

Lepton flavour universality tests using semileptonic B hadron decays at LHCb

Bo Fang (方勃) 中国科学院大学

第四届LHCb前沿物理研讨会 27-31 July 2024, 山东烟台

Outline

See also talks by Pelican Li, Liang Sun, Xingbo Yuan and Xingiang Li

- New physics, LFUV and semitauonic B hadron decays
- The LHCb detector
- Representative results from LHCb:
 - [PRL 131(2023)111802][arXiv:2406.03387]
 - [PRL 120,171802, PRD 97,072013] [PRD 108(2023)012018] (Erratum [PRD 109(2024)119902(E)])
- Prospects and summary

• Measurement of R(D) $R(D^*)$ using muonic τ decays, 3 fb⁻¹ (Run1)/ 2 fb⁻¹ (part. Run2)

• Measurement of $R(D^*)$ using hadronic τ decays, 3 fb⁻¹ (Run1)/ 2 fb⁻¹ (part. Run2)

Lepton flavour universality (LFU)

- An accidental lepton ($l=e, \mu, \tau$) flavour symmetry
- Broken in the Standard Model (SM) only by $M_{l^{-}}$
- New physics (NP) particles coupling to τ can lead to LFU violation (LFUV)

Flavour changing neutral current (FCNC): $R(K), R(K^*), R(\phi), R(pK) \dots$

Semitauonic B decays as tests of LFUV

 $b \to cl\nu$ transitions: $R(X_c) = \frac{Br(X_b \to X_c \tau \nu_{\tau})}{Br(X_b \to X_c \mu \nu_{\mu})}$

Bo Fang 29/7/2024

New physics candidates can influence the R value e.g. possible contribution from leptoquark [PRL 116(2016)081801]

4

Origin of the experimental test of LFU

- First result released by BaBar in 2012, 3.4σ away from SM.
- Belle and LHCb both join the game from 2015:
 - $R(D) \sim 1.7\sigma$ from SM
 - $R(D^*) \sim 3.0\sigma$ from SM
 - $R(D) \& R(D^*) \sim 3.9\sigma$ from SM

Muonic τ decays

- Direct measurement of $R(X_c)$
- High statistics
- Backgrounds from D^+ must be controlled well
- Sensitive to $D^{**}\mu^-\bar{\nu}_\mu$

Hadronic τ decays

- Detached τ^+ decay position to suppress dominant backgrounds
- High purity sample
- Specific dynamics of $\tau^+ \to 3\pi^{\pm}(\pi^0)\bar{\nu}_{\tau}$
- $R(X_c)$ calculation requires external inputs
- Lower statistics

LFU tests at LHCb

Muonic decays of τ $\mathscr{B}(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau}) = (17.39 \pm 0.04) \%$

- $R(D^*)$, Run1 3fb⁻¹ (2015) [PRL 115,111803]
- $R(D) \& R(D^*)$, Run1 3fb⁻¹ (2023) [PRL 131,111802]
- $R(D^+)$ & $R(D^{*+})$, part. Run2 2fb⁻¹ (2024) [arXiv:2406.03387]
- $R(J/\psi)$, Run1 3fb⁻¹ (2018) [PRL 120,121801]

Bo Fang 29/7/2024

Hadronic decays of τ $\mathscr{B}(\tau^- \to \pi^- \pi^+ \pi^- (\pi^0) \nu_{\tau}) \sim 13.5 \%$

- $R(D^*)$, Run1 3fb⁻¹ (2018) [PRL 120,171802, PRD 97,072013]
- $R(D^*)$, part. Run2 2fb⁻¹ (2023) [PRD 108,012018] (Erratum [PRD 109,119902])
- $R(\Lambda_c)$, Run1 3fb⁻¹ (2021) [PRL 128,191803]
- F_L^{D*} , Run1+part. Run2 5fb⁻¹ (2023) [arXiv:2311.05224]

The LHCb detector

A single-arm forward spectrometer, designed for the study of heavy flavour physics

