

Tsung-Dao Lee Institute

Combination of ATLAS searches for Higgs boson decays into a photon and a massless dark photon

Workshop on Multi-front Exotic phenomena in Particle and Astrophysics (MEPA 2024)

Khanh N. Vu

Yunnan, 25/08/2024

[JHEP 08 \(2024\) 153](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2023-01/) [2406.01656](https://arxiv.org/abs/2406.01656)

- Thanks and credits to the Chinese ATLAS collaborators:
	- **Michigan**: Zirui Wang
	- **Wisconsin**: Rui Zhang
	- •**IHEP**: Xinhui Huang, Zhijun Liang
	- **TDLI/SJTU**: Khanh N. Vu, Qibin Liu, Shu Li, Changqiao Li

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Combination of searches for Higgs boson decays into a photon and a massless dark photon using $p p$ collisions at $\sqrt{s} = 13 \text{ TeV}$ with the ATLAS detector

The ATLAS Collaboration

A combination of searches for Higgs boson decays into a visible photon and a massless dark photon $(H \to \gamma \gamma_d)$ is presented using 139 fb⁻¹ of proton-proton collision data at a centre-of-mass energy of \sqrt{s} = 13 TeV recorded by the ATLAS detector at the Large Hadron Collider. The observed (expected) 95% confidence level upper limit on the Standard Model Higgs boson decay branching ratio is determined to be $\mathcal{B}(H \to \gamma \gamma_d)$ < 1.3% (1.5)%. The search is also sensitive to higher-mass Higgs bosons decaying into the same final state. The observed (expected) 95% confidence level limit on the cross-section times branching ratio ranges from 16 fb (26 fb) for $m_H = 400$ GeV to 1.0 fb (1.5 fb) for $m_H = 3$ TeV. Results are also interpreted in the context of a minimal simplified model.

Today's talk

Dark Matter

- Dark Matter existence supported by plethora of astrophysical measurements.
	- NOT sufficiently explained by Standard Model, making DM nature a central question in particle physics.
	- *DM candidate*: a strong consideration in many beyond-the-SM models.

- Probes of DM underway in several areas.
- Direct searches for elastic scattering between DM and nuclei or electrons.
- Indirect searches for products of DM annihilation or decay.
- Collider searches for production of DM from collisions of SM particles
	- complementarity to other detections at GeV-TeV scale.
	- provide access to particles mediating interactions between DM and SM sector.

[1810.09420](https://arxiv.org/pdf/1810.09420.pdf)

Dark Matter probes at ATLAS

- ATLAS sensitive to wide variety of potential DM candidates.
- Most of DM searches at the LHC focus on *Weakly Interacting Massive Particles* (*WIMPs)* in *simplified models or extended Higgs sectors.*

• Also strong consideration in other *Dark Sector particles* such as Dark Photon, Dark Higgs, Dark QCD, and so on.

Dark Photon scenario

Kinetic mixing
$$
U(1)_a \times U(1)_b
$$
 [2005.01515]
\n
\n**6**
\n**6**
\n**6**
\n**7**
\n**8**
\n**8**
\n**8**
\n**9**
\n**10**
\n**11**
\n**11**
\n**12**
\n**13**
\n**14**
\n**15**
\n**16**
\n**17**
\n**18**
\n**19**
\n**10**
\n**10**
\n**11**
\n**10**
\n**11**
\n**12**
\n**13**
\n**14**
\n**15**
\n**16**
\n**17**
\n**18**
\n**19**
\n**10**
\n**10**
\n**11**
\n**12**
\n**13**
\n**14**
\n**15**
\n**16**
\n**17**
\n**18**
\n**19**
\n**10**
\n**10**
\n**11**
\n**12**
\n**13**
\n**14**
\n**15**
\n**16**
\n**17**
\n**18**
\n**19**
\n**10**
\n**11**
\n**12**
\n**13**
\n**14**
\n**15**
\n**16**
\n**17**
\n**18**
\n**19**
\n**10**
\n**11**
\n**11**
\n**12**
\n**13**
\n**14**
\n**15**
\n**16**
\n**17**
\n**18**

