CP Violation in baryon decays

Xinchen Dai Peking University

第四届LHCb前沿物理研讨会 2024年7月30日

Why CPV in baryon decays

CPV may be one of the necessary conditions for baryogenesis

CPV is well established in meson decays

- ➤ no significant deviation from SM prediction
- \succ not strong enough to account for the baryogenesis

□ However, no CPV has been observed in baryon sector yet

- \succ Evidence of CPV in $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-(3.3 \sigma)$ [Nat.Phys.13(2017)391]
- ≻ Recent measurement shows no CPV in $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-(2.9 \sigma)$

The Standard Model predicts similar CP violation in baryon and meson decays
 Unlike mesons, only direct CPV occurs in baryon decays due to baryon number conservation

□ Searching for CPV in baryon decays:

□ Test of the SM and the CKM mechanism

• Explore new physics

Experimental methods & observables

□ Asymmetry in the yields of CP-conjugate processes

$$A_{CP} = A_{raw} - A_{prod} - A_{det} - A_{other} > \Delta A_{CP} = A_{CP}^{signal} - A_{CP}^{control}$$

$$A_{raw} = \frac{N(H \to f) - N(H \to f)}{N(H \to f) + N(\overline{H} \to \overline{f})}$$

$$A_{CP} \propto cos\Delta\phi sin\Delta\delta$$

□ Miranda technique: Measuring CPV on binned phase space → asymmetry significance: $S_{CP}^i = \frac{n_i - \alpha \overline{n}_i}{\sqrt{\alpha(n_i + \overline{n}_i)}}$

• Energy test: A statistical T test to compare the baryon anti-baryon samples

$$T\equiv rac{1}{2n(n-1)}\sum_{i
eq j}^n\psi_{ij}+rac{1}{2\overline{n}(\overline{n}-1)}\sum_{i
eq j}^{\overline{n}}\psi_{ij}-rac{1}{n\overline{n}}\sum_{i=1}^n\sum_{j=1}^{\overline{n}}\psi_{ij}$$

 $\square \text{ Triple product asymmetry:} \quad A_{\widehat{T}}(C_{\widehat{T}}) = \frac{N(C_{\widehat{T}} > 0) - N(C_{\widehat{T}} < 0)}{N(C_{\widehat{T}} > 0) + N(C_{\widehat{T}} < 0)} \quad \overline{A}_{\widehat{T}}(\overline{C}_{\widehat{T}}) = \frac{\overline{N}(-\overline{C}_{\widehat{T}} > 0) - \overline{N}(-\overline{C}_{\widehat{T}} < 0)}{\overline{N}(-\overline{C}_{\widehat{T}} > 0) + \overline{N}(-\overline{C}_{\widehat{T}} < 0)} \quad a_{CP}^{\widehat{T} \text{-odd}} = \frac{1}{2} \left(A_{\widehat{T}} - \overline{A}_{\widehat{T}} \right) \\ A_{CP} \propto \cos \Delta \phi \cos \Delta \delta$

□ k-nearest neighbour (kNN):
$$T = \frac{1}{n_k(n_+ + n_-)} \sum_{i=1}^{n_+ + n_-} \sum_{k=1}^{n_k} I(i,k)$$

 $\square \text{ Amplitude analysis:} \qquad \stackrel{(-)}{\mathcal{A}} = \sum_{i} \stackrel{(-)(-)}{a_i \mathcal{A}_i} \qquad \qquad \mathcal{A}_{CP}^i = \frac{|a_i|^2 - |\overline{a}_i|^2}{|a_i|^2 + |\overline{a}_i|^2}$

Overview of CPV in baryon decays

- $\Lambda_b^0 \to p K^- / p \pi^-$
- $\Lambda_b^0 \rightarrow p K_s^0 \pi^-$
- $\Lambda_b^0 \to p D^0 K^-$
- $\Lambda_b^0 \to \Lambda K^+ \pi^- / K^- K^+$
- $\Lambda_b^0 \rightarrow p K^- \mu^+ \mu^-$
- $\Lambda_c^+ \rightarrow p K^- K^+ / p \pi^- \pi^+$
- $\Xi_b^- \to p K^- K^+$
- $\Lambda_b^0 \to ph^-h^+h^-$

LHCb experiment

LHCb experiment

LHCb Integrated Recorded Luminosity in pp by years 2010-2024

$$\succ \ \frac{f_{\Lambda_b^0}}{f_u + f_d} = 0.259 \pm 0.018$$

 $\blacktriangleright \text{ Run I: } \sim 3/\text{fb} @ \text{Ecm} = 7-8\text{TeV}$

- → Run II: ~6/fb @ Ecm =13 TeV
- \blacktriangleright Run III: ~25/fb @ Ecm = 13.6 TeV

More charm baryons: Λ_c , Ξ_c ...

