

Partial wave analysis framework TF-PWA and related analysis

Yi Jiang (蒋艺) University of Chinese Academy of Sciences (中国科学院大学)

Jul 30, 2024, YanTai

Outline

- Introduction
- TF-PWA
 - Basic framework
 - Custom model in TF-PWA
 - Automatic Differentiation
 - Performances of TF-PWA
- Analysis using TF-PWA in LHCb
 - $B^+ \rightarrow D^{*\pm} D^{\mp} K^+$
- Summary

Introduction

- Amplitude analysis / Partial wave analysis (PWA) is a powerful method to study multi-body decay processes, e.g.
 - to search for (exotic) resonances and measure their properties
 - to understand CP violation over phase space
- Most of previous fitters are designed for special processes or are time-consuming.
- A general PWA framework using modern acceleration technology (such as GPU, AD, ...) is eagerly needed.

TF-PWA: Partial Wave Analysis with TensorFlow

• Fast

- General
- Easy to use

- GPU based
- Vectorized calculation
- Automatic differentiation Quasi-Newton Method: scipy.optimize
- Custom model available
- Simple configuration file (example provided)
- Most of the processing is automatic
- All necessary functions implemented
- Developing more functions
- Open access and well supported https://github.com/jiangyi15/tf-pwa

4

Configuration as global representation

Configuration

- What is needed?
 - Particles (Resonances, line) and their properties
 - Decays (interaction, vertex) and their properties
- Store in dict or list, save as YAML file.
- Possible process in $B^+ \to D^{*\pm}D^{\mp}K^{\pm}$

YAML: https://yaml.org

Auto calculated by TF-PWA, Only required the 4-monmenta

TF-PWA also provide reverse process: Mass + helicity angle -> 4-monmenta \vec{p}_B^A means momentum of B in the rest frame of A ϕ means the rotation is anticlockwise, while $-\phi$ for clockwise The sign is dependent on data

3D model generated by a <u>script</u> using TF-PWA.

Custom Model

Line: R(M;a) = M + a

```
from tf_pwa.amp import register_particle
from tf_pwa.amp import Particle
```

```
@register_particle("Line")
class LineModel(Particle):
```

```
def init params(self): # define parameters
 self.a = self.add var("a")
```

```
def get_amp(self, *args, **kwargs):
  """ model as m + a """
  # write code with TF
 m = args[0]["m"]
  zeros = tf.zeros_like(m)
  return tf.complex(m + self.a(), zeros)
```

Define a custom model is simple.

```
H_{[\lambda_R\lambda_B]}(x;\vartheta)D_{[\lambda_A,\lambda_R-\lambda_B]}^{j_A\star}(x)R(x;\vartheta)H_{[\lambda_C,\lambda_D]}(x;\vartheta)D_{[\lambda_R,\lambda_C-\lambda_D]}^{j_R\star}(x)D_{[\lambda_R,\lambda_R']}^{j_B\star}(x)D_{[\lambda_C,\lambda_C']}^{j_C\star}(x)D_{[\lambda_D,\lambda_D']}^{j_D\star}(x) \to A_{[\lambda_A,\lambda_B',\lambda_C',\lambda_D']}(x;\vartheta)
```

 $\lambda_{[RB][ARB][][CD][RCD][BB'][CC'][DD'] \rightarrow [AB'C'D']$ The shape is (number of events,), type is complex128 *x*: all data, (*args, **kwargs) $R(x; \vartheta)$

 ϑ : all parameters (self.a , …)

here the data, (*args, **kwargs) is passed from DecayChain.

For convenience, different data will be divided into different parts to pass to get_amp(self, *args, **kwargs)

The parameters are directly defined in the class, and the values are obtained from VarsManager.

Use register particle to register it, then it can be used in config.yml

Implement of theoretical model

- Interpolation
 - Use for mass dependent model
 - Linear interpolation model
 - "linear_txt"
 - Input point by point values
 - Point position
 - Real parts
 - Image parts
 - Fast evaluation without writing TF code
 - For example, Dispersion integral
- All value in input data
 - If model if much more complex, not only mass dependent
 - One can calculate the value for all data first and input with data
 - For example, Triangle Singularity

11 points leaner interpolation of exp(5im)

Automatic Differentiation(AD)

- Widely used in Optimization problem
 - Calculate gradient automatically
 - No need for exact formula.
 - Recorded the computation graphs.
 - Operator: function used (sin, g)
 - Intermediate value: $(z=1^1)$
 - Mostly matrix form (Jacobian).
 - Just combine the operator (Chain Rules)