- Excellent vertex, IP and decay-time resolution
- Very good momentum resolution \bullet
- Good hadron and muon identification
- $2 < \eta < 5$ range (LHCb acceptance): $\sim 3 \times 10^4 / s b\bar{b}$ pairs@ 7 TeV ~x2 yield@ 13 TeV

Int. J. Mod. Phys. A 30(2015)153002 JINST 3(2008)S08005

8

Simultaneous measurement of $R(D^*)$ and R(D) with muonic τ decays [PRL 131(2023)111802]

Bo Fang 29/7/2024

More details see <u>CERN seminar by Greg</u>

Comparison with previous muonic $R(D^*)$ [PRL 115(2015)111803] at LHCb

- Before: measure $R(D^*)$ with Run1 $[D^{*+}\mu^{-}]$ data
- Now: simultaneously measure R(D) & $R(D^*)$ with Run1 $[D^0\mu^-]$ and $[D^{*+}\mu^-]$ data lacksquare

•
$$D^0 \to K^+ \pi^-, D^{*+} \to D^0 \pi^+$$

- Veto $D^{*+} \rightarrow D^0 \pi^+$ in $[D^0 \mu^+]$ sample
- Trigger on D^0 preserve acceptance for soft muons
- New: custom muon ID classifier, flatter in kinematic acceptance[JINST 8 P12013] \bullet
 - Reduce misID background (dominant systematics in previous muonic $R(D^*)$) ullet
- Higher statistics: $[D^0\mu^-]$ sample 5x larger than $[D^{*+}\mu^-]$

[PRL 131(2023)111802]

Experimental challenge

- Numerous background from different sources:
 - Partially reconstructed B decays \bullet

•
$$B \to D^* \mu \nu, B \to D^{**} \mu \nu,$$

 $B \to D^{*(*)} D^{(*)} (\to \mu X) X...$

- Misidentified background
- Combinatorial background

3D Fit

•
$$q^2 = (p_B - p_{D^{(*)}})^2$$

- $m_{miss}^2 = (p_B p_{D^{(*)}} p_{\mu})^2$
- Energy of μ : E_{μ}
- 8 samples in total (for $D^0 \& D^{*+}$):
 - Signal sample
 - Three isolated control samples (with extra π , $\pi\pi$ or K)
- Simultaneous fit of all 8 samples

Bo Fang 29/7/2024

[PRL 131(2023)111802]

 $D^0\mu^-$ signal sample

$D^0\mu^-$ signal sample fit

[PRL 131(2023)111802]

$D^{*+}\mu^{-}$ signal sample fit

[PRL 131(2023)111802]

Bo Fang 29/7/2024

[<u>PRL 131(2023)111802</u>]

Result of this measurement:

- $R(D^*) = 0.281 \pm 0.018(stat) \pm 0.024(syst)$
- $R(D) = 0.441 \pm 0.060(stat) \pm 0.066(syst)$
- Correlation $\rho = -0.43$
- 1.9σ agreement with SM

New preliminary average:

- Slightly lower $R(D^*)$, slightly higher R(D), reduced correlation
- $3.3\sigma \rightarrow 3.2\sigma$ away from SM
- Global picture unchanged...

Measurement of $R(D^*)$ with hadronic τ decays [PRD 108(2023)012018][PRD 109(2024)119902(E)]

Bo Fang 29/7/2024

More details see <u>CERN seminar by Resmi</u>

Measurement of $R(D^*)$ with hadronic τ decays

Prompt backgrounds

- ~ 100 times larger than the signal
- Suppressed effectively with detached-vertex selection

Double-charm backgrounds (after detached-vertex selection)

- $B \rightarrow D^{*-}(D_s^+, D^+, D^0)X$ backgrounds
- $B \rightarrow D^{*-}D_{s}^{+}X$ the largest contributor
- A BDT classifier based on kinematics and resonant structure to separate signal from $B \rightarrow D^{*-}D_{c}^{+}X$