CPV in $\Lambda_b^0 \to pK^-/p\pi^-$

Phys.Lett.B 787 (2018) 124-133

Search for *CP* violation in $\Lambda_b^0 \to p K^-$ and $\Lambda_b^0 \to p \pi^-$ decays

Run1 3/fb @ Ecm=7-8TeV

CPV in $\Lambda_b^0 \to pK^-/p\pi^-$

• Mediated by the same quark-level transitions contributing to B^0/B_s^0

■ Predicted CPV in $\Lambda_b^0 \rightarrow pK^-/p\pi^-$ up to ~30%

generalized
factorization
approachpQCD $10^2 \mathcal{A}_{CP}(\Lambda_b \to pK^-)$ $5.8 \pm 0.2 \pm 0.1$ -5^{+26}_{-5} $10^2 \mathcal{A}_{CP}(\Lambda_b \to p\pi^-)$ $-3.9 \pm 0.2 \pm 0.0$ -31^{+43}_{-1}

Phys.Rev.D 91 (2015) 11, 116007

$$A_{CP}(\Lambda_b^0 \to pK^-) = -0.020 \pm 0.013 \pm 0.019$$

 $A_{CP}(\Lambda_b^0 \to p\pi^-) = -0.035 \pm 0.017 \pm 0.020$

$$\Delta A_{CP} = A_{CP} \left(\Lambda_b^0 \to p K^- \right) - A_{CP} \left(\Lambda_b^0 \to p \pi^- \right) \\= 0.014 \pm 0.022 \pm 0.010$$

INDEPENDENT from the proton detection and Λ_b^0 production asymmetry

CPV in decays with K_S^0 and Λ^0

JHEP05(2016)081Run I 3/fbObservations of $\Lambda_b^0 \to \Lambda K^+ \pi^-$ and $\Lambda_b^0 \to \Lambda K^+ K^-$ decays and searches for other Λ_b^0 and Ξ_b^0 decays to $\Lambda h^+ h'^-$ final states

CPV in decays with K_S^0 and Λ^0

■ Not favored by the LHCb due to low detection efficiencies for K_S^0 and Λ^0 ■ Large CPV expected for $\Lambda_b^0 \rightarrow p K_S^0 \pi^-$

 \square First attempt to find CP violation in multi-body decays of Λ_b^0

$$\begin{array}{c|c} 10^2 \mathcal{A}_{CP}(\Lambda_b \to pK^{*-}) & 19.6 \pm 1.3 \pm 1.0 \\ 10^2 \mathcal{A}_{CP}(\Lambda_b \to p\rho^{-}) & -3.7 \pm 0.3 \pm 0.0 \end{array}$$

CPV in $\Lambda_h^0 \to p D^0 [K^+ \pi^-] K^-$

Phys. Rev. D104 (2021) 112008

Studies of beauty baryon decays to $D^0 ph^-$ and $\Lambda_c^+ h^-$ final states

Run I+II 9/fb

$$\operatorname{CPV} \operatorname{in} \Lambda_b^0 \to p D^0 [K^+ \pi^-] K^-$$

 $\Box \Lambda_b^0 \to p D^0 [K^+ \pi^-] K^- \text{ receives contributions from } b \to c \text{ (DCS) and} \\ b \to u \text{ of similar magnitude}$