• Chain Rules

• X:
$$\frac{\partial f(g(x))}{\partial x_i} = \frac{df}{dg} \times \frac{\partial g}{\partial x_i}$$

• +: $\frac{\partial f(h(x), g(x))}{\partial x_i} = \frac{\partial f}{\partial h} \frac{\partial h}{\partial x_i} + \frac{\partial f}{\partial g} \frac{\partial g}{\partial x_i}$

The same rule-based method as our amplitude calculation.

$$f = \sin(x^{x}) = \sin(z), z = x^{x}$$

$$g(a, b) = a^{b}$$
Automatic Differentiation (numerically):
$$\frac{df}{dx}(1) = \frac{df}{dz}(1^{1})[\frac{\partial g}{\partial a}(1, 1) + \frac{\partial g}{\partial b}(1, 1)] = 0.5403$$
backward

AD in amplitude fit

- Minimize of $-\ln L(\vartheta)$
 - $-\frac{\partial \ln L}{\partial \vartheta}$ is the steepest descent direction, used by most of optimizer
 - Error matrix $V_{ij} = \left[-\frac{\partial^2 \ln L}{\partial \vartheta_i \partial \vartheta_j} \right]^{-1}$ can also be estimated though AD
 - AD advantage:
 - Automatic.
 - Fast estimation: Time cost for eval $-\ln L(\vartheta)$ and $-\frac{\partial \ln L}{\partial \vec{\vartheta}}$ are on the same level.
 - Accurate gradient: more stable results.
 - AD disadvantage:
 - Require well defined gradients (continuous).
 - Avoid step function, delta function.
 - Only support function with predefined gradients.
 - Use TensorFlow only, but also have an interface to define functions.
 - Large (GPU) memory cost for recording intermediate values.
 - Split data into small batches (discuss later).

AD for error propagation

- Error propagation
 - $\sigma_y^2 = \frac{\partial y}{\partial x} \sigma_x^2 \frac{\partial y}{\partial x}$, $\frac{\partial y}{\partial x}$ can be calculated by AD
 - Simple interface (see right)
 - Example: uncertainties of fit fractions in TF-PWA
- Advance usage
 - Define function with gradient
 - AD + some part of numerical function
 - $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial h} \frac{\partial h}{\partial x}$, numerical: $\frac{\partial g}{\partial x} = \frac{g(x + \Delta x) g(x \Delta x)}{2\Delta x}$
 - Example: Obtain pole mass in TF-PWA (a iteration process)
 - Systematic uncertainties of fixed parameters (fixed mass and width)
 - $-\ln L = -\ln L(\vartheta, z)$, ϑ : fit parameters, *z*: fixed parameters
 - Minimum condition as implicit function

•
$$-\frac{\partial \ln L}{\partial \vartheta} = 0 \Rightarrow \frac{\partial \vartheta_i}{\partial z} = -\left[\frac{\partial^2 \ln L}{\partial \vartheta_i \partial \vartheta_j}\right]^{-1} \frac{\partial^2 \ln L}{\partial \vartheta_j \partial z}$$

with config.params_trans() as pt: # g1 is fixed to 1 g2_r = pt["Lmdc->piz.Sigma(1385)p_g_ls_1r"] g2_phi = pt["Lmdc->piz.Sigma(1385)p_g_ls_1i"] alpha = 2*g2_r*tf.cos(g2_phi) / (1+g2_r*g2_r) print(alpha, pt.get_error(alpha))


```
decay = config.get_decay()
p = decay.get_particle("Sigma(1385)p")
with config.params_trans() as pt:
    pole = p.solve_pole()
    re = tf.math.real(pole)
    im = tf.math.imag(pole)
print((re, im), pt.get_error((re,im)))
```

AD in Large size of data

- Basic Log-Likelihood function
 - $\ln L(\vartheta) = \sum \ln \left[(1 f_2) \frac{P_1(x;\vartheta)}{\int P_1(x;\vartheta) dx} + f_2 \frac{P_2(x;\vartheta)}{\int P_2(x;\vartheta) dx} \right]$
 - $I_i = \int P_i(x) dx \approx \sum \omega_j P_i(x_j)$
 - Required recording all $P_i(x_j)$ and intermediate values before gradients evaluations.
- Split large data into small batches (only record value in a small batch)

