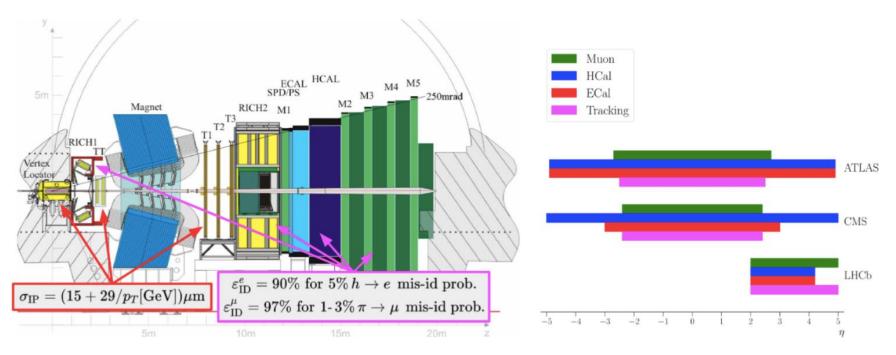


Recent W/Z precision measurements @LHCb

Jianqiao Deng

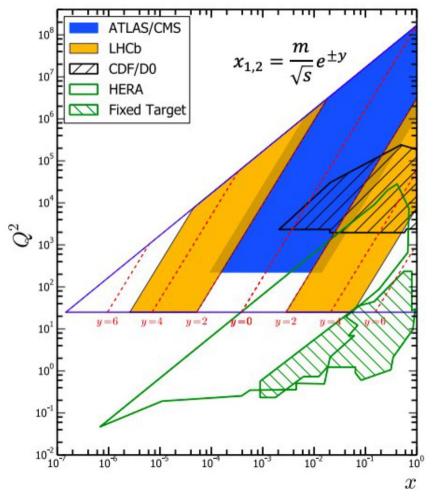
LHCb前沿物理研讨会


2024年7月30日

LHCb detector

Single-arm forward spectrometer with 2 < η < 5; coverage is complementary to ATLAS and CMS; extended to EW measurements: excellent performance tracking and muon detector

JIST 3 (2008) S08005 Int. J. Mod. Phys. A 30. 1530022 (2015)

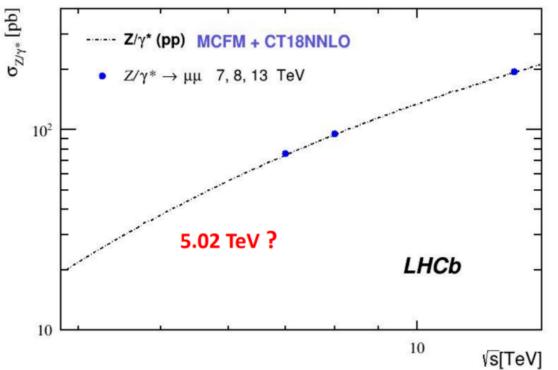


W/Z physics at LHCb

LHCb has already delivered a strong program of physics with W and Z boson mainly probing QCD, measuring weak mixing angle and W boson mass.

LHCb detector provides access to high and low Bjorken-x region PDFs, has not been probed directly at electroweak energy scales before

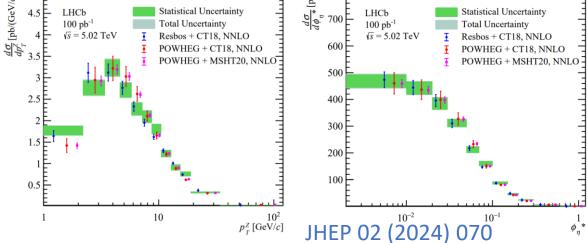
LHC 13 TeV Kinematics



Z cross section 5 TeV-Introduction

- \cdot Provide important test of the QCD and the EW sector of SM at LHC energies
- \cdot Constrain the uncertainty of PDF @ 5.02 TeV
- · Data: 2017, 99.86 pb^{-1}

