

TESLA Technology Collaboration Meeting

IHEP, Beijing, China, 5-8 December 2011

X.L. Wang, W. Maschmann, J. Eschke, O. Sawlanski, R. Klos, K. Jensch, B. Petersen

Many other involved colleagues

HELMHOLTZ

XFEL Overview

- Introduction.
- Thermal analysis.
- Heat load measurements.
- Results and discussion.
- Conclusions.
- Sources and references.

XFEL Introduction

- Based on The TESLA/TTF-Type III design.
- 10 Hz pulsed operation.
- One Cryomodule consists of: 8 1.3 GHz 9-cell Nb cavities (2 K), 1 magnet package (2 K), two thermal shields (5/8 K and 40/80K), 8 main RF couplers, 3 support posts.
- 12 m length and 7.8 t total weight.

XFEL Thermal analysis

Heat transfers by

- Current leads.
- Power couplers.
- Support posts.
- Multilayer insulation (MLI).

European

XFEL Heat transfer by current leads

- Conduction cooled current leads with two heat sinks and developed by CERN.
- Heat transfer mechanisms:
 - Conduction through brass and copper; heat generated by current and * material properties changes with temperature.
 - Negligible axial conduction through SS, Kapton tube and the helium gas * and contact thermal resistances.
- A numerical model is developed by using Matlab.
- A analytical model is used to validate numerical results in appropriate limits.

XFEL Heat transfer by current leads

Design parameter of the current leads

Level	T _H , K	T _C , K	L, m	D _b , mm	t _{cu} , mm	Copper RRR
40/80 K	300	70	0.50	3	0.60	120
5/8 K	70	5	0.38	3	0.13	120
2 K	5	2	0.48	3	0.60	120

 D_b : Diameter of the brass, t_{cu} : Thickness of copper plating.

Comparisons from analytical and numerical models

(One lead, constant thermal conductivity and electrical resistivity)

Model	q, W (300-70 K)		q, W (70	-5 K)	q, W (5-2 K)	
	0 A	60 A	0 A 0	60 A	0 A	60 A
CERN A	1.35	2.50	0.38	0.54	0.023	0.045
DESY A1	1.33	2.34	0.35	0.60	0.028	0.044
DESY N1	1.33	2.33	0.35	0.60	0.028	0.045
DESY A2	1.75	2.76	0.42	0.66	0.028	0.045
DESY N2	1.75	2.75	0.42	0.66	0.028	0.045

- A: Analytical solutions
- N: Numerical solutions
- '1' and '2' denotes respectively the solutions with neglecting and considering heat conduction of the brass

- CERN A and DESY A1 fit very well.
- Heat conduction through the brass had been neglected in CERN design.
- The analytical and numerical results have a good agreement.

European Heat transfer by current leads

Heat loads by current leads

To K		Q (Six leads), 0A/50A, W					
15, K	15, r\ 11, r\	2K	5/8 K	40/80 K			
40	2-10-50-300	0.77/0.84	1.88/2.26	11.88/14.82			
50	2-10-60-300	0.77/0.84	2.13/2.58	11.10/14.34			
60	2-10-70-300	0.77/0.84	2.36/2.90	10.50/14.04			
70	2-10-80-300	0.77/0.84	2.56/3.23	9.96/13.74			
80	2-10-90-300	0.77/0.84	2.77/3.63	9.48/13.44			

Ts: Shield temperature, Ti: Thermal intercept temperature

- 2 K static one: ~1 W 2 K dynamic one: ~ 0.1 W
- 5/8 K static one: ~2-3 W 5/8 K dynamic one: ~0.4-0.9 W
- 40/80 K static one: ~10-12 W 40/80 K dynamic one: ~3-4 W

European Heat transfer by power couplers

- Eight power couplers in one module.
- Conductors made up of SS tubes coated by the copper.
- Two thermal sinks at 5/8 K and 40/80 K levels.
- Heat transfer mechanisms:
 - Conduction through the inner and outer conductors.
 - Heat generation by the RF power coupler.
 - Radiation heat from the antenna to 2 K and 5/8 K levels.
- The numerical model is similar with that of current leads.