- ◆ $\mathcal{B}(H \rightarrow \text{und}) < \mathcal{O}(10\%)$ motivates searches for DS particles coupled to Higgs. One attractive candidate is dark photon ($\gamma_{\rm d}$).
	- \bullet Force carrier of extra $U(1)_{d}$, providing portal between DS and SM via kinetic mixing with visible $U(1)$.
	- ๏ Introducing dark matter self-interactions for solving *[small-scale](https://doi.org/10.1103/PhysRevLett.110.211302) structure [formation](https://doi.org/10.1103/PhysRevLett.110.211302) problem* and *[PAMELA-Fermi-AMS2](https://doi.org/10.1103/PhysRevD.79.015014) anomaly*.
	- ๏ Enhancing light DM annihilation rate, making *[asymmetric](https://doi.org/10.1016/j.physrep.2013.12.001) DM [scenarios](https://doi.org/10.1016/j.physrep.2013.12.001)* phenomenologically viable.
- **❖ Massive** γ _d couples directly to SM, more accessible and consideration in experiment searches.
- **❖ Massless** $γ_d$ **NO direct couplings with SM, less attention but** can provide comparably rich experimental target.
- **❖** In this talk, $γ_d$ is collider-stable, resulting in Missing Transverse Momentum $(E_{\text{T}}^{\text{miss}})$ in event final-state. T

Dark Photon search using Higgs

� Potential approach is search for $H\to \gamma\gamma_{\rm d}$ in resonant $\gamma+E_{\rm T}^{\rm miss}$ signatures via three Higgs production modes

 \diamond Both ATLAS and CMS published various results for $H\to \gamma\gamma_d$ searches in distinct final states using LHC full Run 2 data:

"Process" refers to production mode $\overrightarrow{\lambda}$ * "Channel" refers to selection topology

VBF channel

[EPJC 82 \(2022\) 105](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2021-17/)

- ❖ Topology:
	- \bullet 1 photon, 2 or 3 VBF jets, $E_{\rm T}^{miss}$
	- \bullet Lepton (e, μ) veto
- ❖ Background estimation
	- \bullet $W(\rightarrow \ell \nu)\gamma$ + jets, $Z(\rightarrow \nu \nu)\gamma$ + jets, and e-fake $γ$ from control regions (CR).
	- \circ jet-fake γ from data-driven.
- ❖ Fit to data on $m_{j_1j_2}$, $m_{\rm T}(\gamma, E_{\rm T}^{\rm miss})$ bins in SR and 4 CRs.

Trigger Photons $E_{\rm T}^{\gamma}$ [GeV] $E_{\rm T}^{\rm miss}$ [GeV] **Jets**

Leptons

- ❖ Topology:
	- \bullet 1 photon, 2 or 3 VBF jets, $E_{\rm T}^{miss}$
	- \bullet Lepton (e, μ) veto
- ❖ Background estimation
	- \bullet $W(\rightarrow \ell \nu)\gamma$ + jets, $Z(\rightarrow \nu \nu)\gamma$ + jets, and e-fake $γ$ from control regions (CR).
	- \circ jet-fake γ from data-driven.
- ❖ Fit to data on $m_{j_1j_2}$, $m_{\rm T}(\gamma, E_{\rm T}^{\rm miss})$ bins in SR and 4 CRs.

Channels

Trigger Photons $E_{\rm T}^{\gamma}$ [GeV] $E_{\rm T}^{\rm miss}$ [GeV] **Jets**

Leptons

VBF channel

[EPJC 82 \(2022\) 105](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2021-17/)

ZH channel

[JHEP 07 \(2023\) 133](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-13/)

Trigger Photons E_T^{γ} [GeV] $E_{\rm T}^{\rm miss}$ [GeV] **Jets**

Channels

Leptons

- ❖ Topology
	- \bullet 1 photon, no more than 2 jets, $E_{\rm T}^{miss}$
	- ๏ 2 same-flavour, oppositely charged (SFOC) leptons within *Z* mass window
- ❖ BDT applied to enhance signal-bkg separation.
- ❖ Bkg estimation
	- \bullet Irreducible $VV\gamma$ from a dedicated CR.
	- **图** Major $Z\gamma$ + jets, Z + jets and *e*-fake $γ$ from data-driven
- ❖ Fit to data performed including SR (binned by BDT) and *VVγ* CR.

No significant deviation from SM prediction.

- ❖ Topology
	- \bullet 1 photon, no more than 2 jets, $E_{\rm T}^{miss}$
	- ๏ 2 same-flavour, oppositely charged (SFOC) leptons within *Z* mass window
- ❖ BDT applied to enhance signal-bkg separation.
- ❖ Bkg estimation
	- \bullet Irreducible $VV\gamma$ from a dedicated CR.
	- **图** Major $Z\gamma$ + jets, Z + jets and *e*-fake $γ$ from data-driven
- ❖ Fit to data performed including SR (binned by BDT) and *VVγ* CR.