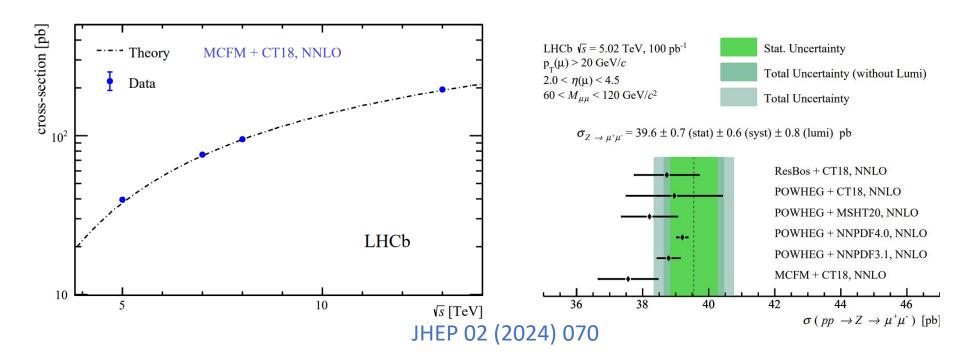
· Selection requirements: P_T^{μ} > 20 GeV, 2 < η_{μ} < 4.5, $\frac{\sigma_P^{\mu}}{P}$ < 0.1, 60 < $M_{\mu\mu}$ < 120 GeV



Z cross section 5 TeV-Differential cross

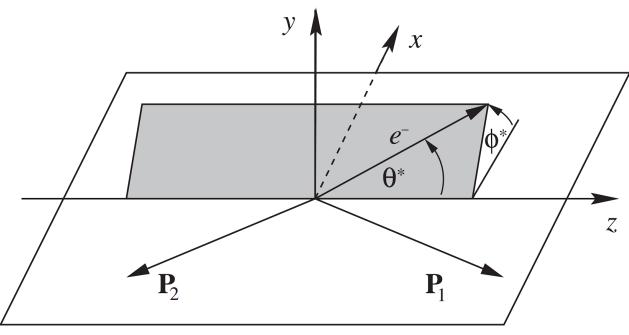
Reasonable agreements between data and predictions, the uncertainty is dominant by statistical uncertainty

Source	$\Delta \sigma [\mathrm{pb}]$	$\Delta\sigma/\sigma$ [%]	- Statistical Uncertainty	-
Luminosity	0.79	2.00		
Statistical	0.70	1.77	$\frac{1}{1000} = \frac{1}{1000} \frac{1}{10000} = \frac{1}{10000000000000000000000000000000000$	
Tracking	0.40	1.01	50 I MCFM + CT18, NNLO	Ē
Efficiency Closure	0.24	0.61		
Trigger	0.21	0.54		
Background	0.19	0.48		
Identification	0.10	0.25	20	-
\mathbf{FSR}	0.07	0.18		-
Calibration	$<4.0\times10^{-3}$	< 0.01		-
Total Systematic (excl. lumi.)) 0.56	1.42	2 2.5 3 3.5	4
			- (γZ
	$\begin{array}{c} 800 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	בייויי		



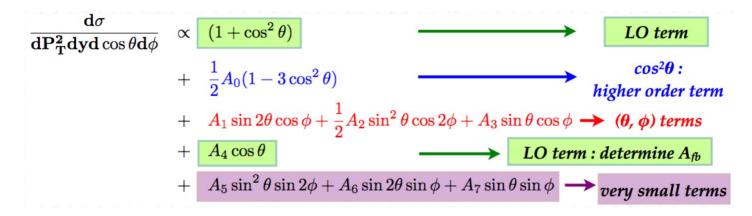
Z cross section 5 TeV-Result

For total cross section, there are also reasonable agreements between data and predictions



Z angular coefficient-introduction

- The kinematic distribution of the final-state leptons provides a direct probe of the polarization of the intermediate gauge boson
- \cdot Differential cross section of the lepton decay angle (cos θ , ϕ) in Collins-Soper frame