•
$$\ln L(\vartheta) \Rightarrow \ln L(\vartheta; I_i)$$

• $\frac{\partial \ln L(\vartheta)}{\partial \vartheta} \Rightarrow \frac{\partial \ln L(\vartheta; I_i)}{\partial \vartheta} + \sum_i \frac{\partial \ln L(\vartheta; I_i)}{\partial I_i} \frac{\partial I}{\partial \vartheta}$
• $\frac{\partial I_i}{\partial \vartheta} = \frac{\partial [\sum \omega_j P_i(x_j)]}{\partial \vartheta} + \frac{\partial [\sum \omega_j P_i(x_j)]}{\partial \vartheta} + \cdots$
Batch 1 Batch 2

• Expand the power of AD to multi GPU, even multi cluster

Example: fit results of $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$

- $\Lambda_c^+ \to \Lambda(\to p\pi^-)\pi^+\pi^0$
 - Simultaneous fit
 - 7 energy points
 - Total around 10k events, 854k MC
 - 38 free parameters
 - Dominated by $\Lambda_c^+ \rightarrow \Lambda \rho$: 57.2 ± 4.2%
 - Clear peak for $\Lambda_c^+ \to \pi \Sigma(1385)$

Plot thought TF-PWA with simple config.yml <u>All decay chains will be added automaticly</u>

plot: mass: Sigma_star0: # name in page 6 display: "\$M_{\\Lambda\\pi^{0}}\$" bins: 30 range: [1.2, 2.2] legend: False

Different preprocess

- Implement with different ways for amplitude
- Option in config.yml: data: preprocessor and amp_model

options	pre-process	amplitude
default	$p^{\mu} \rightarrow m, angle$	$c_i f_i(m) T_i(angle)$
cached_amp	$p^{\mu} \rightarrow m, angle, T_i$	$c_i f_i(m) T_i$
cached_shape	$p^{\mu} \to m, angle, T_i$	$c_i f_i(m) T_i$
	$f_j T_j$	$c_j f_j T_j$
p4_directly	p^{μ}	$p^{\mu} \rightarrow m, angle$
		$c_i f_i(m) T_i(angle)$

Table 1: Calculation in the two parts

data	memory requirement for one event	
p^{μ}	4 N(particles) N(particles)	
m		
angle	6 N(chain) N(decay in one chain)	
	3 N(chain) N(final particles)	
$f_i T_i, T_i$	N(partial waves)N(helicity combination)	

Table 2: Memory requirement for one event

data:

preprocessor: cached_shape
amp_model: cached_shape

$B^+ \rightarrow D^{*\pm} D^{\mp} K^+$

$B^+ \to D^{*\pm} D^{\mp} K^+$

- $B^+ \to D^{*\pm} D^{\mp} K^+$: two channels
 - $B^+ \rightarrow D^{*-}D^+K^+$
 - $B^+ \rightarrow D^{*+}D^-K^+$
- Possible resonances:
 - $D^{*\pm}D^{\mp}[c\bar{c}d\bar{d}]$: charmonium(-like)
 - 3.9 ~ 4.8 GeV
 - Normal charmonium
 - $\psi(4040), \psi(4160), \chi_{c2}(3930), \chi_{c1}(4274) \cdots$
 - Charmonium(-like) states
 - $\chi_{c1}(3872)$ (aka X(3872)), $Z_c(3900)$, X(4020), $Z_c(4430)$, ...
 - $D^{(*)-}K^+[\bar{c}\bar{s}ud]$: $T^*_{cs0}(2870)^0$ (aka X₀(2900)), $T^*_{cs1}(2900)$ (aka X₁(2900))
 - Found in $B^+ \to D^+ T^*_{cs0,1} (\to D^- K^+)$ PRL 125 (2020) 242001, PRD 102 (2020) 112003
 - $D^{(*)+}K^+[c\bar{s}u\bar{d}]:T^*_{c\bar{s}0}(2900)^{++}$
 - Found in $B^+ \to D^- T^*_{c\bar{s}0}(2900)^{++} (\to D^+_s \pi^+)$ PRL 131 (2023) 041902, PRD 108 (2023) 012017

C-parity relation

- Used to constrains $R^0 \to D^{*-}D^+$ and $R^0 \to D^{*+}D^-$
 - $A^{R^0 \to D^{*-}D^+} = C_R A^{R^0 \to D^{*+}D^-}$
 - C_R is the C parity of R
- Effect of this relation
 - Two contribution with the same J^P
 - $R_1(C = +1)$ and $R_2(C = -1)$
 - For $B^+ \to R(\to D^{*+}D^-)K^+$
 - $|A|^2 = |A_1 + A_2|^2 = |A_1|^2 + |A_2|^2 + 2Re(A_1A_2^*)$
 - For $B^+ \to R(\to D^{*-}D^+)K^+$
 - $|A'|^2 = |A_1 A_2|^2 = |A_1|^2 + |A_2|^2 2Re(A_1A_2^*)$
 - $|A|^2 |A'|^2 = 4Re(A_1A_2^*)$
 - Only the interference can contribute to the difference of two channel

