

Central exclusive production of quarkonium at LHCb

Xiaolin Wang South China Normal University

第四届LHCb前沿物理研讨会 2024年7月29日·烟台

Xiaolin Wang xiaolin.wang@cern.ch

2024/7/29

Ultra-peripheral PbPb Collisions

Ultra-Peripheral Collisions(UPCs):

- Two incoming nuclei bypass each other with an impact parameter greater than the sum of their radii.
- Reactions in which two ions interact via their cloud of semi-real photons.
- The photon-induced interactions are enhanced by the strong electromagnetic field of the nucleus.
- Photon-induced quarkonium production: A $q\bar{q}$ loop created by the photon interaction with a pair of gluon exchange (pomeron) to produce a quarkonium($c\bar{c}, b\bar{b}$).
- Non-resonant background: $\gamma \gamma \rightarrow \mu^+ \mu^-$.

J/ψ production in UPC

> Coherent J/ ψ production, photon interacts with a pomeron emitted by the entire nucleus.

- ➤ Incoherent J/ψ production, the photon interacts with a pomeron emitted from a single nucleon within the target nucleus.
- > J/ ψ from the feed-down of coherent and incoherent $\psi(2S)$ production.
- Study of coherent charmonium production could constrain the gluon Parton Distribution Functions in nuclei.
- The ratio of J/ψ and ψ(2S) is helpful to constrain the choice of the vector meson wave function in dipole scattering models. [e.g. PLB 772 (2017) 832; PRC (2011) 011902]

Coherent J/ ψ production Incoherent J/ ψ production

LHCb Detector

- \succ LHCb detector is a single-arm forward Vertex Detector **Reconstruct** vertices spectrometer fully instrumented in unique kinematic coverage: 2<η<5.
- > A high precision detector with excellent particle identification, precise vertex and track reconstruction.

[Int. J. Mod. Phys. A 30, 1530022 (2015)]

mis-ID $\epsilon(\pi \rightarrow K) \sim 5\%$

RICH detectors

K, π , p separation

 $\epsilon(K \rightarrow K) \sim 95\%$

Decay time resolution: 45 fs Impact parameter resolution: 20 µm

> Diploe Magnet Bending power: 4 Tm

Tracking system Momentum resolution $\Delta p/p = 0.5\%$ -1.0% (5 GeV/c-100GeV/c)

Muon system μ identification $\epsilon(\mu \rightarrow \mu) \sim 97\%$ mis-ID $\epsilon(\pi \rightarrow \mu) \sim 1-3\%$

Calorimeters

Energy measurement

 e/γ identification

 $\Delta E/E = 1\% \oplus 10\%/\sqrt{E}(GeV)$

2024/7/29

Event selection

- ➤ Dataset: $J/\psi \rightarrow \mu^+\mu^-$ and $\psi(2S) \rightarrow \mu^+\mu^-$ events from PbPb collisions at $\sqrt{s} = 5.02$ TeV taken in 2018 with luminosity $228 \pm 10 \ \mu b^{-1}$.
- > Differential cross-sections of coherent J/ ψ and ψ (2S) photon-production are measured as:

$$\frac{\mathrm{d}\sigma_{\psi}^{\mathrm{coh}}}{\mathrm{d}x} = \frac{N_{\psi}^{\mathrm{coh}}}{\mathcal{L} \times \varepsilon_{\mathrm{tot}} \times \mathcal{B}(\psi \to \mu^{+}\mu^{-}) \times \Delta x}$$

- ≻ Event selection:
- only two long tracks reconstructed for muons, with acceptance cuts:

2.0 < $\eta^{\mu^{\pm}}$ < 4.5, $p_T^{\mu^{\pm}}$ > 700*MeV*, $p_T^{\mu^{+}\mu^{-}}$ < 1*GeV*, $|\Delta \phi_{\mu^{+}\mu^{-}}|$ > 0.9 π

• HeRSCheL detector is used to further purify the selection. [2018 JINST 13 P04017]

Signal extraction

- Signal extraction step1: Charmonium yields are extracted from dimuon massfit.
 - Double-sided crystal ball function for the J/ ψ and ψ (2S) yields.
 - Exponential function for the nonresonant background are extracted from dimuon massfit.

Signal extraction step2: Coherent component is extracted from a $\ln(p_T^2)$ fit.

