730 \mp 0.015) rac{R_{D^*}}{R_{D^*}^{SM}} + \delta_{\Lambda_c}$$

provide us with a unique prediction of $R(\Lambda_c)$ in a model-independent way

$$egin{aligned} &\delta_{\Lambda_c} = & (-0.001 \pm 0.005) \left(\left| C_{S_L}^{c au}
ight|^2 + \left| C_{S_R}^{c au}
ight|^2
ight) + (-0.008 \pm 0.005) \operatorname{Re}ig(C_{S_L}^{c au} C_{S_R}^{c au*} ig) \ &+ \underbrace{(-1.808 \pm 6.456) |C_T^{c au}|^2}_T + (-0.375 \pm 1.395) \operatorname{Re}ig(C_{V_R}^{c au} C_T^{c au**} ig) \ &+ \operatorname{Re}ig[ig(1 + C_{V_L}^{c au} ig) ig\{ (0.060 \pm 0.034) C_{V_R}^{c au*} + (0.501 \pm 1.240) C_T^{c au*} ig\} ig] \ &+ (-0.001 \pm 0.009) \operatorname{Re}ig[ig(1 + C_{V_L}^{c au} ig) C_{S_R}^{c au*} + C_{S_L}^{c au} C_{V_R}^{c au*} ig] \end{aligned}$$

 $egin{aligned} R_{\Lambda_c}^{ ext{SR}} &= 0.370 \pm 0.017 |_{R_X^{ ext{SM,exp}}} \pm (< 0.001) |_{ ext{SR}} \ R_{\Lambda_c}^{ ext{SM}} &= 0.332 \pm 0.010 \ R_{\Lambda_c}^{ ext{LHCb}} &= 0.242 \pm 0.026 \pm 0.040 \pm 0.059 \end{aligned}$

Tree-level FCCC B decays

Sum rule for $R(\pi)$, $R(\rho)$ & R(p):

$$\frac{\mathcal{R}_p}{\mathcal{R}_p^{\text{SM}}} = (0.284 \pm 0.037) \frac{\mathcal{R}_\pi}{\mathcal{R}_\pi^{\text{SM}}} + (0.716 \mp 0.037) \frac{\mathcal{R}_\rho}{\mathcal{R}_\rho^{\text{SM}}} + \delta_p$$

$$\begin{split} \delta_p &= (-0.090 \pm 0.059) \left(|C_{S_L}^{u\tau}|^2 + |C_{S_R}^{u\tau}|^2 \right) + (-0.185 \pm 0.038) \operatorname{Re} \left(C_{S_L}^{u\tau} C_{S_R}^{u\tau*} \right) \\ &+ (-0.913 \pm 2.403) |C_T^{u\tau}|^2 + (-0.203 \pm 0.538) \operatorname{Re} \left(C_{V_R}^{u\tau} C_T^{u\tau*} \right) \\ &+ \operatorname{Re} \left[\left(1 + C_{V_L}^{u\tau} \right) \left\{ (0.169 \pm 0.158) C_{V_R}^{u\tau*} + (0.370 \pm 0.632) C_T^{u\tau*} \right\} \right] \\ &+ (-0.079 \pm 0.056) \operatorname{Re} \left[\left(1 + C_{V_L}^{u\tau} \right) C_{S_R}^{u\tau*} + C_{S_L}^{u\tau} C_{V_R}^{u\tau*} \right] \,. \end{split}$$

Purely leptonic decay puts strong constraints on all the operators except the tensor operator

$$egin{split} \mathcal{B}ig(B^- o au^- ar{
u}ig) &= rac{ au_{B^-} G_F^2 |V_{ub}|^2 f_B^2}{8\pi} m_{B^-} m_ au^2 igg(1 - rac{m_ au^2}{m_{B^-}^2}igg)^2 \ & imes igg| 1 + C_{V_L}^{u au} - C_{V_R}^{u au} + rac{m_{B^-}^2}{m_b m_ au}igg(C_{S_R}^{u au} - C_{S_L}^{u au}igg)igg|^2 \end{split}$$

[Duan, Li, and Watanabe, w.i.p]

the sum rule for $b \rightarrow u$ is more (less) sensitive

to the scalar (tensor) NP compared to $b \rightarrow c$

□ For B_q^0 meson: flavor eigenstates \neq mass eigenstates \Rightarrow mix with each other via box diagrams

$\Box \text{ Time evolution of a} \\ \text{decaying particle} \quad i\frac{d}{dt} {|B(t)\rangle \choose |\bar{B}(t)\rangle} = \left(\hat{M} - \frac{i}{2}\hat{\Gamma}\right) {|B(t)\rangle \choose |\bar{B}(t)\rangle}$

□ Three observables for B mixings

Mass difference: $\Delta M := M_H - M_L \approx 2|M_{12}|$ (off-shell) $|M_{12}|$: heavy internal particles: t, SUSY, ...