□ The interference between these two amplitudes is expected to be large

□ Interference is anticipated to be amplified in $\Lambda^*(pK^-)$ region

$$\begin{aligned} \left| \frac{\mathcal{M}(B^- \to K^- D^0[\to f])}{\mathcal{M}(B^- \to K^- \overline{D}^0[\to f])} \right|^2 &\approx \left| \frac{V_{cb} V_{us}^*}{V_{ub} V_{cs}^*} \right|^2 \quad \left| \frac{a_1}{a_2} \right|^2 \quad \frac{Br(D^0 \to f)}{Br(\overline{D}^0 \to f)} \approx \\ &\approx \left| \frac{0.22}{0.08} \right|^2 \quad \left| \frac{1}{0.26} \right|^2 \quad 0.0077 \sim 1 \;, \end{aligned}$$

□ Asymmetry in the full PHSP: $A_{CP} = 0.12 \pm 0.09^{+0.02}_{-0.03}$

□ Asymmetry in the low $M(pK^-)$ region: $A_{CP} = 0.01 \pm 0.16^{+0.03}_{-0.02}$

Consistent with CP conservation!

CPV in $\Lambda_b^0(\Xi_b^0) \to ph^-h^+h^-$

Eur. Phys. J. C (2019) 79:745

Measurements of CP asymmetries in charmless four-body Λ_b^0 and Ξ_b^0 decays

Run I 3/fb

CPV in $\Lambda_h^0(\Xi_h^0) \to ph^-h^+h^-$

- Follow the path of the observation of CPV in charmless multibody decays of B mesons
- Dominant diagrams with amplitudes of similar magnitude
- Contain rich resonance structures, both in the two- or three-body baryonic invariant-mass spectra
- Large CPV expected due to the strongphase differences induced by the interference patterns
- □ Six decay modes from 0.5-10K signals
- $\square CP observables: \Delta A_{CP} = A_{CP} A_{CP}^{con.}$

	1	!	1	
Charmless decay	Quark transition	Charmed decay	Quark transition	
$\Lambda^0_b \to p \pi^- \pi^+ \pi^-$	$b \rightarrow u \overline{u} d \ (T + P)$	$\Lambda_b^0 \to (\Lambda_c^+ \to p\pi^-\pi^+)\pi^-$	$b \to c \overline{u} d$ (T)	
$\Lambda_b^0 ightarrow p K^- \pi^+ \pi^-$	$b \rightarrow u \overline{u} s \; (T + P)$	$\Lambda^0_b \to (\Lambda^+_c \to p K^- \pi^+) \pi^-$	$b \to c \overline{u} d$ (T)	
$\Lambda^0_b \to p K^- K^+ \pi^-$	$b \rightarrow d\bar{s}s \ (T + P)$	$\Lambda_b^0 o (\Lambda_c^+ o p \pi^- \pi^+) \pi^-$	$b \rightarrow c \overline{u} d$ (T)	
$\Lambda^0_b \to p K^- K^+ K^-$	$b \rightarrow s \overline{s} s \ (T + P)$	$ \Lambda^0_b \to (\Lambda^+_c \to p K^- \pi^+) \pi^- $	$b \rightarrow c \overline{u} d$ (T)	
$\Xi_b^0 ightarrow p K^- \pi^+ \pi^-$	$b \rightarrow u \overline{u} d \; (T + P)$	$\Lambda_b^0 o (\Lambda_c^+ o p K^- \pi^+) \pi^-$	$b \to c \overline{u} d$ (T)	
v –		$\Xi_b^0 \to (\Xi_c^+ \to pK^-\pi^+)\pi^-$	$b \rightarrow c \overline{u} d$ (T)	
$\varXi^0_b \to p K^- \pi^+ K^-$	$b \rightarrow s \overline{d} d \ / \ b \rightarrow u \overline{u} s$ (P / T)	$\Lambda_b^0 ightarrow (\Lambda_c^+ ightarrow p K^- \pi^+) \pi^-$	$b \rightarrow c \overline{u} d$ (T)	
		$\Xi_b^0 \to (\Xi_c^+ \to p K^- \pi^+) \pi^-$	$b \rightarrow c \overline{u} d$ (T)	
ا م		l		
Signal channels		Control channels		
U				
<i>u</i>		<i>u</i> ———		
Λ_{0}^{0} d	→ d	$\Lambda 0 \qquad V_{\rm H} \sim 1$	y u	
* b	$W^ V$ 1 \bar{u}	$\Lambda_b b \xrightarrow{v_w} u, c, t$	$V_{td} \sim \lambda^3$ d	
<i>b</i>	$V_{ud} \sim 1$ u	W-72	L'	
	$V_{ub} \sim \lambda^{2}$	d	d	
		ω –		
<i>u</i>		<i>u</i> ———		
<u>0</u> s	→ 8	$\Box 0$ $V_{th} \sim 1$	u u	
-6	$W^ V$ \bar{u}	$-b b \longrightarrow u, c, t$	$V_{td} \sim \lambda^3$ d	
<i>b</i>	$V_{ud} \sim 1$ u	W-7	L'	
	$v_{ub} \sim \lambda^{-1}$		~ °	
		J	5	