- > All signal pdfs are estimated using the <u>STARLight</u> generator and the LHCb detector simulation.
- The shape of background taken from the side-band method, then the normalization is fixed from mass fit.

2024/7/29

Cross-sections in rapidity

- The most precise coherent J/ψ production measurement in PbPb UPC in forward rapidity to date.
- The high precision LHCb data are of great value in theoretical model fine-tuning.
- Compare to most recent theoretical calculations:
 - p-QCD calculations: include new NLO p-QCD calculation PDF uncert. and factorization scale uncert.
 - Color-dipole models: draw different model tuning options as theoretical variations.

Xiaolin Wang(SCNU)

Cross-sections in rapidity

- The first precise coherent ψ(2S) production measurement in PbPb UPC in forward rapidity at LHC.
- Compare to most recent theoretical calculations of p-QCD calculations and colordipole models.

GKSZ: PRC 93 (2016) 055206, PRC 95 (2017) 025204, GMMNS: PRD 96 (2017) 094027, EPJC 40 (2005) 519, MSL: PLB 772 (2017) 832, PoS DIS2014 (2014) 069, KKNP: PRD 107 (2023) 054005 CCK: PRC 97 (2018) 024901

Cross-sections in rapidity

 The first cross-section ratio between coherent J/ψ and ψ(2S) vs. rapidity measurement in forward rapidity region at LHC.

Compare to most recent theoretical calculations of p-QCD calculations and color-dipole models.

GKSZ: PRC 93 (2016) 055206, PRC 95 (2017) 025204, GMMNS: PRD 96 (2017) 094027, EPJC 40 (2005) 519, MSL: PLB 772 (2017) 832, PoS DIS2014 (2014) 069, KKNP: PRD 107 (2023) 054005 CCK: PRC 97 (2018) 024901

2024/7/29

JHEP 06 (2023) 146

Cross-sections in p_T

JHEP 06 (2023) 146

GKSZ: PRC 93 (2016) 055206, PRC 95 (2017) 025204, **MSL:** PLB 772 (2017) 832, PoS DIS2014 (2014) 069,

- > The first coherent J/ ψ and ψ (2S) production measurement in p_T in PbPb UPC.
- Compare to most recent theoretical calculations of p-QCD calculations and color-dipole models.

Compare with other results

JHEP 06 (2023) 146

- Comparison with the coherent J/ψ production measurement with LHCb 2015, ALICE and CMS results.
 - The J/ψ measurement is compatible with LHCb2015, ALICE and CMS results.
 - The compatibility between the new results and 2015 measurement is about 2σ.

Conclusion

- ► Measurements of exclusive coherent J/ ψ and ψ (2S) production and their crosssection ratio in UPC PbPb collisions using 2018 dataset. JHEP 06 (2023) 146
 - The most precise coherent J/ψ production measurement in forward rapidity region in PbPb UPC to date.
 - The first coherent $\psi(2S)$ measurement in forward rapidity region in PbPb UPC at LHC.
 - The first measurement about coherent J/ ψ and ψ (2S) production cross-sections vs. p_T in PbPb UPC.
- The results are compatible with current theoretical predictions, providing strong constraints for the fine-tuning of the different models.
- > More results are ongoing: $c\bar{c}$, $b\bar{b}$, K^+K^- , $\pi\pi$, ϕ , etc...

CEP collisions

- Central Exclusive Production(CEP):
 - $p + p \rightarrow p + X + p$, incoming protons do not dissociate.
- Study of CEP of $\Upsilon(nS)$ in the dimuon decay mode:
 - The study of CEP $\Upsilon(nS)$ is an essential tool to understand the low-x physics(down to 10^{-5}) and also to investigate the gluon PDF in this regime.
 - The measurement of CEP $\Upsilon(nS)$ production could test $\Upsilon(nS)$ wave function models.
 - Improve the accuracy on the previous reported result.

JHEP 1509, 084 (2015)

Observables and selections

Datasets

Table 21: Summary of the integrated luminosity, list the good runs and bad runs separately, $4.691 f b^{-1}$ in total.