95% CL limit on $BR(H\rightarrow \gamma\gamma$ _d [%]

ZH channel

[JHEP 07 \(2023\) 133](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-13/)

Trigger Photons $E_{\rm T}^{\gamma}$ [GeV] $E_{\rm T}^{\rm miss}$ [GeV] **Jets**

Channels

Leptons

11

processes.

๏ Including contributions from both ggF and VBF processes.

Motivation for combination

13

95% CL limit on BR

Mass range probed for *H*

� Strong motivation for stat. combination to bring the best LHC constraint on $H_{125} \to \gamma \gamma_{\rm d}$ and the most comprehensive search in terms of BSM *H* mass.

 $H_{\text{BSM}} \rightarrow \gamma \gamma_{\text{d}}$

- ❖ 3 ATLAS channels probe complementary phase spaces in terms of jet and lepton multiplicities.
- ❖ Also provided very competitive results compared to CMS in terms of limits on $\mathscr{B}(H_{125} \to \gamma \gamma_d)$ and probed *H* mass range. 0 0 0 9gF

$H_{125} \rightarrow \gamma \gamma_d$

Combination scenarios

• Most straightforward and worthy scenarios for the statistical combination, based on 3 input analyses.

14

❖ For this combination, adjustments wrt original VBF channel ๏ ggF process contribution included for BSM Higgs decay search.

-
- ๏ Extend *H* mass to 3 TeV.

15

Stat. combination Statistical method **Likelihood Likelihood** *Elikelihood* function

- Combination results obtained from a combined Likelihood function:
	- Product of likelihoods from individual channels within the combination.
	- These channel likelihoods themselves products of likelihoods computed from final observables in various categories in a single analysis.

• Upper limits on POI derived using profile-likelihoodratio test statistic with *CLs [method](https://doi.org/10.1088/0954-3899/28/10/313)* following *[asymptotic](https://doi.org/10.1140/epjc/s10052-011-1554-0) formulae*.

Stat. combination Systematic uncertainty correlation

❖ Uncertainties from **luminosity**, **pile-up modelling** are correlated.

❖ **Background modelling uncertainties**

๏ Uncorrelated since bkg composition and phase space are different.

❖ **Experimental uncertainties**: correlated where appropriate, exceptions are:

๏ Uncertainties related to same objects but **implemented with different schemes** among input channels (e.g Jet-Energy-Resolution).

-
- ๏ Uncertainties **heavily constrained or pulled** in original input analyses.

❖ **Signal modelling uncertainties**

๏ Stemming from choice of parton distribution functions and QCD calculations; minor impact on final results; uncorrelated.

17

Results -- SM Higgs

◆ VBF-ZH combination set strongest limit on $\mathscr{B}(H_{125} \rightarrow \gamma \gamma_d)$ at LHC to date.

๏ improved by 29% wrt VBF channel.

- ℬ(*H*¹²⁵ → *γγ*d) ❖ Comparable impacts from Syst. and Stat. uncertainties.
	- \Leftrightarrow Leading syst. uncertainties from bkg modelling, Jets, $E_{\textrm{T}}^{miss}$, Fake bkg and MC stat. T

18

❖ VBF-ggF combination set most comprehensive constraints on $\sigma_{\rm ggF+VBF}\times \mathscr{B}(H_{\rm BSM} \to \gamma\gamma_{\rm d})$ for H mass up to 3 TeV.

 \bullet improved by 33% wrt ggF channel at $m_H = 1.5$ TeV.

Results -- BSM Higgs

- ❖ Stat. uncertainty dominant at higher *H* masses.
- ❖ Leading syst. uncertainties from fake-bkg estimate and bkg modelling. Others share ~20% impact each.