Decay rate difference: $\Delta \Gamma := \Gamma_L - \Gamma_H \approx 2|\Gamma_{12}| \cos \phi$ (on-shell) $|\Gamma_{12}|$: light internal particles: u, c, ... (almost) no NP!!!

Flavor specific/semi-leptonic CP asymmetries: e.g. $B_q \rightarrow X l \nu$ (semi-leptonic)

 $a_{sl} \equiv a_{fs} = \frac{\Gamma(\overline{B}_q(t) \to f) - \Gamma(B_q(t) \to \overline{f})}{\Gamma(\overline{B}_q(t) \to f) + \Gamma(B_q(t) \to \overline{f})} = \left|\frac{\Gamma_{12}}{M_{12}}\right| \sin \phi$

✓ M_{12} : dispersive part of the box diagram

 \checkmark Γ₁₂: absorptive part of the box diagram

 $\checkmark \phi = \arg(-M12/\Gamma 12)$: relative phase between them

"short-distance" (=virtual particle exchange)

"long-distance" (=real particle exchange)

$$egin{aligned} M_{12} &= rac{G_F^2}{12\pi^2}ig(V_{tq}^*V_{tb}ig)^2 M_W^2 S_0(x_t) B_{B_q} f_{B_q}^2 M_{B_q} \hat{\eta}_B \ & \dagger ext{1-loop calculation } S_0ig(x_t = m_t^2/M_W^2ig) \ & \dagger ext{2-loop perturbative QCD corrections } \hat{\eta}_B \ & \dagger ext{ } rac{8}{3} B_{B_q} f_{B_q}^2 M_{B_q} = \Big\langle \overline{B}_q ig| (ar{b}q)_{V-A} (ar{b}q)_{V-A} ig| B_q \Big
ight
angle \end{aligned}$$

$$egin{aligned} \Gamma_{12} &= igg(rac{\Lambda}{m_b}igg)^3igg(\Gamma_3^{(0)} + rac{lpha_s}{4\pi}\Gamma_3^{(1)} + \ldotsigg) & \mathsf{HQE} \ &+ igg(rac{\Lambda}{m_b}igg)^4igg(\Gamma_4^{(0)} + \ldotsigg) + igg(rac{\Lambda}{m_b}igg)^5igg(\Gamma_5^{(0)} + \ldotsigg) + \ldots \end{aligned}$$

□ Status of theory predictions [https://arxiv.org/pdf/2402.04224]

Generic parametrization of NP contribution to the B mixings:

李新强 NP implications from B physics

 $igg| C_{B_q} e^{2i\phi_{B_q}} = rac{\left\langle B^0_q ig| \mathcal{H}^{ ext{full}}_{ ext{eff}} ig| ar{B}^0_q
ight
angle}{\left\langle B^0_a ig| \mathcal{H}^{ ext{SM}}_{ ext{eff}} ig| ar{B}^0_a
ight
angle} iggeta iggeta A_q = \left(1 + rac{A^{ ext{NP}}_q}{A^{ ext{SM}}_q} e^{2i \left(\phi^{ ext{NP}}_q - \phi^{ ext{SM}}_q
ight)}
ight) A^{ ext{SM}}_q e^{2i \phi^{ ext{SM}}_q}$

- **Exp. observables are related to the**
 - **SM and NP parameters:**

□ Latest fit results by the UTfit group

$$egin{aligned} \Delta M_d^{ ext{exp}} &= C_{B_d} \Delta M_d^{ ext{SM}}\,, & ext{ sin } 2eta^{ ext{exp}} &= ext{sin}ig(2eta^{ ext{SM}}+2\phi_{B_d}ig)\ \Delta M_s^{ ext{exp}} &= C_{B_s} \Delta M_s^{ ext{SM}}\,, & ext{ } \phi_s^{ ext{exp}} &=ig(eta_s^{ ext{SM}}-\phi_{B_s}ig) \end{aligned}$$

consistency between data & SM of B mixing observables puts stringent constraint on NP

Very high energy scales are probed

by the neutral meson mixings:

\mathscr{O}_1	=	$(ar{b}^lpha \gamma_\mu L q^lpha) (ar{b}^eta \gamma_\mu L q^eta)$	$\mathscr{O}_4 = (\bar{b}^{lpha} Lq^{lpha}) (\bar{b}^{eta} Rq^{eta})$
\mathscr{O}_2	=	$(ar{b}^lpha L q^lpha) (ar{b}^eta L q^eta)$	$\mathscr{O}_5 = (\bar{b}^{lpha} Lq^{eta}) (\bar{b}^{eta} Rq^{lpha})$
Ø3	=	$(ar{b}^lpha L q^eta) (ar{b}^eta L q^lpha)$	