Phys.Rev.D 84 (2011) 012007

Z angular coefficient-introduction

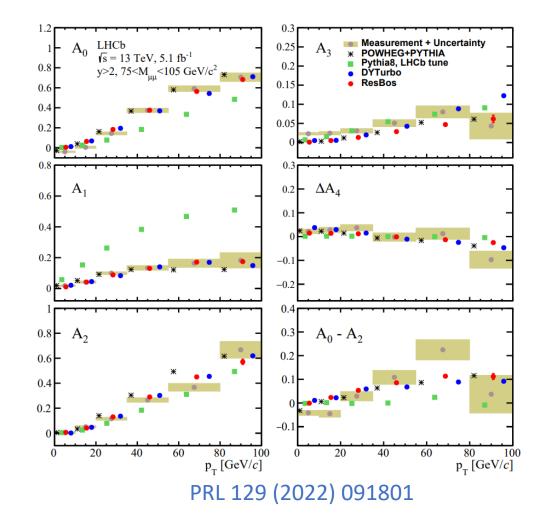
$A_0 A_1 A_2 A_3 \Delta A_4$ and $A_0 - A_2$ are measured

Dateset: 2016 2017 2018

Selection requirements:

Particle	Selections					
Z	50 <mass<150gev< td=""></mass<150gev<>					
Z	$\chi^2_{vtx}/ndf < 9$					
All tracks	$2.0 < \eta < 4.5$					
All tracks	$P_T > 20 \text{GeV}$					
All tracks	$\frac{\sigma_p}{p} < 0.1$					
All tracks	$\frac{p_{T}^{\mu}}{p_{T}^{\mu} + p_{T}^{\mu-cone}} > 0.85$					

8

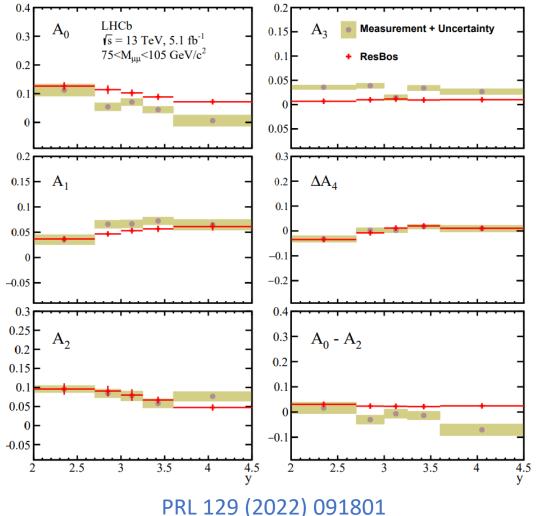


Z angular coefficient- p_T dependent results

The uncertainty is dominated by statistical uncertainty, Measurements are at Born level

In order to investigate its variation across the kinematic range, ΔA_4 is measured

 ΔA_4 is the difference between this bin value and 5 bins average value

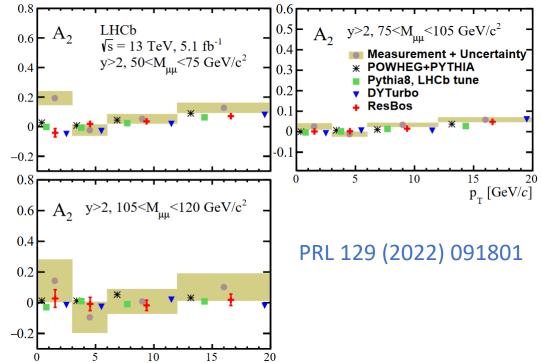


10

Z angular coefficient- y dependent results

 $A_0 - A_2$: differences between measurements and predictions, especially in the highest y region

A y dependence in the QCD resummation or high-order effects



Z angular coefficient-Boer-Mulders TMD

 $\cdot\,A_2$ is sensitive to the Boer-Mulder transverse momentum dependent PDFs

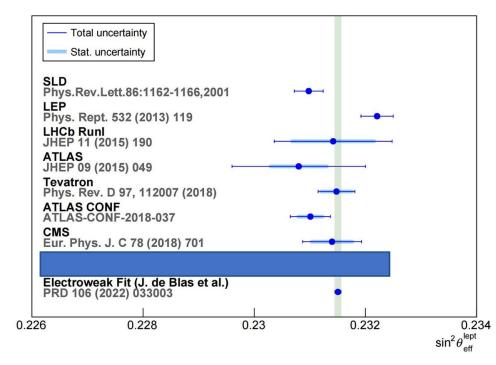
 \cdot The measured A_2 values deviate significantly from all predictions in the lowest P_T region for the low-mass region