Physics interpretation for SM Higgs results

- -
	-

19

 \bullet BR of $H \to \gamma \gamma_d$ / $\gamma_d \gamma_d$ / $\gamma \gamma$ can be expressed as functions of $U(1)_d$ fine-structure-constant α_d and mixing parameter ξ

$$
BR_{\gamma\gamma_D} = BR_{\gamma\gamma}^{SM} \frac{r_{\gamma\gamma_D}}{1 + r_{\gamma_D\gamma_D} BR_{\gamma\gamma}^{SM}}
$$

$$
BR_{\gamma_D\gamma_D} = BR_{\gamma\gamma}^{SM} \frac{r_{\gamma_D\gamma_D}}{1 + r_{\gamma_D\gamma_D} BR_{\gamma\gamma}^{SM}}
$$

$$
BR_{\gamma\gamma} = BR_{\gamma\gamma}^{SM} \frac{(1 + \chi\sqrt{r_{\gamma\gamma}})^2}{1 + r_{\gamma_D\gamma_D} BR_{\gamma\gamma}^{SM}}
$$

$$
r_{\gamma\gamma_D} = 2X^2 \left(\frac{\alpha_D}{\alpha}\right)
$$

$$
r_{\gamma_D\gamma_D} = X^2 \left(\frac{\alpha_D}{\alpha}\right)^2
$$

$$
r_{\gamma\gamma} = X^2
$$

$$
X = \frac{\xi^2}{3F(1-\xi^2)}
$$

 Observed 95% CL d $H \rightarrow \gamma \gamma$

VBF-*ZH* combination

H→inv Observed 95% CL

 $\frac{1}{\sqrt{2}}$ -0.020 $\text{BR}(H_{125}{\to}\gamma\,\gamma\,) = 0.247^{+0.022}_{-0.020}$ *H*→γγ ATLAS measurement Nature 607 (2022) 52

 $BR(H_{125} \rightarrow \gamma \gamma) = 0.227\%$ *H*→γγ SM prediction arXiv:1610.07922 $B(H \rightarrow \gamma \gamma_d) = 0.2 \%$

 $B(H \rightarrow \gamma \gamma_d) = 0.1 \%$

PLB 842 (2023) 137963

BR limits and measurements from this ${\sf combination} ,$ $H \to {\sf inv}$ or $H \to \gamma \gamma$ can be translated into constraints in $(\alpha_{\rm d}, \xi)$.

- $\hat{\mathbf{v}}$ $\xi \simeq 0.7$ at α _d = 1 excluded by $\mathscr{B}(H_{125}\to \mathrm{inv})$ limit interpreted in terms of $H_{125} \rightarrow \gamma_d\gamma_d$ signal.
- **❖** H_{125} → γ γ_d combination provides additional sensitivity in low- $\alpha_{\rm d}$ region, which is disfavoured by ATLAS $\mathscr{B}(H_{125} \to \gamma \gamma)$ measurement.
- ❖ Still need $~o$ $O(1)$ better in sensitivity for $H_{125} \rightarrow \gamma \gamma_d$ search.

Physics interpretation for SM Higgs results

20

 $\chi=+1$: scenario with constructive interference from $H_{125}\to \gamma\gamma_{\rm d}$ messenger sector in *H*¹²⁵ → *γγ*

Conclusion

21

- ❖ Combined search for Higgs decays into photon and massless dark photon has been performed:
	- \odot **SM Higgs**: VBF-*ZH* combination sets the most stringent limits on $\mathscr{B}(H_{125} \to \gamma \gamma_d)$ at LHC to date.
	- mass up to 3 TeV.
- � First physics interpretation of the $H_{125} \to \gamma\gamma_0$, $H_{125} \to$ $\rm inv$ and $H_{125} \to \gamma\gamma$ results in the Dark Photon Minimal Simplified Model with a generic messenger sector.
- ❖ See [Lailin XU's talk](https://indico.ihep.ac.cn/event/22411/timetable/?view=standard#15-recent-results-on-dark-phot) for more results on Dark Photon searches at LHC.

Thank you for attention

 $_{\odot}$ BSM Higgs: VBF-ggF combination provides most comprehensive constraint on $\sigma_{\rm VBF+ggF} \times \mathscr{B}(H_{125}\to \gamma\gamma_{\rm d})$ for Higgs

Backup

Auxiliary

Auxiliary

Stat. combination

test statistic is used with the CL_s method [74] following the asymptotic formulae [75].

The results of the combination presented in this paper are obtained from a likelihood function $L(\mu, \vec{\theta})$, where μ denotes the parameter of interest (POI) of the model, and $\vec{\theta}$ constitutes a set of nuisance parameters, encoding the systematic uncertainty contributions and background normalisation factors that are constrained by CRs in data. The final likelihood function $L(\mu, \vec{\theta})$ is the product of the likelihoods from individual channels within the combination, which are themselves products of likelihoods computed from the final observables in various categories in a single analysis. To derive upper limits on the POI, the profile-likelihood-ratio

Orthogonality check

- -
- -
- Treated as statistically independent.

Full run-2 data