□ Flavor universal NP scenario: NP couples predominantly to the 3rd-generation quarks and leptons, and can be easily

realized in NP models with a U(2) symmetry

$$\Rightarrow \kappa_d = \kappa_s \equiv \kappa, \quad \sigma_d = \sigma_s \equiv \sigma$$
$$\Delta m_q = \Delta m_q^{\rm SM} |1 + \kappa_q e^{i\sigma_q}|,$$

$$\phi_q = \phi_q^{\text{SM}} + \phi_q^{\text{NP}} = \phi_q^{\text{SM}} + \arg\left(1 + \kappa_q e^{i\sigma_q}\right).$$

 \Box $b \rightarrow s$ transition with missing energy in the final state: $B \rightarrow K^{(*)}\nu\overline{\nu}$ and $B \rightarrow K^{(*)} + \text{invisible}$

 $\mathcal{L}_{\text{eff}}^{\text{b}\to\text{s}\nu\nu} = \frac{4G_F \lambda_t}{\sqrt{2}} \frac{\alpha_{\text{em}}}{2\pi} \sum_{i} C_L^{\text{SM}} \left(\bar{s}_L \gamma_\mu b_L\right) (\bar{\nu}_{Li} \gamma^\mu \nu_{Li}) + \text{h.c.} ,$

State-of-the-art SM prediction

• Effective Hamiltonian in the SM:

 $\lambda_t = V_{tb} V_{ts}^*$

see e.g. [Buras et al. '14]

♦ $b \rightarrow s v \overline{v}$ decays theoretically cleaner than $b \rightarrow s \ell \ell$ decays due to the absence of longdistance $c\bar{c}$ loop contributions

• Short-distance contributions known to good precision:

$$C_L^{\rm SM} = -X_t / \sin^2 \theta_W$$
$$= -6.32(7)$$

 $X_t = 1.462(17)(2)$

[Buchala et al. '93, '99], [Misiak et al. '99], [Brod et al. '10]

Including NLO QCD and two-loop EW contributions:

 $\square B \rightarrow K^{(*)}$ form factors from LQCD + LCSR:

$$\mathcal{B}(B \to K \nu \bar{\nu})^{\text{SM}} / |\lambda_t|^2 = \begin{cases} (1.33 \pm 0.04)_{K_S} \times 10^{-3} \\ (2.87 \pm 0.10)_{K^+} \times 10^{-3} \end{cases}$$

$$pprox 3~\%$$
 uncertainty]

Becirevic et al., 2301.0699

 $\mathcal{B}(B \to K^* \nu \bar{\nu})^{\text{SM}} / |\lambda_t|^2 = \begin{cases} (5.9 \pm 0.8)_{K^{*0}} \times 10^{-3} \\ (6.4 \pm 0.9)_{K^{*+}} \times 10^{-3} \end{cases}$

 $\approx 15\%$ uncertainty]

\Box CKM matrix element input from $|V_{cb}|$:

*Using V_{cb} from $B \to D \ell \bar{\nu}$ for illustration

CKM

FF

Branching ratio

□ Belle-II first evidence of $B^+ \rightarrow K^+ \nu \overline{\nu}$: exp. data $\simeq 3\sigma$ above the SM prediction

$$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})^{\text{exp}} = [2.3 \pm 0.5 \,(\text{stat})^{+0.3}_{-0.4} \,(\text{syst})] \times 10^{-3}$$

D NP signal: new heavy mediators in the loop or new light invisible particles in the final state?

\Box A measurement of $B \rightarrow K^* \nu \overline{\nu}$ would be a key model-indep. test of the Belle-II result

2024/07/29

李新强 NP implications from B physics

SMEFT analysis: *d* = 6 four-fermion contributions at tree level; [Buchmuller & Wyler, '85; Gradkowski et al., '10]