Bo Fang 29/7/2024

108(2023)012018] PRD 109(2024)119902(E)]

-0.2

0.2

BDT response

-0.4

0.02

Measurement of $R(D^*)$ with hadronic τ decays

$D_s^+ \to \pi^+ \pi^- \pi^+ X$ control fit

- Data samples with low anti- D_s^+ BDT
- To constrain different components in $D_{\rm c}^+ \rightarrow \pi^+ \pi^- \pi^+ X$ decays

Bo Fang 29/7/2024

PRD 108(2023)012018] 109(2024)119902(E)] PRD

Fitting production of D_s^+

• Data samples with

 $m(3\pi^{\pm}) - m(D_s^{+})_{PDG} | < 20 \text{ MeV}$

• To constrain different components in $B_{(s)} \to D^{(*,**)}D_{s}^{(*,**)+}(X)$ decays

Measurement of $R(D^*)$ with hadronic τ decays

Dataset: 2015-2016 $2 \text{fb}^{-1} pp$ collision data

Signal yield measured w/ 3D template fit to

- $q^2 \equiv (p_{R^0} P_{D^*})^2$
- τ lifetime
- anti- D_{c}^{+} BDT output

$$K(D^*) = \frac{Br(B^0 \to D^{*-}\tau^+\nu_{\tau})}{Br(B^0 \to D^{*-}\pi^+\pi^-\pi^+)}$$

= 1.79 ± 0.11(stat) ± 0.11(syst)

- Using $Br(B^0 \to D^{*-} \mu^+ \nu_{\mu}) \& Br(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)$, $R(D^*) = 0.260 \pm 0.015(stat) \pm 0.016(syst) \pm 0.012(ext)$ (SM prediction: 0.254 ± 0.005)
- Combined with Run1 result: \bullet $R(D^*)_{2011-2016} = 0.267 \pm 0.012(stat) \pm 0.015(syst) \pm 0.013(ext)$

 $N(B^0 \to D^{*-} \tau^+ \nu_{\tau}) = 2573 \pm 156$ Run 1 yield: 1296 ± 86

Current $R(D) - R(D^*)$ scenario

- Combined $R(D) R(D^*)$ deviates from SM ~3.3 σ

[HFLAV2024]

Prospects for LFUV tests with semitauonic decays at LHCb

- More statistics
 - Analyses including Run2 \bullet 6 fb^{-1} data samples ongoing
 - Data taking in Run3
- Control of systematics

- New technologies (fast simulation, multivariate selection...)
- Inputs from other experiments and theorists
- Probe into other observables
 - $R(D_s^+), R(\Lambda_c^+), R(J/\psi) \dots$
 - Polarisation measurement
 - Angular analysis

Bo Fang 29/7/2024

[<u>Rev. Mod. Phys. 94, 015003</u>]

[JHEP 11(2019)133]

D. Hill, M. John, W. Ke and A. Poluektov

Prospects of angular analysis of $B^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}$ with full Run1+Run2 data sample from simulation

Summary

- LHCb is the main player in the test of lepton flavour universality
 - Production of various B hadrons: $B^0, B^+, B_s^0, \Lambda_b^0, B_c^+ \dots$
 - Large statistics, good performance of tracking and PID
- - Baryonic and mesonic B decays: different spin, different form factor
 - Hadronic and muonic τ decays: different background, different normalisation
- More results upcoming! Stay tuned!
- Manpower required! Welcome to join us!

Complementary measurement to each other: providing different constraints

Thank you for listening!

