

LHCb Upgrade II – Tracking System

Zhiyu Xiang 项治宇 (IHEP, CAS)

2024/07/29

第4届LHCb前沿物理研讨会@烟台

LHCb Upgrade II

202 V

²⁰³⁰

• LHCb upgrade II: Intend to run at $5 \times \sim 7 \times$ higher instantaneous luminosity ($\sim 10^{34}$ cm⁻²s⁻¹) and provide massive physical program output, maintaining or exceeding the performance of Run3

2037

203 203

2033 ______ 2034

• Estimate ~40 pile-up, ~ O(200)Tb/s data readout

500

2079

2021

402 020 - Pr

\$ 53

- Essentials: efficient charged particles reconstruction, vertices reconstruction and association, mass (momentum) resolution, signal versus background separation
 - Higher granularity, faster timing, lighter material, radiation resistant \Rightarrow tracking system
 - Efficient track reconstruction (software trigger) >96%
 - Ghost rate for long+downstream tracks <10%
 - Vertexing capabilities $\sim \sigma(IP) \approx 25 \mu m$, tracking timing $\sim 20 ps$

<036

<035

2030 2030

\$03>

<030

<040 <040

2041

202 202

Velo (TV) detector: 4-D tracking

- Challenge: data rates, high hit/track/vertex density, high non-uniform radiation dose
- Hit timing: necessary to distinguish PVs and reject out of time hits in pattern recognition.
- Design for several different scenarios, performance studies are mostly based on scenario A:
 - Geometry remains the same as Run3; Hit timestamp with precision \sim 50 ps

- Alternative scenarios:
 - Scenario B: increase inner radius to mitigate radiation damage/ hit rate per pixel
 - Scenario D: aggressive cost reduction by limiting the technological choices (65 nm & planar sensor)
 - Scenario X: designed at the limits of radiation damage for the duration of Runs 5 and 6, 28nm & 3D sensor
 - Scenario H: cost saving option considering ACCEPTANCE CUT, heavier cooling substrate and overall module construction ⇒ EQUALLY HIGH DAQ RATES

Velo (TV) detector: 4-D tracking

- Addition of 50ps time resolution per hit recovers Run3 performance almost entirely for reconstruction of tracks and vertices
- Discriminating power of χ^2_{IP} can also be largely recovered using hit timestamp
 - e.g. separating tracks of a b-hadron from those promptly produced, time information help improved

Velo (TV) : possible technology & layout

- A lot of R&D needed on sensor + ASIC
 - Radiation hardness, deadtime, bandwidth
- 3D sensors: best candidate sensor technology, e.g. ATLAS 3D
 - Fabricated in the 65 nm CMOS technology, target 28nm?
 - At limited hit efficiency due to electronics
- Minimum amount of hits is 3 to be able to reconstruct a track
- Naive interpretation: increase number of stations (and detector material) by 20%
 - 2σ luminous region
 - At least 5 planes in acceptance
 - Eta max of 4.8 for 100% acceptance
- Also assuming that we can achieve $\sim 10 \ \mu m$ spatial resolution
 - smaller pitch implied

Upstream Tracker (UP)

• UP (UT) provides a fast track momentum estimate and plays a critical role in trigger strategy

шШ

355

36 modules,

- Essential to reconstruct long lived particles, e.g. K_S^0 , Λ
- A MAPS-based pixel detector
- Certain features of the current UT may be kept
 - e.g. stave structure, and strip / long pixel orientation
 - Reduction to 3 layer need to be study
- Material budget aimed to be at/ below 1% level per layer
- Due to higher data rate , more electronics in the inner part leading to more material

Chinese group contributes significantly

UP: MAPS technologies

Large collection electrode

- Circuitry inside the charge collection well
- Large uniform electric field
- On average shorter drift path
- Better radiation hardness (less trapping)
- Very large sensor capacitance (both pw and dnw)

Small collection electrode

- Circuitry outside the charge collection well
- Optimization of little low-field regions
- On average longer drift path
- Radiation hardness needs process modifications
- Very small sensor capacitance

UP: role in long track system

- Long tracks reconstructed by fitting in both XZ and YZ plane
 - In XZ plane, a 4th-order polynomial used for magnet effects
 - In YZ plane, a linear func. used
- Quick test studied with Kaon tracks under Run3 condition
 - VELO+SciFi only: total efficiency \sim 50% and the "ghost rate" \sim 34%
 - VELO+SciFi +UT: total efficiency \sim 94% and the "ghost rate" \sim 4.5%

Downstream tracker: Mighty Tracker (MP+FT)