• ψ^4 operators invariant under $SU(2)_I \times U(1)_V$:	$b ightarrow s\ell\ell$	$b \to s \nu \bar{\nu}$	• C	orrelations for concre	ete mediators
	$[\mathcal{D}^{(1)}] \qquad (\overline{\mathcal{I}} (U_{1}) (\overline{\mathcal{I}} \mathcal{O}))$		-	$Z' \sim (1, 1, 0)$:	$\mathcal{C}_{lq}^{(1)},\mathcal{C}_{ld}$
$\left[\mathcal{O}_{lq}^{(1)}\right]_{ijkl} = \left(\overline{L}_i \gamma^{\mu} L_j\right) \left(\overline{Q}_k \gamma_{\mu} Q_l\right)$	$\begin{bmatrix} \mathcal{O}_{lq}^{(-)} \end{bmatrix}_{ijkl} = \begin{bmatrix} L_i \gamma^{\mu} L_j \end{bmatrix} \begin{pmatrix} Q_k \gamma_{\mu} Q_l \end{pmatrix}$ $= \boxed{\begin{pmatrix} \overline{\ell}_{Li} \gamma^{\mu} \ell_{Lj} \end{pmatrix}} \begin{pmatrix} \overline{d}_{Lk} \gamma_{\mu} d_{Ll} \end{pmatrix} + $	$(\overline{\nu}_{Li}\gamma^{\mu}\nu_{Li})(\overline{d}_{Lk}\gamma_{\mu}d_{Ll})+\ldots$	_	$V \sim (1, 3, 0)$	$\mathcal{C}_{la}^{(3)}$
$\left[\mathcal{O}_{lq}^{(3)}\right]_{ijkl} = \left(\overline{L}_i \gamma^{\mu} \tau^I L_j\right) \left(\overline{Q}_k \tau^I \gamma_{\mu} Q_l\right)$	$(-Li + Lj) (-Li + \mu - Li) + $	$\left(\begin{array}{c} D_{\ell} + D_{J} \end{array}\right) \left(-D_{\ell} + \mu - D_{\ell} \right) + 1 + \ell $, (1, 0, 0) .	(1) (2)
$\left[\mathcal{O}_{ld} ight]_{ijkl} = \left(\overline{L}_i\gamma^{\mu}L_j ight)\left(\overline{d}_k\gamma_{\mu}d_l ight)$	$\left[\mathcal{O}_{lq}^{(3)}\right]_{ijkl} = \left(L_i \gamma^{\mu} \tau^{I} L_j\right) \left(Q_k \gamma_{\mu} \tau^{I} Q_l\right)$	$(-, \mu, \gamma)$ $(\overline{1}, -, 1)$	-	$U_1 \sim (3, 1, 2/3)$:	$\mathcal{C}_{lq}^{(1)} = \mathcal{C}_{lq}^{(3)}$
$\left[\mathcal{O}_{eq} ight]_{ijkl} = \left(\overline{e}_i \gamma^{\mu} e_j ight) \left(\overline{Q}_k \gamma_{\mu} Q_l ight)$	$= (\ell_{Li}\gamma^{\prime} \ell_{Lj})(a_{Lk}\gamma_{\mu}a_{Ll}) -$	$(\nu_{Li}\gamma',\nu_{Lj})(a_{Lk}\gamma_{\mu}a_{Ll})+\ldots$	-	$S_3 \sim (\bar{3}, 3, 1/3)$:	${\cal C}_{lq}^{(1)}=3{\cal C}_{lq}^{(3)}$
$\left[\mathcal{O}_{ed} ight]_{i;l,l} = (\overline{e}_i \gamma^{\mu} e_j) (\overline{d}_k \gamma_{\mu} d_l)$	$\left[\mathcal{O}_{ld}\right]_{ijkl} = \left(L_i \gamma^{\mu} L_j\right) \left(d_k \gamma_{\mu} d_l\right)$		3 -	$\widetilde{R}_2=({f 3},{f 2},1/6)$:	\mathcal{C}_{ld}
	$= \left(\ell_{Li}\gamma^{\mu}\ell_{Lj} ight) \left(d_{Rk}\gamma_{\mu}d_{Rl} ight) +$	$+ \left(\overline{ u}_{Li}\gamma^{\mu} u_{Lj}\right) \left(d_{Rk}\gamma_{\mu}d_{Rl}\right)$			

More correlations among observables arise in concrete models

 $(SU(3)_c, SU(2)_L, U(1)_Y)$

The Belle-II excess can also be mimicked by $B \rightarrow K + invisible$; [Hou, Li, Shen, Yang and Yuan, '24]

22 DSMEFT operators can explain the Belle-II excess, and they can be distinguished

from each other by more dedicated measurements of differential decay rate & F_L

Hadronic B decays

\Box For a typical two-body decay $\overline{B} \rightarrow M_1 M_2$:

$$\mathcal{A}(\overline{B} \to M_1 M_2) = \sum_i [\lambda_{\text{CKM}} \times C_i \times \langle M_1 M_2 | \mathcal{O}_i | \overline{B} \rangle]$$

Different methods proposed for dealing with $\langle M_1 M_2 | \mathcal{O}_i | \overline{B} \rangle$: naïve fact., generalized fact.,

 $B_a^0 \rightarrow D_a^{(*)-}L^+$ class-I decays

 \Box At the quark-level, these decays mediated by $b \rightarrow c \overline{u} d(s)$

all four flavors different from each other, no penguin operators & no penguin topologies!