Backup

Bo Fang 29/7/2024

The LHCb detector

A single-arm forward spectrometer, designed for the study of heavy flavour physics

- Excellent vertex, IP and decay-time resolution
 - σ (IP) \approx 20 μm for high- p_T tracks
 - $\sigma(\tau) \approx 45$ fs for $B_s^0 \to J/\psi\phi$ and $B_s^0 \to D_s^-\pi^+$ $\Lambda_b^0 \to \Lambda_c^+\tau^-\bar{\nu}_{\tau}$
- Very good momentum resolution
 - $\delta p/p \approx 0.5\%$ -1% for $p \in (0,200)$ GeV
 - $\sigma(m_B) \approx 24$ MeV for two-body decays
- Hadron and muon identification
 - $\varepsilon_{K \to K} \approx 95\%$ for $\varepsilon_{\pi \to K} \approx 5\%$ up to 100 GeV
 - $\varepsilon_{\mu \to \mu} \approx 97\%$ for $\varepsilon_{\pi \to \mu} \approx 1\%-3\%$
- $2 < \eta < 5$ range (LHCb acceptance): ~ $3 \times 10^4 / s b\bar{b}$ pairs@ 7 TeV ~x2 yield@ 13 TeV

Int. J. Mod. Phys. A 30(2015)153002 JINST 3(2008)S08005

Why LFUV tests with Λ_b^0 decays are interesting?

Different new physics(NP) couplings: could help to constrain NP models

NP expectations for $R(\Lambda_c^+)$ in various models

A. Datta et al.. Journal of High Energy Physics 1708 (2017) 131

	g_S only	g_P only	g_L only	g_R only	g_T only
	-0.4	0.3	-2.2	-0.044	0.4
$R(\Lambda_c)$	0.290 ± 0.009	0.342 ± 0.010	0.479 ± 0.014	0.344 ± 0.011	0.475 ± 0.037
$R^{Ratio}_{\Lambda_c}$	0.872 ± 0.007	1.026 ± 0.001	1.44	1.033 ± 0.003	1.426 ± 0.100
	-1.5 - 0.3i	0.4 - 0.4i	0.15 - 0.3i	0.08 - 0.67i	0.2-0.2i
$R(\Lambda_c)$	0.384 ± 0.013	0.346 ± 0.011	0.470 ± 0.014	0.465 ± 0.014	0.404 ± 0.021
$R^{Ratio}_{\Lambda_c}$	1.154 ± 0.008	1.040 ± 0.002	1.412	1.397 ± 0.005	1.213 ± 0.050

NP predictions with all present constraints from the meson sector

Coupling	$R(\Lambda_c)_{max}$	$R^{Ratio}_{\Lambda_c,max}$	coupling value	$R(\Lambda_c)_{min}$	$R_{\Lambda_c,min}^{Hatio}$	coupling value
g_S only	0.405	1.217	0.363	0.314	0.942	-1.14
g_P only	0.354	1.062	0.658	0.337	1.014	0.168
g_L only	0.495	1.486	0.094 + 0.538i	0.340	1.022	-0.070 + 0.395i
g_R only	0.525	1.576	0.085 + 0.793i	0.336	1.009	-0.012
g_T only	0.526	1.581	0.428	0.338	1.015	-0.005

First observation of $\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau}$ and measurement of $R(\Lambda_c^+)$ with hadronic tau decays [PRL 128(2022)191803]

Bo Fang 29/7/2024

Why LFUV tests with Λ_h^0 decays are interesting? • The spin $\frac{1}{2}$ baryonic channel is complementary to mesonic channels ($R(D^*)$...).

- SM prediction: $R(\Lambda_c^+)_{SM} = 0.324 \pm 0.004$ [PRD 99(2019)055008]
- Unique measurement to LHCb. Never searched for before!