 None of the predictions include nonperturbative spinmomentum correlations

Weak Mixing Angle-introduction

Introduction

A key parameter in the SM, describing the vector and axial-vector components of the coupling of the boson

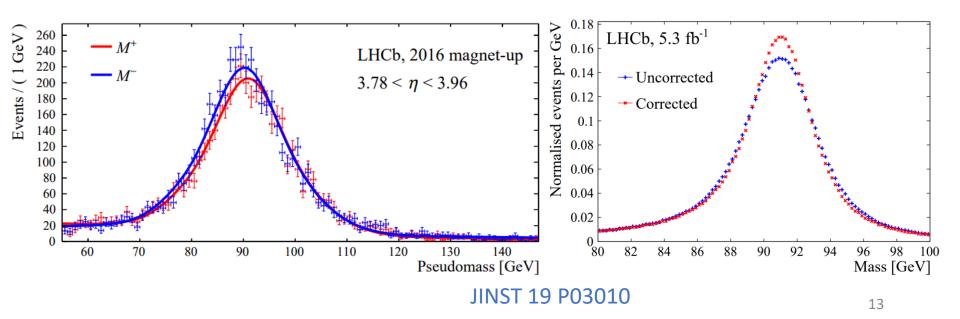

$$sin^{2}\theta_{W} = (1 - \frac{m_{W}^{2}}{m_{z}^{2}})$$
$$sin^{2}\theta_{eff}^{lept} = k_{f}sin^{2}\theta_{W}$$

Dataset

Blinded procedure based on 2016, 2017 and 2018

• Selection requirements:

66 < $M_{\mu\mu}$ < 116 GeV, P_T^{μ} > 20GeV, 2.0 < η_{μ} < 4.5

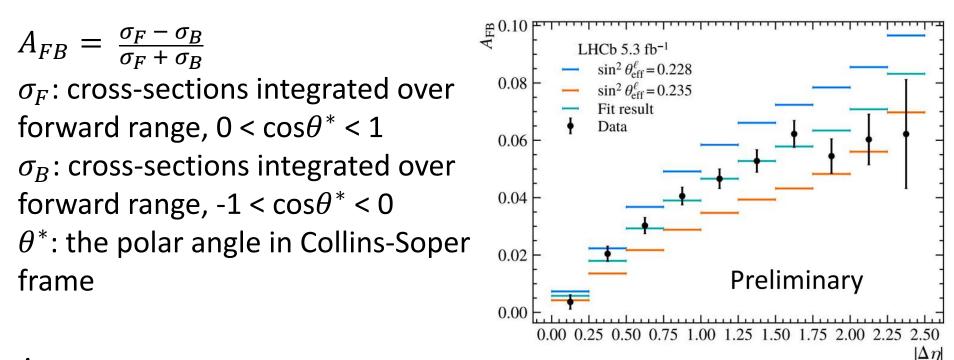


Weak Mixing Angle-pseudomass

Muons from Z tend to have very small curvature values, are sensitive to the alignment of the tracking system

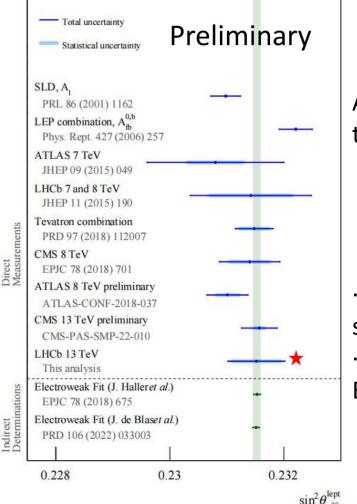
Pseudomass can be used to determine the curvature values

$$\mathcal{M}^{\pm} = \sqrt{2p^{\pm}p_T^{\pm}\frac{p^{\mp}}{p_T^{\mp}}(1 - \cos\theta)}$$



Weak Mixing Angle-A_{FB}

 $sin^2 \theta_{eff}^{lept}$ can be determined from A_{FB} in $pp \to Z/\gamma^* \to l^+ l^-$