- HV-CMOS sensors for highest track density region, Scintillating Fibre (+SiPM) in outer region
- Initial layout from FTDR:
 - 6 layers of HV-CMOS pixels. Each layer 3 m² (18 m² in total)
 - Each layer divided into 28 modules 54 x 20 cm²
 - $50 \times 150 \,\mu\text{m}^2$ (100 x 300 μm^2 pixels already ok for physics)
- Initial design driven by SciFi radiation damage and occupancies
 - Assumed SciFi as U1 (no gains for better SiPMS or cooling)

MT: MightyPix technologies

- Challenges:
 - In Time Efficiency ; Power Consumption; Radiation Tolerance
- MPix1 R&D Chip, time resolution ~3ns:
 - Timing and Fast Control (TFC)
 - Configuration register interface
 - Clock:40MHz external from lpGBT
 - Triggerless readout also supported
- MightyPix1 design has been verified with Test Beam, bug found:
 - Large x-talk in the chip due to shielding traces not tied down
- To be submitted in 2025 with MightyPix2, using 180nm

Black's

MT: tracks flavours

• Large fraction of tracks from secondary interactions

Mathad's

- Standalone-TTracks: increasing tracking efficiency and clone killing
 - To increase efficiency, each time excluding the hits that have already been used
 - Clone killing: Out of two tracks that are close and have more than 30% (pixel) or 20% (fibre) hit overlap, only one is kept based on nHits or track quality
 - Additionally to decrease the clone rate, we remove all the hits used in building Pixel-Pixel tracks in MT

Tracking simulating in U2

- TV : pixel with timing : (x,y,z,t), pitch $\sim 45 \mu m$
- UP : pixel no timing : 4 layers (x,y,z), pitch $\sim 30/50 \times 150 \ \mu m$
- MP : pixel no timing : 6 layers (x,y,z), pitch $\sim 50 \times 150 \ \mu m$
- FT : Sci-Fi no timing (?): 12 layers (x,z), pitch \sim 250 µm
- Pattern recognition : recent development, even reconstruct tracks we want for physics?
- Constructing from TV, UP and MP cheated track
 - Long tracks minTVHits=3, minMPHits=4
 - Downstream tracks minUPHits=3, minMPHits=4
 - Upstream tracks minTVHits=3, minUPHits=3

Tracking requirements for physics

- The rule of thumb: "Same or better" detector performance as in Upgrade I
- Key tracking parameters
 - - momentum resolution
 - - vertexing (primary and secondary decays)
 - - beauty, charm, lepton, flavour tagging
 - - but also for spectroscopy, fixed target, medium-to-long lived particles
 - ghost rejection
 - high segmentation (pixels where needed)
 - keeping (very) low material budget
- Quantification of the requirement must come from simulation

U2 physics: e.g. CP violation and rare

- CKM phases:
 - CPV in B mixing
 - Angle γ in time integrated decays
 - or even CPV in b baryons
- Rare decays:
 - $B^0_{(s)} \rightarrow \mu^+ \mu^-$
 - $b \to s\ell^+\ell^-$ ($\ell = e, \mu, \tau$), need τ^{\pm} reconstruction capability
- Need control syst. when it close to the stat.
- Requirements ("usual suspects")
 - Vertexing capabilities
 - Tracking, momentum resolution
 - PID (RICH, MUON, CALO), leptons
 - Flavour tagging classifiers:
 - Pileup, PIDs, IP resolution, correct PV association efficiency, ghost rate, timing

U2 physics: e.g. Spectroscopy

Fred's

- Search for new hadrons
- Measure hadron properties
 - exotic states (tetra- penta-quarks)
 - double-heavy baryons ($\tau \sim 0.1 \text{ ps}$)
- TV performance is essential to:
 - Reduce the background level
 - Measure short lifetimes

0.8

• UP would improve $\Delta p/p$ for spectrum precision

U2 physics: e.g. long-lived particle

- Long lifetime particles essential input to much physics, e.g. $K_S^0 \rightarrow \pi^+\pi^-, \Lambda \rightarrow p\pi^-$
 - Emulating $K_{\rm S}^0$ with K^{\pm} track, linear extrapolation to fixed z_{decay} , then propagation with charge

- Charged hyperon decaying in the VELO
- Track hyperons in the VELO, improve signal selection

Renato's

Conclusion

- The tracking system will be built almost entirely on high granularity silicon pixel detectors
- The simulation of U2 forming can be used for reliable performance estimation/inspection of the entire tracking system
- Timestamp is crucial for the possibility of track reconstruction and data process
- For Upgrade II, aiming to "same or better" detector performance as in Upgrade I
- Still many R&D issues or open questions, we need you!