XFEL Heat transfer by power couplers

Basic parameters of the power coupler

Conductor	Segment	D, mm	L, mm	tss, mm	tcu, µm	Copper RRR	Components
Outor conductor	1	71	203	0.25	10	10	SS bellow
	2	62	79	1.5	10	10	SS tube
40/00 K	3	92	65	1.5	10	10	SS tube
	1	23	209	2	30	10	SS tube
	2	26	155	0.15	30	10	SS bellow
40/00 K	3	23	100.6	2	30	10	SS tube
Outer conductor	1	40	66	1.5	10	10	SS tube
5/8 K	2	46.5	186	0.2	10	10	SS bellow
Outer conductor	1	46.5	9.5	1.25	10	10	SS tube
2 K	2	40	17.1	1.5	10	10	SS tube

Comparisons with DESY previous model (M. Dohlus, Proc. LINAC 2004)

(One coupler, static, q_{cp1}: Present, q_{cp2}: Previous)

Level	T _C ,K	T _H ,K	q _{CP1} , W	q _{CP2} , W	Conductor
2 K	2	4	0.01	0.02	Outer conductor
5/8 K	4	70	0,2	0.2	Outer conductor
10/00 12	70	300	1.4	1.1	Outer conductor
40/00 K	70	300	0.9	0.8	Inner conductor

The other comparison with Fermi model (T. Peterson, TESLA report, 1993)

2 K level, identical parameters, error of about 10%.

10

European

XFEL Heat transfer by power couplers

Static Heat loads by power couplers

Ts, K	Ti K	Q (Eight couplers), W				
	11, r	2 K	5/8 K	40/80 K		
40	2-10-60-300	0.48	1.20	18.24		
50	2-10-70-300	0.48	1.52	17.92		
60	2-10-80-300	0.48	1.84	17.12		
70	2-10-90-300	0.48	2.16	16.48		
80	2-10-100-300	0.48	2.96	15.84		

- 2 K static one: ~0.5 W
- 5/8 K static one: ~1-3 W
- 40/80 K static one: ~16-18 W

European **XFEL**

Heat transfer by support posts

-11

- Three support posts in one module.
- Two thermal sinks at 5/8 K and 40/80 K levels.
- Heat transfer mechanisms:
 - Conduction through G-10 tube.
 - Radiation heat from the MLI (Negligible)
- The numerical model is similar with that of the current leads.
- The analysis model is used to validate the numerical results.
- Cryocomp properties version 3.0 provides three kinds of G-10 with various conductivities depending on the angles between the thermal gradient and the fiber direction.
- The maximum conductivity G10 is taken.

12

XFEL Heat transfer by support posts

Comparisons with INFN previous model (S. Barbanotti, INFN/TC-08-01)

(One support post, q_A: DESY analytical, q_N: DESY numerical)

Level	T _C ,K	Т _н ,К	q _{INEN} , W	q _A , W	q _N , W
2 K	2	5	0.041	0.035	0.035
5/8 K	5	70	0.865	0.93	0.94
40/80 K	70	300	9.906	11.51	11.52

Heat loads by support posts

Ts, K Ti, K		Q (three posts), W				
	11, r	2 K	5/8 K	40/80 K		
40	2-10-40-300	0.42	1.05	36.87		
50	2-10-50-300	0.42	1.56	36.18		
60	2-10-60-300	0.42	2.10	35.40		
70	2-10-70-300	0.42	2.73	34.56		
80	2-10-80-300	0.42	3.42	33.60		

- 2 K: ~0.5 W
- 5/8 K: ~1-3.5 W
- 40/80 K: ~34-37 W

XFEL Heat transfer by the MLI

- 30 layers at 40/80 K and 10 layers at 5/8 K.
- Surface areas: 30.9 m^2 at 40/80 K and 26.4 m^2 at 5/8 K.
- Heat transfer mechanisms:
 - Conduction through the solid.
 - Radiation heat.
 - ♦ Conduction through residual gas (Negligible P<10⁻³ Pa).
- Difficulty to calculate accurately.
- Reviewed empirical results from CERN and NASA.