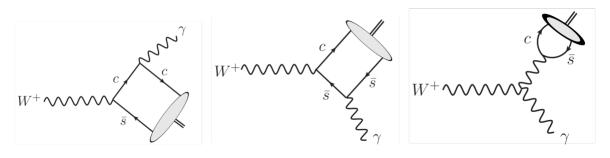


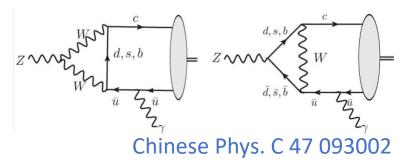
 $\Delta \eta = \eta_{\mu^+} - \eta_{\mu^-}$ measure A_{FB} in ten intervals of $|\Delta \eta|$ up to $|\Delta \eta| = 2.5$ using $Z \to \mu^+ \mu^$ decays

Weak Mixing Angle-Result

Applying the relevant shifts and including the theoretical uncertainties, the final result is

 0.231512 ± 0.00044 (stat.) ± 0.00005 (syst.) ± 0.00022 (theory)

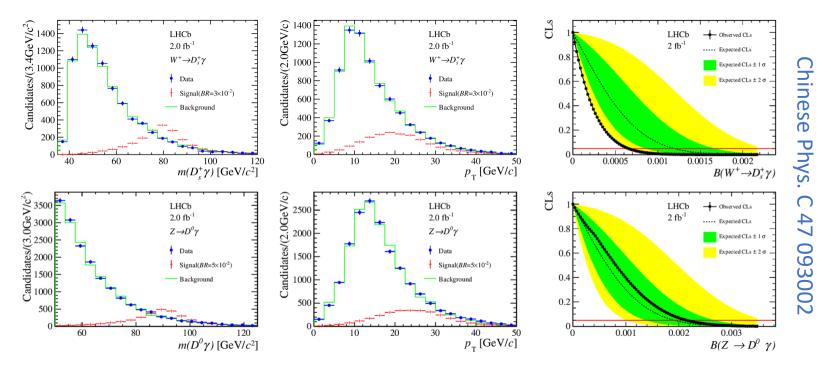

relevant shifts: non-linearity shift and PDF average shift(NNPDF3.1, CT18, MSHT20)
theory uncertainty include PDF uncertainty, QCD and EW uncertainty



WZ Rare Decay-introduction

- \cdot Limited knowledge on W/Z boson rare decay
- The upper limit on the relative branching fraction of the $W^{\pm} \rightarrow D_s^{\pm} \gamma$ is determined to 1.2×10^{-2} (CDF, PRD 58 (1998) 091101)

 $\cdot Z \rightarrow D^0 \gamma$ has not been searched, theory prediction branch fraction $[10^{-12} \sim 10^{-6}]$



WZ Rare Decay-CLs method

- \cdot We use LHCb 2018 data and there is no visible signal
- \cdot The CLs method is used to set upper limit for these rare decay searches
- \cdot X axis variable for left column plots is pseudo mass

WZ Rare Decay-Result

• The upper limit of $W^{\pm} \rightarrow D_s^{\pm} \gamma$ is set at 6.5 × 10⁻⁴ and for Z $\rightarrow D^0 \gamma$ is 2.1 × 10⁻³

Source	$Z \rightarrow D^0 \gamma$ (%)	$W^+ \rightarrow D_s^+ \gamma ~(\%)$	Upper limit on branching fraction for W rare decay
Meson BF	0.76	1.86	
Normalization	0.96	3.08	LHCb 95% CL
Dalitz	-	0.24	
MC sample size	0.11	0.09	
PID	0.09	0.17	
Photon ID	2.32	0.95	
Calorimeter saturation	3.00	3.10	CDF 🗸
Background	0.08	0.36	v
Acceptance	0.57	0.82	
PV association	0.57	0.29	
Resolution	0.20	0.09	tttt tttt
Total	4.07	4.94	

Chinese Phys. C 47 093002

· First upper limit on the exclusive $Z \rightarrow D^0 \gamma$ decay

Summary

The LHCb detector has proved its capability to do high-precision measurements of EW observables

The first measurement of the Z production cross-section in the forward region @ 5 TeV

The first measurement of the angular coefficients of Drell-Yan $(\mu^+ \mu^-)$ pairs in the forward region of pp collisions @ 13 TeV

The precision measurement of weaking mixing angle

To Do List

W boson production cross-section and lepton charge asymmetry @13TeV @5TeV

W boson mass measurement @13 TeV

Angular coefficients of Drell-Yan ($\mu^+ \mu^-$) pairs in the forward region of pp collisions @ 7 TeV @ 8 TeV

ttbar production cross-section @13 TeV

Low mass Drell-Yan production cross-section @13 TeV

Thank you for your listening!