2016		2017		2018		
Dunn.	MagUp	MagDown	MagUp	MagDown	MagUp	MagDown
$\mathcal{L}_{int}^{good}(pb^{-1})$	496 ± 10	636 ± 13	672 ± 13	646 ± 13	923 ± 19	804 ± 16
$\mathcal{L}_{int}^{bad}(pb^{-1})$	44 ± 4	59 ± 6	58 ± 6	87 ± 9	115 ± 11	152 ± 15
$\mathcal{L}_{int}^{tot}(pb^{-1})$	540 ± 11	695 ± 14	730 ± 15	732 ± 15	1038 ± 22	956 ± 22

- ▶ Production cross-sections in $2 \le y(\Upsilon(1,2,3S)) \le 4.5$.
- Differential cross-sections for Υ(1,2S): [2.0, 3.0],
 [3.0, 3.5], [3.5, 4.5].

$$\frac{\mathrm{d}\sigma_{\Upsilon(nS)}}{\mathrm{d}y} = \frac{N_{\Upsilon(nS)}}{\mathcal{L}_{tot}^{eff} \times \varepsilon_{tot} \times \mathcal{B}(\Upsilon(nS) \to \mu^+ \mu^-) \times \Delta y}$$

Variable	Requirement			
Geometrical acceptance selection				
muon $\eta_{\mu^{\mp}}$ 2.0< $\eta_{\mu^{\mp}}$ <4.5				
Selectio	on cuts			
nLongTracks	=2			
nVeloTracks	=2			
dimuon ${p_{\mathrm{T}}}^2$	$< 2 \mathrm{GeV}$			
Trigger S	election			
L0	L0Muon, lowMult L0DiMuon, lowMult			
HLT1 Hlt1LowMultMuon				
HLT2	Hlt2LowMultDiMuon			
PID Selection				
muplus_isMuon	= 1			
muminus_isMuon	= 1			
ProbNNmu*(1-ProbNNk)*(1-ProbNNpi)	> 0.05			
Herschel Selection				
$\ln(\chi^2_{ m HRC})$	≤ 5.5			
sum of HRC ADC hits	$\sum_{i} S_i < 750$			
Mass window Selection				
$m_{\mu^{\pm}}$ (for mass fit)	$9.0 < m_{\mu^{\pm}} < 10.8 \text{ GeV}$			
$m_{\mu^{\pm}}$ (for $p_{\mathrm{T}\Upsilon(1S)}$ fit)	$ m_{\mu^{\pm}} - m_{\Upsilon(1S)} < 100 { m MeV}$			
$m_{\mu^{\pm}}$ (for $p_{\mathrm{T}\Upsilon(2S)}$ fit)	$ m_{\mu^{\pm}} - m_{\Upsilon(2S)} < 120 { m MeV}$			
$m_{\mu^{\pm}}$ (for $p_{\mathrm{T}\Upsilon(3S)}$ fit)	$ m_{\mu^{\pm}} - m_{\Upsilon(2S)} < 150 \text{ MeV}$			

Invariant massfit

Table 9: Total $\Upsilon(nS)$ and non-resonant background yields from the invariant mass fits in different rapidity intervals.

Fit to Invariant mass spectrum in

continuum $\gamma \gamma \rightarrow \mu^+ \mu^-$

part of inelastic pp bkg

Double-sided Crystal Ball function for

Exponential function for the non-resonant

 $[9000, 10800] MeV/c^2$

the mass peaks.

Results of massfit

background.

•

•

Interval	$N_{\Upsilon(1S)}^{tot}$	$N_{\Upsilon(2S)}^{tot}$	$N_{\Upsilon(3S)}^{tot}$	$N_{\Upsilon(1S)}^{bkg}$	$N_{\Upsilon(2S)}^{bkg}$	$N_{\Upsilon(3S)}^{bkg}$
$2.0 \le y \le 4.5$	532 ± 29	156 ± 22	101 ± 19	187 ± 28	170 ± 24	178 ± 21
$2.0 \le y \le 3.0$	214 ± 17	54 ± 12	36 ± 13	67 ± 16	63 ± 13	69 ± 15
$3.0 < y \le 3.5$	179 ± 17	54 ± 13	37 ± 13	74 ± 17	70 ± 14	75 ± 15
$3.5 < y \leq 4.5$	141 ± 15	45 ± 10	29 ± 8	43 ± 14	37 ± 10	34 ± 9

LHCb-ANA-2021-059

Figure 3: Invariant mass spectrum for the combined datasets of 2016, 2017, and 2018(black dots) with offline selections applied.