$$CPV in \Lambda_{b}^{0}(\Xi_{b}^{0}) \rightarrow ph^{-}h^{+}h^{-}$$

$$= \text{Simultaneous fit to 6 decay modes}$$

$$= \text{Example: } \Lambda_{b}^{0} \rightarrow pk^{-}\pi^{+}\pi^{-}$$

$$= \text{Global CPV measurement:}$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow pk^{-}\pi^{+}\pi^{-}) = (1.1 \pm 2.5 \pm 0.6)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow pk^{-}\pi^{+}\pi^{-}) = (6.9 \pm 4.9 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow pk^{-}\pi^{+}\pi^{-}) = (1.2 \pm 1.1 \pm 0.6)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow pk^{-}\pi^{+}\pi^{-}) = (1.2 \pm 1.1 \pm 0.6)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow pk^{-}\pi^{+}\pi^{-}) = (1.2 \pm 1.1 \pm 1.06)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow pk^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow pk^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow pk^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8 \pm 8.0 \pm 0.8)\%$$

$$\geq \Delta_{dcp}(\Lambda_{b}^{0} \rightarrow h^{-}\pi^{+}\pi^{-}) = (-6.8$$

2024/7/28

15

CPV in $\Lambda_h^0 \to p\pi^-\pi^+\pi^-$

Nature Physics 13, 391–396 (2017)

Measurement of matter-antimatter differences in beauty baryon decays

Run I 3/fb

Phys. Rev. D 102 (2020) 051101

Search for CP violation and observation of P violation in $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ decays

Run I+II (2011-2017) 6.6/fb

CPV in
$$\Lambda_b^0 \to p\pi^-\pi^+\pi^-$$

□ Search for CPV with scalar triple-product asymmetries, \hat{T} flips the direction of final state momenta and spin

$$C_{\widehat{T}} \equiv \vec{p}_p \cdot (\vec{p}_{h_1} \times \vec{p}_{h_2}), \ \overline{C}_{\widehat{T}} \equiv \vec{p}_{\overline{p}} \cdot (\vec{p}_{\overline{h}_1} \times \vec{p}_{\overline{h}_2})$$

D Data divided into 4 subsamples: $C_{\hat{T}} > 0, C_{\hat{T}} < 0, -\overline{C_{\hat{T}}} > 0, -\overline{C_{\hat{T}}} < 0$

$$A_{\widehat{T}}(C_{\widehat{T}}) = \frac{N(C_{\widehat{T}} > 0) - N(C_{\widehat{T}} < 0)}{N(C_{\widehat{T}} > 0) + N(C_{\widehat{T}} < 0)} \qquad \overline{A}_{\widehat{T}}(\overline{C}_{\widehat{T}}) = \frac{\overline{N}(-\overline{C}_{\widehat{T}} > 0) - \overline{N}(-\overline{C}_{\widehat{T}} < 0)}{\overline{N}(-\overline{C}_{\widehat{T}} > 0) + \overline{N}(-\overline{C}_{\widehat{T}} < 0)}$$

 \square $A_{\hat{T}}$ and $\bar{A}_{\hat{T}}$ are not clean CPV observables, FSI effects can introduce fake asymmetries.

D Define the clean CP-violating observable:

Does not require a non-zero strong phase difference!