Backup

Uncertainties of Z angular coefficient:

	$y^Z \in [2, 2.7]$					$y^Z \in [2.7,3]$						
Coefficient	A_0	A_1	A_2	A_3	ΔA_4	$A_0 - A2$	A_0	A_1	A_2	A_3	ΔA_4	$A_0 - A2$
Total	0.1124	0.0354	0.0958	0.0357	-0.0321	0.0162	0.0543	0.0659	0.0843	0.0388	0.0026	-0.0302
Stat	0.0180	0.0085	0.0078	0.0039	0.0103	0.0197	0.0119	0.0067	0.0096	0.0046	0.0077	0.0153
Syst	0.0102	0.0046	0.0044	0.0022	0.0062	0.0112	0.0068	0.0038	0.0055	0.0024	0.0041	0.0088
MC Stat	0.0102	0.0044	0.0043	0.0022	0.0062	0.0111	0.0067	0.0035	0.0054	0.0024	0.0041	0.0086
\mathbf{FSR}	0.0006	0.0013	0.0004	0.0001	0.0001	0.0007	0.0006	0.0013	0.0005	0.0002	-	0.0008
\mathbf{Eff}	0.0005	0.0002	0.0001	-	-	0.0005	0.0002	-	-	-	-	0.0002
\mathbf{Bkg}	0.0003	-	0.0001	-	-	0.0003	0.0001	-	-	-	-	0.0001
Smear	-	-	-	-	-	-	-	-	-	-	-	-
\mathbf{PDF}	0.0001	0.0003	0.0004	0.0001	0.0004	0.0004	0.0007	0.0010	0.0011	0.0003	0.0004	0.0017
Extraction	0.0011	0.0002	0.0004	-	0.0004	0.0012	0.0006	0.0001	0.0003	0.0001	0.0003	0.0007
	$y^Z \in [3, 3.25]$					$y^Z \in [3.25, 3.6]$						
Coefficient	A_0	A_1	A_2	A_3	ΔA_4	$A_0 - A2$	A_0	A_1	A_2	A_3	ΔA_4	$A_0 - A2$
Total	0.0708	0.0665	0.0778	0.0144	0.0029	-0.0070	0.0443	0.0723	0.0583	0.0341	0.0171	-0.0139
Stat	0.0107	0.0068	0.0110	0.0051	0.0075	0.0154	0.0102	0.0065	0.0102	0.0047	0.0072	0.0145
Syst	0.0058	0.0039	0.0064	0.0028	0.0040	0.0087	0.0053	0.0036	0.0059	0.0026	0.0037	0.0078
MC Stat	0.0057	0.0036	0.0063	0.0027	0.0040	0.0085	0.0052	0.0031	0.0057	0.0026	0.0037	0.0077
\mathbf{FSR}	0.0009	0.0015	0.0007	0.0003	-	0.0012	0.0007	0.0015	0.0006	0.0002	-	0.0010
\mathbf{Eff}	0.0001	-	0.0001	-	-	0.0002	0.0001	-	-	-	-	0.0002
\mathbf{Bkg}	-	-	0.0001	-	-	0.0002	-	-	-	-	-	-
Smear	-	-	-	-	-	-	-	-	-	-	-	-
\mathbf{PDF}	0.0005	0.0004	0.0006	0.0006	0.0004	0.0009	0.0006	0.0008	0.0008	0.0004	0.0003	0.0005
Extraction	0.0002	0.0001	0.0007	-	0.0002	0.0007	0.0004	0.0001	0.0006	0.0001	0.0002	0.0007