For class-I decays: QCDF formula much simpler; only the form-factor term at leading power [Beneke, Buchalla, Neubert, Sachrajda '99-'03; Bauer, Pirjol, Stewart '01]

$$\langle D_q^{(*)+}L^- | \mathcal{Q}_i | \bar{B}_q^0 \rangle = \sum_j F_j^{\bar{B}_q \to D_q^{(*)}} (M_L^2)$$
$$\times \int_0^1 du \, T_{ij}(u) \phi_L(u) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)$$

□ Hard kernel T: both NLO and NNLO results known;

[Beneke, Buchalla, Neubert, Sachrajda '01; Huber, Kränkl, Li '16]

$$egin{aligned} \mathcal{Q}_2 &= ar{d} \gamma_\mu (1-\gamma_5) u ~~ar{c} \gamma^\mu (1-\gamma_5) b \ \mathcal{Q}_1 &= ar{d} \gamma_\mu (1-\gamma_5) oldsymbol{T}^{\mathcal{A}} u ~~ar{c} \gamma^\mu (1-\gamma_5) oldsymbol{T}^{\mathcal{A}} b \end{aligned}$$

i) only color-allowed tree topology T = a₁
ii) spectator & annihilation power-suppressed
iii) annihilation absent in B⁰_{d(s)} → D⁻_{d(s)}K(π)⁺ etc.
iv) they are theoretically simpler and cleaner
these decays used to test factorization theorems

$$T = T^{(0)} + \alpha_s T^{(1)} + \alpha_s^2 T^{(2)} + O(\alpha_s^3)$$

Non-leptonic/semi-leptonic ratios

Non-leptonic/semi-leptonic ratios : [Bjorken '89; Neubert, Stech '97; Beneke, Buchalla, Neubert, Sachrajda '01]

$$R_{(s)L}^{(*)} \equiv \frac{\Gamma(\bar{B}_{(s)}^{0} \to D_{(s)}^{(*)+}L^{-})}{d\Gamma(\bar{B}_{(s)}^{0} \to D_{(s)}^{(*)+}\ell^{-}\bar{\nu}_{\ell})/dq^{2}|_{q^{2}=m_{L}^{2}}} = 6\pi^{2} |V_{uq}|^{2} f_{L}^{2} |a_{1}(D_{(s)}^{(*)+}L^{-})|^{2} X_{L}^{(*)}$$

free from the uncertainties from $V_{cb} \& B_{d,s} \to D_{d,s}^{(*)}$ form factors

Updated predictions vs data: [Huber, Kränkl, Li '16; Cai, Deng, Li, Yang '21]

□ Confirmed by Belle: 2207.00134

2024/07/29

NP implications from B physics 李新强

Large power corrections?

Sources of sub-leading power corrections: [Beneke,

Buchalla, Neubert, Sachrajda '01; Bordone, Gubernari, Huber, Jung, van Dyk '20]

non-factorizable spectator interactions

- > all are estimated to be power-suppressed, and no chiralityenhancement due to $(V - A) \otimes (V - A)$ structure
- > very difficult to explain why the measured values of $|a_1(h)|$ several σ smaller than the SM predictions
 - must consider sub-leading power corrections more carefully

 \succ non-leading higher Fock-state contributions \bigwedge_{b}^{b}

 $\overline{B_s}$

□ Non-factorizable soft-gluon contributions in LCSR

with B-meson LCDA: [Maria Laura Piscopo, Aleksey V. Rusov, '23]

 ${f Br}(ar{B}^0_s o D^+_s \pi^-) = ig(2.15^{+2.14}_{-1.35}ig) \, [{f 2.98 \pm 0.14}] imes 10^{-3} \ {f Br}(ar{B}^0 o D^+ K^-) = ig(2.04^{+2.39}_{-1.20}ig) \, [{f 2.05 \pm 0.08}] imes 10^{-4}$

2024/07/29

Soler

Model-indep. NP in $B_q^0 \rightarrow D_q^- L^+$?

Dessible NP four-quark operators with different Dirac structures: [Buras, Misiak, Urban '00]

