

Exploring dark sectors at the NA64 experiment

Workshop on Multi-front Exotic phenomena in Particle and Astrophysics

Martina Mongillo, on behalf of the NA64 Collaboration

25.08.2024

Renormalizable portals to dark sectors: Standard Vector portal \rightarrow dark photon Dark Sector Portal Model Scalar portal \rightarrow dark Higgs Fermion portal \rightarrow heavy neutral leptons **NA64 main motivation:** sub-GeV thermal dark matter 10^{-7} $10^{-2} - 10^{-1}$ 10^{-8} 10^{-9} MB-N $y=\epsilon^2\alpha_D(m_\chi/m_{A'})^4$ *'ermion* $\mathcal{L}_{DP} = \frac{m_{A\prime}^2}{2} A'_{\mu} A'^{\mu} + A'_{\mu} \left(g_D \mathcal{J}_{DS}^{\mu} - e\varepsilon \mathcal{J}_{EM}^{\mu} \right)$ 10^{-10} 10^{-11} **DM** abundance 10^{-12} 10^{-13} $\Omega_{\chi} \propto \frac{1}{<\sigma v>} \approx 0.24$ 10^{-14} $\alpha_D = 0.1$ Free parameters: NA64 collaboration, $\sigma \upsilon (\chi \chi \to A'^* \to ff) \propto \epsilon^2 \alpha_D \frac{m_{\chi}^2}{m_{\Lambda'}^4} = \frac{y}{m_{\chi}^2}$ PRD 104, L091701 (2021) $m_{A^{'}}/m_{\chi}=3$ $m_{A'}, m_{\chi}, \epsilon, \alpha_D = \frac{e_D^2}{4\pi}$ 10^{-15} 10^{-2} 10^{-1} 10^{-3} 1 m_{γ}, GeV

Swiss National Science Foundation

ETH zürich

Swiss National Science Foundation

Combined statistics 2016-2022: **9.4** \cdot **10**¹¹ **EOT** \rightarrow Unblinded data in E_{ECAL} vs E_{HCAL} plane:

 10^{-7}

LSND

NA64 places the most stringent limits in the thermal LDM parameter space \rightarrow Majorana and scalar scenarios excluded up to ~0.1 GeV

ETH zürich

(IPA

 Swiss National Science Foundation

Background source	Background, n_b
(i) dimuon losses or decays in the target	0.04 ± 0.01
(ii) $\mu, \pi, K \rightarrow e + \dots$ decays in the beam line	0.3 ± 0.05
(iii) lost γ , n , K^0 from upstream interactions	0.16 ± 0.12
(iv) Punchthrough leading n, K_L^0	< 0.01
Total n_b (conservatively)	0.51 ± 0.13

Setup improvements:

- Veto Hadronic CALorimeter (VHCAL) prototype addition
 → improve hermeticity
- Lyso-based SRD with lower SR threshold \rightarrow reduce μ, π, K contaminants

LSND

New data collected during 2023+2024: 1.3 \cdot 10¹² EOT \rightarrow analysis ongoing

 10^{-7}

Result extension to other <u>new physics</u> cases, e.g.:

Axion-Like Particles (ALPs)

Exploiting both *visible* & *invisible* signatures:

- $a \rightarrow \gamma \gamma$ decay beyond setup \rightarrow missing energy
- $a \rightarrow \gamma \gamma$ decay in HCALs \rightarrow displaced vertex

Swiss National

OTHER NEW PHYSICS SEARCHES

Result extension to other <u>new physics</u> cases, e.g.:

- Axion-Like Particles (ALPs)
- Inelastic Dark Matter (iDM)

Exploiting only invisible signatures:

Analysis on visible signatures ongoing:

PA Swiss National Science Foundation

ETH zürich

OTHER NEW PHYSICS SEARCHES

64 A R

Result extension to other <u>new physics</u> cases, e.g.:

- Axion-Like Particles (ALPs)
- Inelastic Dark Matter (iDM)
- Lepton Flavour-Changing scalar φ (LFC)

Swiss National

NA64 COMPLEMENTARY SEARCHES

A'-bremsstrahlung production scales as $^{1}/_{m_{A'}^{2}}$ → suppressed signal yield at higher *A'* masses

How to enhance the sensitivity at higher masses?

1. Using e^+ beam \rightarrow resonant A' production 2. Using μ beam \rightarrow radiative A' production

ETH zürich (PA

Resonant e^+e^- annihilation in A':

e+

Signal enhancement in region: $\sqrt{2m_e E_{thr}} < m_{A\prime} < \sqrt{2m_e E_0}$

NA64 EXPLORATION WITH e^+ BEAM

 Collected data with different beam energies to scan the parameter space

 m_{χ}, GeV

Statistics 2022 data: $2 \cdot 10^{10}$ MOT \rightarrow Events in E_{CAL} vs outgoing momentum plane:

 \rightarrow 90% C.L. exclusion limits on benchmark model $L_{\mu} - L_{\tau}$:

New data collected in 2023: $1.5 \cdot 10^{11}$ MOT (x10 more statistics) \rightarrow 2024: additional ~50 days of beam-time starting in 2 weeks

Swiss National **Science Foundation**

<u>Programs</u>: NA64 conducts **4 complementary programs** using different initial beams from SPS

<u>Status</u>: Analyses ongoing with **improved setups** and **higher statistics**

<u>Results</u>: **Stringent limits** placed on LDM scenarios and other New Physics models

Planned upgrades during LS3:

ETH zürich

- Faster electronics (DAQ and tracker readout) to increase beam intensity $(1.5 \cdot 10^7 e^{-1}/\text{spill})$ and $5 \cdot 10^7 \mu/\text{spill}$)
- Improved detectors hermeticity and performance

Exploration goal after LS3

THANK YOU!

<u>Acknowledgments</u>

NA64 collaboration ETH Zürich group: P. Crivelli, B. Banto Oberhauser, H.Sieber IFIC group: L. Molina Bueno, M. Tuzi

BACKUP SLIDES