Implement with custom model in TFPWA

- Create new model based on original model
 - Simple inherited with original model
 - Override related parts

```
from tf_pwa.amp.core import register_particle, get_particle_model
```

```
def create_model(name): # common function to create new model
    cls = get_particle_model(name) # find the particle model with name
```

```
@register_particle("C({})".format(name)) # register with "C(name)"
class _NewClass(cls): # inherited form original model
    def get_amp(self, data, data_d, all_data=None, **kwargs): # override amplitude calculation
    d = all_data.get("c",1) # D*+D- or D*-D+
    if self.C == 1: # C parity is 1, use the same model
        return super().get_amp(data, data_d, all_data=None, **kwargs)
    else: # C parity is -1, use amp for D*+D- and -amp for D*-D+
        amp = super().get_amp(data, data_d, all_data=None, **kwargs)
        return tf.where(d >0, amp, -amp)
# other cases: DK, D*K ...
```

create_model("BWR") # create new model "C(BWR)" for "BWR"

Charmuinon(-like) states

- Large difference in 3.9 4.0 GeV
 - $T^*_{cs0,1}$ is small in that range, do not expect large effect
 - Large difference due to C-parity

LHCb-PAPER-2023-047

Distribution of difference

- Difference
 - Require two new states with different C-parities
 - Prefer 1⁺ contribution in angular distribution.
- Reference fit w/o new states (green dotted)
 - Bad Fit quality
 - Required new states
- Add two states around 4.0 GeV
 - Similar mass as $T_{c\bar{c}}(4020)[1^{+-}](aka X(4020), Z_c(4025))$
 - $h_c(4000)[1^{+-}]$: much larger width than $T_{c\bar{c}}(4020)$
 - $\chi_{c1}(4010)[1^{++}]$: different C-parity than $T_{c\bar{c}}(4020)$

	<i>h</i> _c (4000)	$\chi_{c1}(4010)$	$T_{c\overline{c}}(4020)$
J^{PC}	1+-	1 ^{+ +}	1+-
mass/MeV	4000^{+17+29}_{-14-22}	$4012.5^{+3.6+4.1}_{-3.9-3.7}$	$4025^{+2.0}_{-4.7} \pm 3.1$
width/MeV	184_{-45-61}^{+71+97}	$62.7^{+7.0+6.4}_{-6.4-6.6}$	$23.0 \pm 6.0 \pm 1.0$
			PRL 115 (2015) 182

LHCb-PAPER-2023-047

T_{cs0}^* (2870)⁰ and T_{cs1}^* (2900)⁰

PRL 125 (2020) 242001, PRD 102 (2020) 112003

- Previous work
 - $B^+ \rightarrow X D^+, X \rightarrow D^- K^+$
 - $B^+ \to T^*_{cs0}(2870)^0 D^+$: S wave
 - $B^+ \to T_{cs1}^{*}(2900)^0 D^+$: only P wave
- New production mode
 - $B^+ \rightarrow X D^{*+}, X \rightarrow D^- K^+$
 - $B^+ \to T^*_{cs0}(2870)^0 D^{*+}$: P wave
 - $B^+ \to T^*_{cs1}(2900)^0 D^{*+}$: S, P, D waves
- Different ratios of branching factions

	$B^+ \to D^{*+} D^- K^+$	$B^+ \to D^+ D^- K^+$
$B(B^+ \to T^*_{cs0}(2870)^0 D^{(*)+})$	1 17 + 0 31 + 0 48	0.18 ± 0.05
$\overline{B(B^+ \to T^*_{cs1}(2900)^0 D^{(*)+})}$	1.17 - 0.51 - 0.10	0.10 - 0.05

• Mass and width consistent within uncertainties

Summary

- TF-PWA
 - Convenient configuration, general proposed
 - Easy to implement new models
 - Use powerful AD in fitting and error propagation.
 - Provide options to achieve high performance
- $B^+ \rightarrow D^{*\pm} D^{\mp} K^+$
 - C-parity relation
 - Observe new charmonium(-like) states
 - Confirm $T^*_{cs0}(2870)^0$, $T^*_{cs1}(2900)^0$ in new production mode

Thank you for your attentions!