$$\begin{split} \mathcal{L}_{\mathsf{WET}} &= -\frac{4G_F}{\sqrt{2}} V_{cb} V_{uq}^* [\mathcal{C}_1^{SM}(\mu) \mathcal{Q}_1^{SM} + \mathcal{C}_2^{SM}(\mu) \mathcal{Q}_2^{SM} & \text{SM current-current operators} \\ &+ \sum_{\substack{i \ = \ 1, 2; \\ j \ = \ 1, 2, 3, 4.}} (\mathcal{C}_i^{VLL} \mathcal{Q}_i^{VLL} + \mathcal{C}_i^{VLR} \mathcal{Q}_i^{VLR} + \mathcal{C}_i^{SLR} \mathcal{Q}_i^{SLR} + \mathcal{C}_j^{SLL} \mathcal{Q}_j^{SLL})] + L \leftrightarrow R \\ & \mathsf{NP four-quark operators} \\ \mathcal{Q}_1^{VLL} &= (\overline{c}_\alpha \gamma^\mu P_L b_\beta) (\overline{q}_\beta \gamma_\mu P_L u_\alpha) & \mathcal{Q}_1^{VLR} = (\overline{c}_\alpha \gamma^\mu P_L b_\beta) (\overline{q}_\beta \gamma_\mu P_R u_\alpha) \\ \mathcal{Q}_2^{VLL} &= (\overline{c}_\alpha \gamma^\mu P_L b_\alpha) (\overline{q}_\beta \gamma_\mu P_L u_\beta) & \mathcal{Q}_2^{VLR} = (\overline{c}_\alpha \gamma^\mu P_L b_\alpha) (\overline{q}_\beta \gamma_\mu P_R u_\beta) \\ \mathcal{Q}_1^{SLL} &= (\overline{c}_\alpha P_L b_\beta) (\overline{q}_\beta P_L u_\alpha) & \mathcal{Q}_2^{SLR} = (\overline{c}_\alpha P_L b_\beta) (\overline{q}_\beta P_R u_\alpha) \\ \mathcal{Q}_3^{SLL} &= (\overline{c}_\alpha \sigma^{\mu\nu} P_L b_\beta) (\overline{q}_\beta \sigma_{\mu\nu} P_L u_\alpha) \\ \mathcal{Q}_4^{SLL} &= (\overline{c}_\alpha \sigma^{\mu\nu} P_L b_\beta) (\overline{q}_\beta \sigma_{\mu\nu} P_L u_\beta) \end{aligned}$$

totally 20 linearly-indep. operators, and can be further split into 8 separate sectors!

□ Various possible tree-level heavy mediators:

neutral mediators: necessarily couple to FCNC \implies excluded by tree-level FCNCs! charged mediators: colorless or colored (constrained by di-jet resonance searches)

Analysis at m_b scale

R_K	0.78	$0.83^{+0.03}_{-0.03}$	$0.85_{-0.02}^{+0.01}$	0.62 ± 0.05	4.4
R_{sK}	0.78	$0.83_{-0.03}^{+0.03}$	$0.85_{-0.02}^{+0.01}$	0.46 ± 0.06	6.3

 $2m_L^2$

 \Box With only 1 NP C_i^{NP} in each time, NP 4-quark operators with only three Dirac structures

	C.L.\Obs. NP Coeff.	C.L.	R_{π}	R_{π}^{*}	$R_{ ho}$	R_K	R_K^*	R_{K^*}	$R_{s\pi}$	R_{sK}	Combined	
	C^{VLL}	1σ	[-1.40,-0.847]	[-1.18,-0.626]	[-1.50, -0.267]	[-1.18,-0.662]	[-1.54, -0.145]	[-1.05, 0.392]	[-1.57, -0.835]	[-2.12,-1.31]	Ø	
	01	2σ	[-1.63,-0.656]	[-1.41,-0.426]	[-2.06,0.135]	[-1.42,-0.462]	[-2.41,0.402]	[-1.70,0.856]	[-1.92,-0.567]	[-2.55,-1.02]	[-1.41,-1.02]	$\mathcal{Q}_{1,2}^{\gamma LL} = \overline{c}_{\alpha} \gamma_{\mu} (1 - \gamma_5) b_{\beta(\alpha)} \overline{q}_{\beta} \gamma^{\mu} (1 - \gamma_5) u_{\alpha(\beta)}$
Ľ	C^{VLL}	1σ	[-0.237,-0.148]	[-0.205,-0.111]	[-0.254,-0.047]	[-0.198,-0.116]	[-0.261,-0.026]	[-0.183, 0.070]	[-0.264,-0.146]	[-0.345,-0.226]	Ø	$(V-A)\otimes (V-A)$
	\mathbb{C}_2	2σ	[-0.273,-0.115]	[-0.244,-0.075]	[-0.340,0.024]	[-0.237,-0.081]	[-0.401,0.071]	[-0.288, 0.155]	[-0.318,-0.099]	[-0.406,-0.176]	[-0.237,-0.176]	
	C^{SRR}	1σ	[-0.748,-0.418]	[-1.03,-0.502]	Ø	[-0.711,-0.368]	[-1.50,-0.133]	R	[-0.839,-0.412]	[-1.25,-0.712]	Ø	
	C_1	2σ	[-0.867,-0.326]	[-1.23,-0.344]	R	[-0.854,-0.259]	[-2.32,0.395]	R	[-1.02,-0.283]	[-1.48, -0.556]	[-0.854,-0.556]	$\mathcal{Q}_{1,2}^{SRR} = \overline{c}_{\alpha}(1+\gamma_5)b_{\beta(\alpha)}\overline{q}_{\beta}(1+\gamma_5)u_{\alpha(\beta)}$
	C^{SRR}	1σ	[-0.249,-0.139]	[-0.343,-0.167]	Ø	[-0.237,-0.123]	[-0.500,-0.044]	R	[-0.280,-0.137]	[-0.417,-0.237]	Ø	$(S+P)\otimes(S+P)$
	\mathbb{C}_2	2σ	[-0.289,-0.109]	[-0.410,-0.115]	R	[-0.285,-0.086]	[-0.773,0.132]	R	[-0.339,-0.094]	[-0.492,-0.185]	[-0.285,-0.185]	
	OSRL	1σ	[0.487, 0.873]	[0.585, 1.20]	Ø	[0.429, 0.829]	[0.155, 1.75]	R	[0.480,0.979]	[0.830, 1.46]	Ø	
	\mathbb{C}_1	2σ	[0.381, 1.01]	[0.401, 1.44]	R	[0.302,0.996]	[-0.460,2.71]	R	[0.330, 1.18]	[0.648, 1.72]	[0.648, 0.996]	$\mathcal{Q}_{1,2}^{SRL} = \overline{c}_{\alpha}(1+\gamma_5)b_{\beta(\alpha)}\overline{q}_{\beta}(1-\gamma_5)u_{\alpha(\beta)}$
	CSRL	1σ	[0.139, 0.249]	[0.167, 0.343]	Ø	[0.123, 0.237]	[0.044,0.500]	R	[0.137,0.280]	[0.237, 0.416]	Ø	$(S+P)\otimes(S-P)$
	\mathbb{C}_2	2σ	[0.109, 0.289]	[0.115, 0.410]	R	[0.086, 0.285]	[-0.132,0.773]	R	[0.094,0.339]	[0.185, 0.492]	[0.185, 0.285]	