Both strong phase and weak phase differences are needed

IV

Anti-Particle, $-\overline{C_{T}} < 0$

С

Particle, $C_T > 0$

Π

Particle, $C_T < 0$

Ρ

CPV in $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$

■ PV and CPV integrated over the whole phase space:

• $a_{CP}^{T-odd} = (-0.7 \pm 0.7 \pm 0.2)\%$

- Asymmetries for different binning scheme:
 - \square A: 16 bins of polar and azimuthal angle of proton and Δ^{++}
 - **D** B: asymmetries as a function of $|\Phi|$ angle
 - **D** 1: $m(p\pi^{-}\pi^{+}) > 2.8 GeV$, dominated by $a_1(1260)$
 - **D** 2: $m(p\pi^{-}\pi^{+}) < 2.8 GeV$, dominated by N^{*+}

χ² taking into account statistical and systematic effects
 In B₂ region, deviation from CP conservation 2.9σ. CPV not established

CPV in
$$\Lambda_b^0 \to p\pi^-\pi^+\pi^-$$

□ Energy test is a model-independent unbinned test sensitive to local differences between two samples □ provide superior discriminating power between different samples than traditional χ^2 test

$$T \equiv \frac{1}{2n(n-1)} \sum_{i \neq j}^{n} \psi_{ij} + \frac{1}{2\overline{n}(\overline{n}-1)} \sum_{i \neq j}^{\overline{n}} \psi_{ij} - \frac{1}{n\overline{n}} \sum_{i=1}^{n} \sum_{j=1}^{\overline{n}} \psi_{ij}$$

□ ψ_{ij} = e^{-d_{ij}/2δ²}: d_{ij} is their Euclidean distance in phase space, δ the distance scale probed using the energy test
 □ The p-value is calculated using a permutation method

Distance scale δ	$1.6 \ { m GeV^2}/c^4$	$2.7~{ m GeV^2}/c^4$	$13 \ { m GeV^2}/c^4$	marginally consistent with
p-value (CP conservation, P even)	3.1×10^{-2}	$2.7 imes 10^{-3}$	$1.3 imes 10^{-2}$	the CP-conserving
p-value (CP conservation, P odd)	$1.5 imes 10^{-1}$	$6.9 imes 10^{-2}$	$6.5 imes10^{-2}$	
p-value (P conservation)	1.3×10^{-7}	$4.0 imes 10^{-7}$	$1.6 imes 10^{-1}$	

 \square A new test is statistic is defined as $Q = p_1 p_2 p_3$, significance for CPV < 3σ

CPV in $\Lambda_b^0 \to pK^-\mu^+\mu^-$

JHEP 06 (2017) 108

Observation of the decay $\Lambda_b^0 \to p K^- \mu^+ \mu^-$ and a search for CP violation

Run I: 3/fb

CPV in $\Lambda_h^0 \to p K^- \mu^+ \mu^-$

□ Search for CPV in FCNC process

Dominated by loop diagrams

□ new heavy particles could provide additional weak phases

□ sensitive to CPV effects from physics beyond the SM

direct CP asymmetry:

 $\Delta A_{CP} = \mathcal{A}_{CP} \left(\Lambda_b^0 \to p K^- \mu^+ \mu^- \right) - \mathcal{A}_{CP} \left(\Lambda_b^0 \to p K^- J / \psi \right)$

 $a_{CP}^{T-odd} = (1.2 \pm 5.0 \pm 0.7)\%$

CPV in $\Xi_h^- \to pK^-K^+$

Phys. Rev. D 104, 052010

Search for $C\!P$ violation in $\varXi^-_b \to p K^- K^-$ decays

Run I: 3/fb Run II: 2/fb (2015-2016)

CPV in $\Xi_b^- \to pK^-K^-$

- Charmless $b \rightarrow u, b \rightarrow s$ transition
- Study CPV over PHSP using model dependent amplitude analysis

Approximately 685 candidates with a purity of 67% are retained for amplitude analysis

CPV in $\Xi_b^- \to pK^-K^+$

Component	$A^{C\!P}~(10^{-2})$
$\Sigma(1385)$	$-27 \pm 34 \; (\text{stat}) \pm 73 \; (\text{syst})$
$\Lambda(1405)$	$-1 \pm 24 \; (\text{stat}) \pm 32 \; (\text{syst})$
$\Lambda(1520)$	$-5 \pm 9 \text{ (stat)} \pm 8 \text{ (syst)}$
$\Lambda(1670)$	$3 \pm 14 \text{ (stat)} \pm 10 \text{ (syst)}$
$\Sigma(1775)$	$-47 \pm 26 \; (\text{stat}) \pm 14 \; (\text{syst})$
$\Sigma(1915)$	$11 \pm 26 \text{ (stat)} \pm 22 \text{ (syst)}$

No evidence of CPV, larger samples are needed.