 \bullet

Topology of decay chain

• Define

- All combination of final particles
- Same
 - Topo: (D, E), (C, D, E)
 - A->R1 +B ,R1 -> R2 + C, R2 -> D + E
 - A->R3 +B ,R4 -> R5 + C, R5 -> D + E
- Not same
 - Topo: (B, C), (D, E)
 - A->R6 +R7 ,R6 -> B + C, R7 -> D + E

Implements

- Class structure
 - Two main method
 - init_params()
 - Define fit parameters
 - get_amp(data) -> amp
 - pass data to substructures
 - Use fit parameters and data to calculate amplitude
- Einstein summation convention
 - $A_{abdf} = \sum_{c} A_{abc} A_{cdf}$: $abc, cdf \rightarrow abdf$
 - The index for each decay is well-known: the helicity of final particles.
 - Use in **Decay Chain**, combine all parts together.
- Global model list
 - register_particle(name)
 - Write model into a global list
 - New model can inherit from origin model
 - build with YAML
 - use the name to find it, and create with args.

probability: $|\mathcal{A}|^2$ Decay Group: $\mathcal{A} = \tilde{A}_1 + \tilde{A}_2 + \cdots$ Decay Chain: $\tilde{A} = A_1 R A_2 \cdots$ Decay: Wigner D-matrix, $A = HD^{*J}(\phi, \theta, 0)$ Particle: Breit-Wigner: R(m), user defined

Amplitude as a function

- Reverse process of angle calculation
 - Mass + Helicity angle -> 4- momenta
 - $(m_0, \phi_0, \theta_0, m_{12}, \phi_{12}, \theta_{12}) \xrightarrow{\text{transform}} p_1^{\mu}, p_2^{\mu}, p_3^{\mu}$
- Factor system:
 - Eval amplitude of special partial wave though control of parameters
 - $A(p_1^{\mu}, p_2^{\mu}, p_3^{\mu}) \xrightarrow{g_{i\neq j}=0} g_i A_i(p_1^{\mu}, p_2^{\mu}, p_3^{\mu})$
- Combine Together: Lineshape function of special wave
 - Set angle to 0, $D_{m,m'}(0,0,0) = \delta_{m,m'}$ is constant.
 - Vary mass, then get the shape of masses
 - $f(m_{12}) = g_i A_i(m_0, \phi_0 = 0, \theta_0 = 0, m_{12}, m_{12}, \phi_{12} = 0, \theta_{12} = 0)$
 - No worries for the complex formula
- 2D function of amplitude
 - 2D plot Dalitz variables
 - 2D plot of Mass and $\cos \theta$

f1 = config.get_particle_function("R1")
f2 = config.get_particle_function("R2")
m = f1.mass_linspace(1000)
plot the first wave
amp = tf.abs(f1(m)[:,0] + f2(m)[:,0])**2
plt.plot(m, amp)

Uncertainties from error propagation

Process of data

- Input
 - p_i^{μ} of final particles directly
 - dat_order is the order of p_i^{μ}
 - data, phsp (and bg) are used for input data files
 - plain text file for p_i^{μ} (E px py pz)
 - Additional information
 - Suffix for data, phsp (and bg)
 - Weight for weights
 - Charge for charges
 - ...
 - Support number for all events or a file for each events
- Preprocess:
 - Automatic angle calculation
 - Tree traversal for data structure
 - Euler angle from coordinates defined by momentums
 - With alignment angle (see backup)
 - Use topology structure to reduce costs of memory

data:	
dat_or	der: [B, C, D]
data:	[data.dat]
phsp:	[phsp.dat]