NP predictions with all present constraints from the meson sector

Coupling	$R(\Lambda_c)_{max}$	$R^{Ratio}_{\Lambda_c,max}$	coupling value	$R(\Lambda_c)_{min}$	$R^{Ratio}_{\Lambda_c,min}$	coupling value
g_S only	0.405	1.217	0.363	0.314	0.942	-1.14
g_P only	0.354	1.062	0.658	0.337	1.014	0.168
g_L only	0.495	1.486	0.094 + 0.538i	0.340	1.022	-0.070 + 0.395i
g_R only	0.525	1.576	0.085 + 0.793i	0.336	1.009	-0.012
g_T only	0.526	1.581	0.428	0.338	1.015	-0.005

Bo Fang 29/7/2024

But different new physics(NP) couplings: could help to constrain NP models

$$R_{\Lambda_c}^{Ratio} = \frac{R(\Lambda_c)_{exp}}{R(\Lambda_c)_{SM}}$$
[JHEP 1708(2017)131]

Bo Fang 29/7/2024

$$r(\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-)$$
$$Br(\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_{\mu})$$

Searching for $\Lambda_h^0 \to \Lambda_c^+ \tau^- \bar{\nu}_\tau$ at LHCb...

- Main backgrounds
 - Prompt background from $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^- X$ decays •
 - Double charm background from $\Lambda_h^0 \to \Lambda_c^+ \{D^-, D^0, D_s^-\} X$ decays ullet
 - Feed-down background from $\Lambda_h^0 \to \Lambda_c^{*(*)} D_s^{*(*)-}$ decays •
 - Combinatorial background -> Controlled by data-based samples

Controlled by fitting $\Lambda_c^+\pi^-\pi^+\pi^$ mass distribution

[PRL 128(2022)191803]

Searching for $\Lambda_h^0 \to \Lambda_c^+ \tau^- \bar{\nu}_\tau$ at LHCb...

Extracting signal yield from 3D fit

• $q^2 (= (p_R - p_{D^{*+}})^2), t_{\tau}$ and anti- D_s BDT output

[PRL 128(2022)191803]

Signal significance: 6.1σ -> first observation of $\Lambda_h^0 \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau}$

$$K(\Lambda_c^+) = \frac{Br(\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau})}{Br(\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-)}$$
$$= 2.46 \pm 0.27(stat) \pm 0.40(syst)$$

- Using $Br(\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_{\mu}) \& Br(\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-),$ $R(\Lambda_c^+) = 0.242 \pm 0.026(stat) \pm 0.040(syst) \pm 0.059(ext)$ (SM prediction: 0.324 ± 0.004)
- ~1 σ from SM
- Could exclude some NP parameter space

Systematic uncertainties in $R(\Lambda_c^+)$ measurement

Table 1: Relative systematic uncertainties in $\mathcal{K}(\Lambda_c^+)$.

Source Simulated sample size Fit bias Signal modelling $\Lambda_b^0 \to \Lambda_c^{*+} \tau^- \overline{\nu}_{\tau}$ feeddown $D_{s}^{-} \rightarrow 3\pi Y$ decay model $\Lambda^0_b \to \Lambda^+_c D^-_s X, \ \Lambda^0_b \to \Lambda^+_c D^- X, \ \Lambda^0_b \to \Lambda^-_c X$ Combinatorial background Particle identification and trigger corre Isolation BDT classifier and vertex sele $D_s^-, D^-, \overline{D}^0$ template shapes Efficiency ratio normalization channel efficiency (mode Total uncertainty

[PRL 128(2022)191803]

$\delta \mathcal{K}(\Lambda_c^+)/\mathcal{K}(\Lambda_c^+)[\%]$
3.8
3.9
2.0
2.5
2.5
4.7
0.5
1.5
4.5
13.0
2.8
3.0
16.5

Systematic uncertainties in muonic $R(D^*)$ measurement at LHCb

TABLE I. Systematic uncertainties in the extraction of $\mathcal{R}(D^*)$.