CPV in
$$\Lambda_c^0 \to pK^-K^+/p\pi^-\pi^+$$

JHEP 03 (2018) 182
A measurement of the *CP*
asymmetry difference between

$$\Lambda_c^+ \rightarrow pK^-K^+$$
 and $p\pi^-\pi^+$ decays
Run I: 3/fb

- complementary to measurements in *b*-hadrons
- CPV only occur in SCS decays at the $O(10^{-3})$ level
- FSI, NP and SU(3)F breaking could enhance the CPV

$$\delta_{V_{\text{CKM}}} = \begin{pmatrix} -\frac{1}{8}\lambda^4 & 0 & 0\\ \frac{1}{2}A^2\lambda^5(1-2(\rho+i\eta)) & -\frac{1}{8}\lambda^4(1+4A^2) & 0\\ \frac{1}{2}A\lambda^5(\rho+i\eta) & \frac{1}{2}A\lambda^4(1-2(\rho+i\eta)) & -\frac{1}{2}A^2\lambda^4 \end{pmatrix} + \mathcal{O}(\lambda^6)$$

$$\Delta A_{CP}^{wgt} = A_{CP}(pK^-K^+) - A_{CP}(p\pi^-\pi^+)$$

= (0.30 ± 0.91 ± 0.61)%

Search for CPV in cabibbo suppress decay $\Lambda_c^0 \rightarrow pK^-K^+/p\pi^-\pi^+$

CPV in $\Xi_c^0 \rightarrow p K^- \pi^+$

Eur. Phys. J. C 2020, 80, 986

Search for *CP* violation in $\Xi_c^+ ightarrow pK^-\pi^+$ decays using model-independent techniques _{Run I: 3/fb}

CPV in
$$\Xi_c^0 \to pK^-\pi^+$$
 (S_{CP} method)

• Search for CPV using model independent binned/unbinned method

$$S_{CP}^{i} = \frac{n_{+}^{i} - \alpha n_{-}^{i}}{\sqrt{\alpha(n_{+}^{i} + n_{-}^{i})}}$$

 $\alpha = \frac{n_+}{n_-}$ account for production asymmetry

$$\chi^2 \equiv \Sigma (S_{CP}^i)^2$$

The p-values using χ^2 test are larger than 32% consistent with no evidence for CPV

CPV in $\Xi_c^0 \rightarrow pK^-\pi^+$ (kNN method)

no significant deviation from the hypothesis of CP symmetry

Conclusion

- Search for CPV in b-baryon is a frontier of flavor physics
- Still no CPV observed
- More data in LHCb upgrade I is coming.
- Many new analyses coming soon

Backup

CPV in $\Lambda_b^0 \to \Lambda \gamma$

Phys. Rev. D105 (2022) L051104

Measurement of the photon polarization in $\Lambda_b^0\to\Lambda\gamma$ decays

Run II: 6/fb

CPV in $\Lambda_b^0 \to \Lambda \gamma$

- FCNC decay is sensitive to new heavy particles in the loop
- Due to the chirality of the electroweak interaction, the photons produced in $b(\bar{b})$ quark are predominantly left(right) handed polarized

•
$$\alpha_{\gamma} = \frac{\gamma_L - \gamma_R}{\gamma_L + \gamma_R}$$

• A discrepancy in the absolute value of the photon polarization in b and \overline{b} decays would be a hint of CP asymmetry

Distribution of $cos\theta_p$ for $\Lambda_b^0 \to \Lambda\gamma$ and $\overline{\Lambda}_b^0 \to \overline{\Lambda}\gamma$ decays

 $\begin{aligned} \alpha_{\gamma} &= 0.82 \pm 0.23 \pm 0.13 \\ \alpha_{\gamma}(\Lambda_b^0) &= 0.55 \pm 0.32 \pm 0.10 \\ \alpha_{\gamma}(\bar{\Lambda}_b^0) &= 1.26 \pm 0.42 \pm 0.20 \end{aligned}$

consistent with CP symmetry