Algorithm 1: Automatic angle calculation			
I	Input: initial coordinate axis $\vec{z_0}$ and $\vec{y_0}$,		
	momentum after a chain boost		
0	Dutput: angle θ, ϕ of all particles		
1 S	et initial particle data: $\{(\vec{z_0}, \vec{y_0}), L_0 = 1\}$		
2 f	or decay from top to finals (pre-order		
	traversal) do		
3	for particles a that product though decay		
	do		
4	boost p_a^{μ} to the rest frame of the decay.		
5	end		
6	for k -th out particle (b) in the decay do		
7	$\{(\vec{z_0}, \vec{y_0}) L_0\}$ is data for input particle.		
8	\vec{p} is the direction of b in the rest frame.		
9	$ec{z}=ec{p}/ec{p}ec{,}ec{y}=ec{z_0} imesec{z}/ec{z_0} imesec{z}ec{.}$		
10	$\qquad \qquad ext{output: } heta = rccos(ec{z_0} \cdot ec{z}).$		
11	set the range of ϕ to $[-k\pi, 2\pi - k\pi]$,		
12	output: $\phi = \operatorname{atan2}(\vec{z_0} \cdot (\vec{y_0} \times \vec{y}), \vec{y_0} \cdot \vec{y}).$		
13	if mass of b is not 0 then		
14	$\omega = anh^{-1}(1/\sqrt{1-p^2/E^2})$		
15	else		
16	$\omega = \sinh^{-1}((E^2 - 1)/(2E))$		
17	end		
18	$L = B_z(\omega)R_y(\theta)R_z(\phi)L_0.$		
19	set particle <i>b</i> data: $\{(\vec{z}, \vec{y}), L\}$		
20	end		
21 end			
22 f	or k -th final particle do		
23	$L = L_{{ m ref},k}L_k^{-1}$		
24	$\alpha = \arg L_{22} - \arg L_{21}$		
25	$eta = \cos^{-1}(L_{11}L_{22} + L_{21}L_{21})$		
26	$\gamma = \arg L_{22} + \arg L_{21}$		
27 e	nd		

Formula of Resolution

- Detector: Combine effect of resolution and efficiency
- An event x was detected as y with probability
 - $p(x \to y) = \epsilon_x(x) R_x(x \to y)$
- The real probability of y: $p(y) = \int |A|^2(x)p(x \to y)dx$

$$\epsilon_{y}(y) = \int \epsilon_{x}(x)R_{x}(x \to y)dx, R_{y}(x \to y) = \frac{p(x \to y)}{\epsilon_{y}(y)}$$
$$p(y) = \int |A|^{2}(x)p(x \to y)dx = \epsilon_{y}(y)\int |A|^{2}(x)R_{y}(x \to y)dx$$

- $\epsilon_y(y)$ can be obtained by Phase Space MC. The distribution of reconstructed variables
- $R_y(x \rightarrow y)$ in normalize probability function that y from all possible x.
- Use $R_y(x \to y)$ to do the convolution,
 - Use phase space MC for flat x, then $R_y(x \to y)$ is the projection of p(x, y) with fixed y
 - Normalized $\int R_y(x \to y) dx = 1$.
- Use MC truth to do the integration
 - $\int |A|^2(x) \int \epsilon_y(y) R_y(x \to y) dy dx = \int |A|^2(x) \epsilon_x(x) dx.$

Alignment angle in TFPWA for helicity formula

Boost: $B_z(\omega)$, Rotation: $R_z(\phi)$, $R_y(\theta)$

For final state $|out\rangle = |p_1\rangle \otimes |p_2\rangle \otimes |p_3\rangle$, choose a single particle state $|p_1\rangle$. The final state define in $0 \rightarrow R, 2; R \rightarrow 1, 3$:

$$\begin{split} |p_1\rangle_R &= B_z(\omega_1)R_z(0)R_y(\theta_1)R_z(\phi_1)|p_1\rangle = L_1|p_1\rangle \\ |p_1\rangle_1 &= B_z(\omega_2)R_z(0)R_y(\theta_2)R_z(\phi_2)|p_1\rangle = L_2|p_1\rangle_R \\ \end{split}$$
 On the other decay chain $0 \to R', 3; R' \to 1, 2;$

$$|p_{1}\rangle_{R'} = B_{z}(\omega_{1}')R_{z}(0)R_{y}(\theta_{1}')R_{z}(\phi_{1}')|p_{1}\rangle = L_{1}'|p_{1}\rangle |p_{1}\rangle_{2} = B_{z}(\omega_{2}')R_{z}(0)R_{y}(\theta_{2}')R_{z}(\phi_{2}')|p_{1}\rangle = L_{2}'|p_{1}\rangle_{R'}$$

The finals state is the rest frame, so no boost remained. The alignment angle is the rotation

 $|p_1\rangle_2 = L_r |p_1\rangle_1 = R_z(\gamma)R_y(\beta)R_z(\alpha)|p_1\rangle_1$