Xiaolin Wang

$\Upsilon(1S)$ lnpt2fit

- Fit to lnp_T^2 spectrum for $\Upsilon(1S)$ in [-10, 1] MeV^2/c^2
- Fix the shape of the signal lnp_T^2 distribution from official MC.
- Fix the shape of the χ_b feeddown lnp_T^2 distribution from $\chi_{b0}(3P) \rightarrow \Upsilon(1S) + \gamma$ by SuperChic4.2
- Fix the shape of non-resonant bkg by sideband method, the norm. by massfit.
- Need to consider the inelastic pp bkg in the mass peak.

Interval	$N_{\Upsilon(1S)}^{excl}$	$N_{\Upsilon(2S)}^{excl}$	$N_{\Upsilon(3S)}^{excl}$
2.0 < y < 4.5	414 ± 26	113 ± 17	77 ± 15
2.0 < y < 3.0	159 ± 16	43 ± 10	31 ± 9
3.0 < y < 3.5	131 ± 15	42 ± 10	30 ± 9
3.5 < y < 4.5	125 ± 14	28 ± 8	17 ± 7

Efficiency and uncertainty

> The efficiencies in the analysis are:

|--|

Rapidity bins	2.0 < y < 4.5	2.0 < y < 3.0	3.0 < y < 3.5	3.5 < y < 4.5
$\epsilon_{acceptance}$	0.449 ± 0.003	0.389 ± 0.005	0.739 ± 0.011	0.361 ± 0.004
$\epsilon_{tracking}$	0.7626 ± 0.0003	0.7794 ± 0.0006	0.7709 ± 0.0007	0.7335 ± 0.0007
$\epsilon_{trigger}$	0.7926 ± 0.0005	0.7406 ± 0.0008	0.7915 ± 0.0008	0.8594 ± 0.0008
$\epsilon_{selection}$	0.9885 ± 0.0001	0.9890 ± 0.0002	0.9881 ± 0.0002	0.9885 ± 0.0002
ϵ_{PID}	0.9992 ± 0.0000	0.9990 ± 0.0001	0.9991 ± 0.0001	0.9996 ± 0.0000
$\epsilon_{Herschel}$	0.85 ± 0.01	0.85 ± 0.01	0.85 ± 0.01	0.85 ± 0.01
ϵ_{total}	0.2278 ± 0.004	0.1886 ± 0.004	0.3784 ± 0.008	0.1911 ± 0.004

> The sources of sys. uncertainty are:

Table 11: Summary of the systematic uncertainties.

Source	Relative uncertainty $[\%]$
	$\sigma_{\Upsilon(1S)}$
Tracking efficiency	0.04 – 0.1
Trigger efficiency	0.04 – 0.1
HERSCHEL efficiency	1.522
Non-resonant bkg. estimation	5.5
Feed-down Chib bkg. shape	8.05
Branching fraction	2.016
Luminosity	1.234

Xiaolin Wang

Cross section

> The preliminary $\Upsilon(1S)$ cross-section :

Table 12: The differential cross-section for CEP $\Upsilon(1S)$ production as a function of y^* .

Interval	$\mathrm{d}\sigma^{coh}_{\Upsilon(1S)}/\mathrm{d}y^*~\mathrm{[pb]}$	Ţ	Jncertai	nties [pł)]
		Stat.	Syst.	Lumi.	Total
$2.0 < y^* < 3$	22.050	2.495	2.239	0.272	3.364
$3.0 < y^* < 3.5$	17.639	2.326	1.796	0.218	2.947
$3.5 < y^* < 4.5$	14.635	1.937	1.483	0.181	2.446
$2.0 < y^* < 4.5$	44.611	3.235	4.503	0.551	5.572

Rapidity bins	2.0 < y < 4.5	2.0 < y < 3.0	3.0 < y < 3.5	3.5 < y < 4.5
Stat.unce(%)	7.251	11.316	13.187	13.234
Sys.unce(%)	10.094	10.154	10.182	10.133
Branching.unce(%)	2.016	2.016	2.016	2.016
Lumi.unce(%)	1.234	1.234	1.234	1.234

Now:

$$\frac{\mathrm{d}\sigma_{\Upsilon(nS)}}{\mathrm{d}y} = \frac{N_{\Upsilon(nS)}}{\mathcal{L}_{tot}^{eff} \times \varepsilon_{\mathrm{tot},2018}} \times \mathcal{B}(\Upsilon(nS) \to \mu^+\mu^-) \times \Delta y}$$

Thanks!