European

FEL Heat transfer by the MLI

Empirical results of heat fluxes

2 K: Negligible, 5/8 K: 0.05 W/m², 40/80 K: 1.5 W/m² (many openings).

Empirical formulas adapted to empirical heat fluxes

 $q = \frac{C_s(\overline{N})^{2.56}T_m}{N_c + 1}(T_H - T_C) + \frac{C_R \varepsilon_{RT}}{N_c}(T_H^{4.67} - T_C^{4.67})$ (T. Nast, Multilayer insulation system)

Level	q, W/m ²	$N_{\scriptscriptstyle S}$, layers	\overline{N} ,layers/cm	$T_{\scriptscriptstyle H}$,K	$T_{_C}$,K	$\boldsymbol{\mathcal{E}}_{RT}$
5/8 K	0.05	10	19.0	80	10	0.03
40/80 K	1.5	30	37.4	300	80	0.03

Heat loads by the MLI

Ts, K		Heat load Q, W				
	11, rX	2 K	5/8 K	40/80 K		
40	2-10-40-300	-	0.3	48.7		
50	2-10-50-300	-	0.5	48.2		
60	2-10-60-300	-	0.7	47.7		
70	2-10-70-300	-	1.0	47.1		
80	2-10-80-300	-	1.3	46.3		

- 2 K: -
- 5/8 K: ~0.3-1.3 W
- 40/80 K: ~46-49 W

15

XFEL Thermal analysis summary

Others including heat loads from HOM absorbers, cablings, etc. is extracted from refrigerator budget, where 2 K: 0.4 W, 5/8 K: 1.7 W, 40/80 K: 5.4 W.

- 2 K: 2.1 W.
- **5/8 K: 6-12 W** strongly depending on the 40/80 K shield temperatures.
- 40/80 K: 110-120 W slight effected by the 40/80 K shield temperatures.

XFEL Heat load measurements

Test	Cold mass vendor	Assembly	Time
PXFEL2_1	Felguera, Spain	CEA, Saclay	Jun. 2011
Dummy test	DESY	DESY	Feb. 2011
PXFEL3 (B)	Thales, France	DESY	Nov. 2010
PXFEL3 (A)	Thales, France	DESY	Sep. 2010
PXFEL2 (B)	Felguera, Spain	CEA, Saclay	Jun. 2010
PXFEL2 (A)	Felguera, Spain	CEA, Saclay	May 2010
PXFEL1	IHEP, China	DESY	Jul. 2009

- Tested at Cryomodule test bench (CMTB).
- Four modules and seven measurements plus dummy test.
- PXFEL2_1: New MLI at 40/80 K shield.
- PXFEL3 (B): Disconnected the 40/80 K thermal intercept of current leads.
- PXFEL2 (B): T sensors at sliding muff range calibrations.
- Dummy test: pure heat load of CMTB without the module.

______17

XFEL Methodologies and instrumentation

European

XFEL Methodologies and instrumentation

5/8 K and 40/80 K: Enthalpy balance

For Helium

$$\dot{Q} = \dot{m}_{He} C_{pHe} \Delta T_{He}$$

For Cold mass

Pure heat load of 99 W At 40/80 K

Cold mass: AL of 388 kg and helium of 0.5 kg. Averaged T increase: 58.9 K to 66.3 K within 2 hours. Heat load of 94 W

18

European XFEL

Methodologies and instrumentation

European **XFEL**

Methodologies and instrumentation

XFEL Results and discussion

- 2 K: PXFEL1 quite higher than others. Differences from others (due to installation skill of current leads)
- 5/8 K: PXFEL3 (B) higher than others.
- 40/80 K: ∆Q=14 W from PXFEL3.
 Calculated: 12 W, fit reasonably
- 40/80 K: PXFEL3 (A) higher than others.
- 40/80 K: PXFEL2_1 lower than others.

- 5/8 K: Reasonable agreements. Strongly effected by outer shield T.
- 40/80 K: Could fit well with assumption of 1 W/m² through the MLI for PXFEL2_1.