So

$$L_r = R_z(\gamma)R_y(\beta)R_z(\alpha) = L'_2L'_1L_1^{-1}L_2^{-1}$$

In general

$$L_r = L_a L_b^{-1} = \left(\prod_i L_{n-i}'\right) \left(\prod_j L_j^{-1}\right)$$

choose SU(2) representation as

$$\omega = \operatorname{arccosh} \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \qquad B_z(\omega) = \begin{pmatrix} e^{-\frac{\omega}{2}} & 0\\ 0 & e^{\frac{\omega}{2}} \end{pmatrix}, R_z(\phi) = \begin{pmatrix} e^{-\frac{i\phi}{2}} & 0\\ 0 & e^{\frac{i\phi}{2}} \end{pmatrix}, R_y(\theta) = \begin{pmatrix} \cos\frac{\beta}{2} & -\sin\frac{\beta}{2}\\ \sin\frac{\beta}{2} & \cos\frac{\beta}{2} \end{pmatrix}$$

$$L_{ab} = R_z(\gamma)R_y(\beta)R_z(\alpha) = \begin{pmatrix} \cos\frac{\beta}{2}e^{-\frac{i(\alpha+\gamma)}{2}} & -\sin\frac{\beta}{2}e^{\frac{i(\alpha-\gamma)}{2}} \\ \sin\frac{\beta}{2}e^{-\frac{i(\alpha-\gamma)}{2}} & \cos\frac{\beta}{2}e^{\frac{i(\alpha+\gamma)}{2}} \end{pmatrix}$$

$$\cos \beta = \cos^2 \frac{\beta}{2} - \sin^2 \frac{\beta}{2} = L_{11}L_{22} + L_{12}L_{21}, \beta \in [0, \pi]$$

$$\alpha + \gamma = -2 \arg L_{11} = 2 \arg L_{22}, \alpha - \gamma = -2 \arg L_{12} = -2 \arg L_{21}$$

$$|L_{ab}| = 1$$
 $L_{ab}^{-1} = \begin{pmatrix} L_{22} & -L_{12} \\ -L_{21} & L_{11} \end{pmatrix}$

Simple AD implement

• backward AD
Var a = Var(3.1415926);
auto b = SinOp(&a);
auto c = AddOp(&a, &b);
c.backward(1.0);
std::cout<< a.grad;</pre>

```
x + sin x
grad(Add, Var)
grad(Var, x)
+grad(Add, sin(x))
grad(sin(x), Var)
grad(Var, x)
```

};

Output: 1.44329e-15 $\approx 1 + \cos \pi$

- 1. have to use defined Op
- 2. caching forward results,
 - 1. improve the speed
 - 2. more memory required

3. Vectorized:

- 1. single operator, multiple data
- 2. optimized for linear algebra

```
#include<cmath>
#include<vector>
class Op {
    public: std::vector<Op*> inputs;
    virtual double forward() = 0;
    virtual void backward(double grad=1) = 0;
};
class Var: public Op {
    public: double value, grad;
    Var(double value): value(value), grad(0.) {inputs={};};
    double forward() override { return value;}
    void backward(double grad=1) override {
         this->grad += grad;}
};
class SinOp: public Op {
public: SinOp(Op* input) {inputs = {input};};
    double forward() override {
         return sin(inputs[0]->forward());}
    void backward(double grad=1) override {
        inputs[0]->backward(grad * cos(inputs[0]->forward()));
};
class AddOp: public Op {
     public: AddOp(Op* x, Op* y) {inputs = {x, y};};
     double forward() override {
        return inputs[0]->forward() + inputs[1]->forward(); }
     void backward(double grad=1) override {
        inputs[0]->backward(grad);
        inputs[1]->backward(grad);
                                                     33
```

Likelihood formula

- Option in config.yml:data: model
- Default
 - $-\ln L = -\sum_{i \in data} w_i \ln |A|^2 (x_i) + (\sum_{i \in data} w_i) \ln I_{sig}$ • $I_{sig} = \frac{\sum_{j \in MC} \omega_j |A|^2 (x_j)}{\sum_{j \in MC} \omega_j}$
 - bg will be merged into data with -weights
- cfit:
 - Additional information data:
 - bg_value for value of bg
 - Additional config
 - bg_frac: f_{bg}

•
$$-\ln L(\vartheta) = -\sum_{i=1}^{n} \ln \left[(1 - f_{bg}) \frac{|A|^2(x;\vartheta)}{I_{sig}} + f_{bg} \frac{B(x;\vartheta)}{I_B} \right]$$

data:
dat_order: [B, C, D]
data: [data.dat]
bg: [bg.dat]
bg_weight: 0.1
phsp: [phsp.dat]

data:	
dat_order: [B, C, D]	
model: cfit	
bg_frac: 0.1	
data: [data.dat]	
<pre>data_bg_value: [data_bgv.dat]</pre>	
phsp: [phsp.dat]	
<pre>phsp_bg_value: [phsp_bgv.dat]</pre>	