(pseudo-)scalar operators associated with a chirally-enhanced factor $\frac{2m_L^2}{(m_b \pm m_c)(m_u + m_{d,s})}$

NP operators with other Dirac structures already ruled out by combined constraints from 8 ratios

$B \rightarrow PP$ based on SU(3) flavor symmetry

□ Analysis based on SU(3) flavor symmetry & its breaking effect

all $B \rightarrow PP$ decays $(B \in \{B^+, B^0, B_s^0\}, P \in \{\pi, K\})$ are related under SU(3)_F: $A(B \rightarrow PP) = \langle (8 \otimes 8)_s | H_{eff} | 3 \rangle$ $B \rightarrow PP$ decays amplitudes expressed in

terms of $SU(3)_F$ RMEs & CG coefficients, and then perform a fit to all the data

\Box Enough data for the fit with only 7 RMEs in exact SU(3)_F without any assumptions

$\Delta S =$	0 c	decay	/S :
--------------	-----	-------	-------------

 $\Delta S = 1$ decays:

Decay	$\mathcal{B}_{CP}~(imes 10^{-6})$	A _{CP}	S _{CP}
$B^+ ightarrow K^+ \overline{K}^0$	1.31±0.14	0.04±0.14	
$B^+ ightarrow \pi^+ \pi^0$	$5.59{\pm}0.31$	$0.008 {\pm} 0.035$	
$B^0 ightarrow K^0 \overline{K}^0$	$^{0} \rightarrow K^{0}\overline{K}^{0}$ 1.21 \pm 0.16		$-1.08{\pm}0.49$
$B^0 ightarrow \pi^+\pi^-$	$3^{0} \rightarrow \pi^{+}\pi^{-}$ 5.15±0.19		-0.666 ± 0.029
$B^0 ightarrow \pi^0 \pi^0$	$B^0 \to \pi^0 \pi^0$ 1.55± 0.16		
$B^0 ightarrow K^+ K^-$	$0.080{\pm}0.015$??	??
$B_s^0 o \pi^+ K^-$	$B_s^0 \to \pi^+ K^-$ 5.90 ^{+0.87} _{-0.76}		
$B_s^0 ightarrow \pi^0 \overline{K}^0$??	??	??

Decay	$\mathcal{B}_{CP}~(imes 10^{-6})$	A _{CP}	S _{CP}
$B^+ ightarrow \pi^+ K^0$	23.52±0.72	-0.016 ± 0.015	
$B^+ o \pi^0 K^+$	$13.20 {\pm} 0.46$	$0.029{\pm}0.012$	
$B^0 ightarrow \pi^- K^+$	19.46±0.46	-0.0836 ± 0.0032	
$B^0 o \pi^0 K^0$	$10.06 {\pm} 0.43$	$-0.01{\pm}0.10$	$0.57{\pm}0.17$
$B_s^0 ightarrow K^+ K^-$	$26.6^{+3.2}_{-2.7}$	$-0.17{\pm}0.03$	0.14±0.03
$B^0_s o K^0 \overline{K}^0$	17.4±3.1	??	??
$B^0_s o \pi^+\pi^-$	$0.72\substack{+0.11 \\ -0.10}$??	??
$B^0_s ightarrow \pi^0 \pi^0$	2.8±2.8		