Back up

HeRSCheL detector

[2018 JINST 13 P04017]

- HeRSCheL(High Rapidity Shower Counters for LHCb), is a set of plastic scintillators located in the LHC tunnel on both sides of the LHCb interaction point, in order to extend the pseudo-rapidity coverage of the LHCb in the high-rapidity regions either side of the interaction point.
- HeRSCheL detector extends the LHCb forward coverage up to a pseudo-rapidity of around 10.
- HeRSCheL detector is used to cut the component with large momentum, for example, the incoherent component.

Cross-sections results

JHEP 06 (2023) 146

Integrated cross-section and ratio (most precise measurements in the forward region at this moment):

$$\begin{split} \sigma^{coh}_{J/\psi} &= 5.965 \pm 0.059(stat) \pm 0.232(syst) \pm 0.262(lumi) \ mb, \\ \sigma^{coh}_{\psi(2S)} &= 0.923 \pm 0.086(stat) \pm 0.028(syst) \pm 0.040(lumi) \ mb, \\ \sigma^{coh}_{\psi(2S)}/\sigma^{coh}_{J/\psi} &= 0.155 \pm 0.014(stat) \pm 0.003(syst). \end{split}$$

> Systematic uncertainties:

Source	Relative	uncertainty $[\%]$
	$\sigma^{ m coh}_{J\!/\!\psi}$	$\sigma^{ m coh}_{\psi(2S)}$
Tracking efficiency	0.5 - 2.0	0.5 – 2.0
PID efficiency	0.9 - 1.6	0.9 - 1.6
Trigger efficiency	2.7 - 3.7	2.1 – 2.5
HERSCHEL efficiency	1.4	1.4
Background estimation	1.2	1.2
Signal shape	0.04	0.04
Momentum resolution	0.9 - 34	1.3 - 27
Branching fraction	0.6	2.1
Luminosity	4.4	4.4

Backgrounds under mass peak

> Feed-down $\chi_{bJ} \rightarrow \Upsilon \gamma$ decays

$$\begin{split} \chi_{b0,1,2}(1P), \chi_{b0,1,2}(2P), \chi_{b0,1,2}(3P) \to \Upsilon(1S)\gamma, \ \chi_{b0,1,2}(2P), \chi_{b0,1,2}(3P) \to \Upsilon(2S)\gamma, \\ \chi_{b0,1,2}(3P) \to \Upsilon(3S)\gamma. \end{split}$$

> Non-resonant production of $\mu^+\mu^-$

Can be determined from a fit to the dimuon invariant mass distribution.

Inelastic interaction

Non-resonant part can be determined from a fit to the dimuon invariant mass distribution.

Need to obtain the resonant part shape of inelastic pp bkg inside the mass peak.

• Example distribution in J/ψ case

LHCb-ANA-2021-059

Previous studies at LHCb

Exclusive $\Upsilon(nS)$ production in pp collisions at

7 and 8 TeV, using 2011 and 2012 datasets at LHCb. For 2 < y(Y(nS)) < 4.5:

 $\sigma(pp \to p\Upsilon(1S)p) = 9.0 \pm 2.1 \pm 1.7 \,\mathrm{pb},$

 $\sigma(pp \rightarrow p\Upsilon(2S)p) = 1.3 \pm 0.8 \pm 0.3 \,\mathrm{pb}, \quad \mathrm{and}$

 $\sigma(pp\to p\Upsilon(3S)p)\,<\,3.4\,{\rm pb}$ at the 95% confidence level,

\succ CEP J/ψ and $\psi(2S)$ using 2016-18 datasets

 $\Upsilon(1S)$ data LO (7TeV)

LO (8TeV)

NLO (7TeV)

NLO (8TeV)

[JHEP 1509, 084(2015)]

60r

LHCb

(a)

Differential cross-section (pb)

$J/\psi, \psi(2S)$ Photo-production cross-section in CEP

- $\sigma_{pp \to p\psi p}(W)$ has contributions from photon coming from both forward and backward going proton in CMS
- Goal: Extract ψ photoproduction cross section $\sigma_{\gamma p \to \psi p}(W)$ from measured $\sigma_{pp \to p\psi p}(W)$ $W^2 \equiv 2k\sqrt{s}$ 26

Photoproduction cross-section

Xiaolin Wang(SCNU)