Model uncertainties

Simulated sample size Misidentified μ template sl $\bar{B}^0 \rightarrow D^{*+}(\tau^-/\mu^-)\bar{\nu}$ form t $\bar{B} \to D^{*+}H_c (\to \mu\nu X')X$ sha $\mathcal{B}(\bar{B} \rightarrow D^{**}\tau^-\bar{\nu}_\tau)/\mathcal{B}(\bar{B} \rightarrow I$ $\bar{B} \rightarrow D^{**} (\rightarrow D^* \pi \pi) \mu \nu$ shap Corrections to simulation Combinatorial background $\bar{B} \rightarrow D^{**} (\rightarrow D^{*+} \pi) \mu^- \bar{\nu}_{\mu}$ for $\bar{B} \to D^{*+}(D_s \to \tau \nu)X$ fract Total model uncertainty

Normalization uncertainties

Simulated sample size Hardware trigger efficiency Particle identification effici Form factors

 $B(\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau)$ Total normalization uncerta Total systematic uncertaint

[<u>PRL 115(2015)111803</u>]

	Absolute size (×10 ⁻²)
	2.0
hape	1.6
factors	0.6
ape corrections	s 0.5
$D^{**}\mu^-\bar{\nu}_\mu)$	0.5
pe corrections	0.4
	0.4
shape	0.3
orm factors	0.3
tion	0.1
	2.8
s	Absolute size (×10 ⁻²)
	0.6
у	0.6
iencies	0.3
	0.2
	< 0.1
ainty	0.9
y	3.0

Systematic uncertainties in R(D) & $R(D^*)$ measurement

Internal fit uncertainties	$\sigma_{\mathcal{R}(D^*)}(imes 10^{-2})$	$\sigma_{\mathcal{R}(D)}(imes 10^{-2})$	Correlation
Statistical uncertainty	1.8	6.0	-0.49
Simulated sample size	1.5	4.5	
$B \rightarrow D^* D X$ template shape	0.8	3.2	
$B^0 \to D^{*+} \ell^- \overline{\nu}$ form-factors	0.7	2.1	
$\overline{B} \to D^{**} \mu^- \overline{\nu}_{\mu}$ form-factors	0.8	1.2	
$\mathcal{B} (B \to D^* D_s (\to \tau \nu) X)$	0.3	1.2	
MisID template	0.1	0.8	
$\mathcal{B} \ (\overline{B} \to D^{**} \tau^- \overline{\nu}_\tau)$	0.5	0.5	
Combinatorial	< 0.1	0.1	
Resolution	< 0.1	0.1	
Additional Model Uncertainty	$\sigma_{\mathcal{R}(D^*)}(\times 10^{-2})$	$\sigma_{\mathcal{R}(D)}(\times 10^{-2})$	
$B \rightarrow D^{(*)}DX$ model uncertainty	0.6	0.7	
$\overline{B} \to D_s^{**} \mu^- \overline{\nu}_\mu$ model uncertainty	0.6	2.4	
Data/simulation corrections	0.4	0.75	
Coulomb correction to $\mathcal{R}(D^{*+})/\mathcal{R}(D^{*0})$	0.2	0.3	
misID template unfolding	0.7	1.2	
Baryonic backgrounds	0.7	1.2	
Normalization Uncertainties	$\sigma_{\mathcal{R}(D^*)}(\times 10^{-2})$	$\sigma_{\mathcal{R}(D)}(\times 10^{-2})$	
Data/simulation corrections	$0.4 imes \mathcal{R}(D^*)$	$0.6 \times \mathcal{R}(D)$	
$\tau^- \to \mu^- \nu \overline{\nu}$ branching fraction	$0.2 imes \mathcal{R}(D^*)$	$0.2 imes \mathcal{R}(D)$	
Total uncertainty	3.0	8.9	-0.43

[PRL 131(2023)111802]

Comparison between measuring $R(D^*)$ by using $\tau \to \mu \bar{\nu} \nu$ and $\tau \to 3\pi (\pi^0) \nu$

 $\tau \to \mu \bar{\nu} \nu$

- Advantage
 - Direct normalisation from identical (visible) final state
- Disadvantage
 - Background from many different sources and hard to suppress

 $\tau \rightarrow 3\pi(\pi^0)\nu$

- Advantages
 - Can reconstruct τ vertex from three pion tracks, higher purity
 - Three pion dynamics help to distinguish signal from main physical background
 - No normal semileptonic background
- Disadvantage
 - Need external input to normalise