□ Key point: no any theoretical assumptions on RMEs ⇒ completely rigorous on group-theoretical side

$B \rightarrow PP$ based on SU(3) flavor symmetry

□ State-of-the-art SU(3)_F fit [Huber, Li, Malami, Tetlalmatzi-Xolocotzi, w.i.p; D. London et al., 2311.18011]

$$\begin{split} \lambda_{u}^{(q)} &: A_{1} = \langle \mathbf{1} || \mathbf{3}_{1}^{*} || \mathbf{3} \rangle , A_{8} = \langle \mathbf{8} || \mathbf{3}_{1}^{*} || \mathbf{3} \rangle , \\ \lambda_{t}^{(q)} &: B_{1} = \langle \mathbf{1} || \mathbf{3}_{2}^{*} || \mathbf{3} \rangle , B_{8} = \langle \mathbf{8} || \mathbf{3}_{2}^{*} || \mathbf{3} \rangle , \\ \lambda_{u}^{(q)} &: A_{t} = \langle \mathbf{1} || \mathbf{3}_{2}^{*} || \mathbf{3} \rangle , B_{8} = \langle \mathbf{8} || \mathbf{3}_{2}^{*} || \mathbf{3} \rangle , \\ \lambda_{u}^{(q)} &: A_{t}^{(q)} &: R_{8} = \langle \mathbf{8} || \mathbf{6} || \mathbf{3} \rangle , P_{8} = \langle \mathbf{8} || \mathbf{15}^{*} || \mathbf{3} \rangle , \\ P_{27} = \langle \mathbf{27} || \mathbf{15}^{*} || \mathbf{3} \rangle . \end{split} \qquad A_{8} = \frac{1}{8} \sqrt{\frac{5}{3}} \left(-3\widetilde{T} + \widetilde{C} - 8\widetilde{P}_{uc} - 3\widetilde{A} \right) , \\ B_{1} = -\frac{4}{\sqrt{3}} \left(\frac{3}{2} P A_{tc} + P_{tc} \right) , B_{8} = -\sqrt{\frac{5}{3}} P_{tc} . \end{aligned} \qquad R_{8} = \frac{\sqrt{5}}{4} \left(\widetilde{T} - \widetilde{C} - \widetilde{A} \right) , \\ P_{8} = \frac{1}{8\sqrt{3}} \left(\widetilde{T} + \widetilde{C} + 5\widetilde{A} \right) , \\ P_{27} = -\frac{1}{2\sqrt{3}} \left(\widetilde{T} + \widetilde{C} \right) . \end{split} \qquad \Delta S = \mathbf{1} \text{ fit:}$$

- \checkmark for only $\Delta S = 0$ decays: excellent fit
- \checkmark for only $\Delta S = 1$ decays: good fit

$ \widetilde{T} $	$ \widetilde{C} $	$ \widetilde{P}_{uc} $	$ \widetilde{A} $	P _{tc}
4.0 ± 0.5	6.6 ± 0.7	3 ± 4	6 ± 5	0.8 ± 0.4

 $\Delta S = 1$ fit:

$ \widetilde{T}' $	$ \widetilde{C}' $	$ \widetilde{P}'_{uc} $	$ \widetilde{A'} $	$ P_{tc}' $
48 ± 14	41 ± 14	48 ± 15	81 ± 28	0.78 ± 0.16

- ✓ $\left|\frac{\tilde{c}}{\tilde{\tau}}\right| = 1.65 \text{ (}\Delta S=0\text{), } 0.85 \text{ (}\Delta S=1\text{), } 1.23 \text{ (}SU(3)_{\text{F}}\text{) vs } 0.13 \leq \left|\frac{c}{\tilde{\tau}}\right| = 0.23 \leq 0.43 \text{ based on QCDF}$
- \checkmark for combined $\Delta S = 0 \& \Delta S = 1$ decays: very poor fit, with 3.6 σ disagreement with the SU(3)_F limit
- ✓ a 1000% SU(3)_F breaking effect required, much large than naive expectation of $f_K/f_{\pi} 1 \sim 20\%$

 \Box More precise measurements, especially of the missing observables (e.g. $B_s^0 \to K^0 \overline{K}^0$ and $B_s^0 \rightarrow \pi^0 \overline{K}^0$) may help to figure out true dynamical mechanism behind charmless B decays

Summary

□ With exp. and theor. progress, we are now entering a precision era for flavor physics

□ Several deviations between data & SM observed **____** NP signals beyond the SM?

□ More precise exp. measurements, theor. predictions, and LQCD inputs needed

many opportunities to explore SM & BSM physics in heavy flavor physics