Other option affecting fit time

- Bacth size : config.fit(batch=n)
 - Batch for calculating gradient
 - Large is better but required large memory
- tf.function: use_tf_function
 - Compile function to reduce python operation
 - Add no_id_cached: True when use lazy_call
 - Additional jit_compile
 - Required addition memory and setup time
- Grad scale: config.fit(grad_scale=x)
 - Can reduce iterations to best minimal

Batch for Hessian

•
$$\frac{\partial \ln L(\vartheta)}{\partial \vartheta} = \frac{\partial \ln L(\vartheta,I)}{\partial \vartheta} + \frac{\partial \ln L(\vartheta,I)}{\partial I} \frac{\partial I}{\partial \vartheta}$$

•
$$\frac{\partial^2 \ln L(\vartheta)}{\partial \vartheta \partial \vartheta} = \left[\frac{\partial^2 \ln L(\vartheta,I)}{\partial \vartheta \partial \vartheta} + \frac{\partial^2 \ln L(\vartheta,I)}{\partial \vartheta \partial \vartheta} \frac{\partial I}{\partial \vartheta}\right] + \left(\frac{\partial^2 \ln L(\vartheta,I)}{\partial I \partial \vartheta} \frac{\partial I}{\partial \vartheta} + \frac{\partial^2 \ln L(\vartheta,I)}{\partial I \partial \vartheta} \frac{\partial I}{\partial \vartheta}\right) + \frac{\partial \ln L(\vartheta,I)}{\partial I} \frac{\partial^2 I}{\partial \vartheta \partial \vartheta}$$

• Step1: eval $\left(I, \frac{\partial I}{\partial \vartheta}, \frac{\partial^2 I}{\partial \vartheta \partial \vartheta}\right)$ in small batch
• Step2: eval $\left(\ln L(\vartheta'), \frac{\partial \ln L(\vartheta')}{\partial \vartheta \partial \vartheta}, \frac{\partial \ln L(\vartheta')}{\partial \vartheta'}, \frac{\partial \ln L(\vartheta')}{\partial \vartheta'}, \frac{\partial \ln L(\vartheta')}{\partial \vartheta' \partial \vartheta'}\right)$ in small batch
• Here: $\vartheta'_i = (\vartheta_i, I), \frac{\partial \vartheta'_i}{\partial \vartheta_j} = \left(\delta_{ij}, \frac{\partial I}{\partial \vartheta_j}\right)$
• Step3:
$$\frac{\partial^2 \ln L(\vartheta)}{\partial \vartheta_i \partial \vartheta_j} = \frac{\partial^2 \ln L(\vartheta')}{\partial \vartheta'_k \partial \vartheta'_l} \frac{\partial \vartheta'_k}{\partial \vartheta_i} \frac{\partial \vartheta'_l}{\partial \vartheta_j} + \frac{\partial^2 \ln L(\vartheta')}{\partial I} \frac{\partial^2 I}{\partial \vartheta_i \partial \vartheta_j}$$

Real analysis performance

Environment: NVIDIA RTX 3080 TensorFlow 2.2 CUDA 10.1

- Optimized method in Factor System page
 - Caching method
 - Large time for caching
 - required more memory
 - limited to special cases
 - All the process is automatic (from config.yml to all basic results)

Factor system: automatic factorization of amplitude

• Amplitude can be written as the combination of summation and production.

$$A = (\sum g_i A_i) (\sum g'_j A'_j) \dots \Rightarrow A = \sum_{ij} (g_i g'_j) (A_i A'_j)$$
$$G_{(i,j)} = g_i g'_j = \begin{cases} 1 & i, j = (a, b) \\ 0 & i, j \neq (a, b) \end{cases} \Rightarrow A = B_{(i,j)} = A_i A'_j$$

- No need known for the exact formula A_i , just use the parameters g_i .
- Some special treatment is implemented as option for better performances. (comparing in Page 21)
 - Amplitude caching method Allow fit parameters related
 - mass dependent:

$$A(p_i^{\mu}) = \sum g_i R(m) A_i(p_i^{\mu}) \Rightarrow A(m) = \sum g_i R(m) B_i$$

- factor only: (only for MC integration)
 - $\sum |A|^2 \to G_i G_j^* (\sum C_{ij})$ calculate only once
 - Required all shape parameters fixed
- Special in simultaneous fit
 - Mixed likelihood, avoid small size data

$$-\ln L_1 - \ln L_1 = -\sum_{data1+data2} \ln |A|^2 + N_1 \ln \sum_{mc1} |A|^2 + N_2 \ln \sum_{mc2} |A|^2$$

Add control options, base on the same structure, we can extract it automatically