22

XFEL Results and discussion

Layout of current leads causes quite high 2 K heat load of PXFEL1 (Confirmed)

Tuner misalignment causes higher 40/80 K heat load of PXFEL3 (Guess)

PXFEL2_1

New MLI at 40/80 K shield in PXFEL2_1 improves the thermal performance **(TBC)**

XFEL Conclusions

Static heat load summary of PXEFL modules

Level	Measured	Calculated	XRB	Factor	XRC
40/80 K	100-120	100-120	83	1.5	125
5/8 K	6-11	6-12	13	1.5	20
2 K	6	2.1	4.8	1.3	6

XRB: XFEL refrigerator budget, XRC: XFEL refrigerator capacity

- 40/80 K: **100-120 W** depending on the performance of MLI.
- **5/8 K: 6-12 W** depending on the outer shield temperatures.
- 2 K: 3.5-6 W depending on the installation skills of current leads.
- Measured and calculated values have a good agreements at 5/8 K and 40/80 K.
- Big deviation at 2 K caused by underestimation of cabling heat load and the installation skills of current leads.
- Specified refrigerator capacity still could cover the heat load at 2 K and 40/80 K (Even come to limit) and have enough margin at 5/8 K.

European XFEL

Sources and references

- 1. B. Petersen, Some fundamentals of cryogenic and module engineering with regard to SRF technology, SRF2007 Tutorial Program
- 2. T. Peterson, What's inside a TESLA Cryomodule, Proton driver meeting, 2005
- 3. C. Pagani, Cryomodule design, assembly and alignment, SRF 2005
- 4. N. Ohuchi, Fundamentals of cryomodule, SRF2009 Tutorial Program
- 5. T. Peterson, ILC cryogenic systems reference design, CEC 2007
- 6. T. Nast, 'Multilayer insulation system' in Handbook of cryogenic engineering, 1998
- 7. Thomas M. Flynn, Cryogenic Engineering, Second Edition, 2005
- 8. S. D. Augustynowicz, Cryogenic Insulation System for Soft Vacuum, CEC2000
- 9. L. Mazzone, Measurement of multi-layer insulation at high boundary temperature, ICEC19
- 10. L. Dufay, A large-scale test facility for heat load measurements down to 1.9K, CEC2002
- 11. J. Fesmire, Performance characterization of perforated multilayer insulation blankets, ICEC19, 2002
- 12. C. Darve, Thermal performance measurements for a 10-meter LHC dipole prototype, LHC-Project-Note-112, 1997
- 13. A. Ballarino, Conduction-cooled 60A resistive current leads for LHC dipole correctors, LHC project report 691, CERN, 2004.
- 14. A. Ballarino, Current leads for the LHC Magnet System, MT17, Switzerland, 2001
- 15. M. J. White, Numerical model for conduction cooled current lead heat loads, Presented to CEC 2011
- 16. Cryocomp properties version 3.0, Cryocomp, Eckels Engineering, 1997
- 17. NIST Cryogenic Materials Database, http://cryogenics.nist.gov/MPropsMAY/Polyimide%20Kapton/PolyimideKapton_rev.htm
- 18. HEPAK, Cryodata, Inc., Version 3.40
- 19. Gregory Nellis, Sanford Klein, Heat transfer, Cambridge university press, 2009
- 20. M. Dohlus, TESLA RF power coupler thermal calculations, LINAC 2004, Germany
- 21. T. Peterson, FERMILAB input coupler heat calculations, 1993, TESLA report 1993-37
- 22. S. Barbanotti, Traction tests for the qualification of the TTF/ILC composite support posts, INFN, Italy, 2008
- 23. Y. Bozhko, XFEL Cryomodule Test Bench, ICEC21, 2006
- 24. N. Ohuchi, SCRF Cryomodule R&D in KEK-STF, 2nd Asia ILC R&D seminar, 2008
- 25. N. Ohuchi, Experimental study of thermal radiation shield for ILC Cryomodule, ICEC23
- 26. N. Ohuchi, Study of thermal radiation shields for the ILC Cryomodule, Presented to CEC 2011

Thank you for your attention!

