Recent Results on Dark Photon Search at the LHC

Lailin Xu

University of Sci. & Tech. of China

MEPA 2024

2024.8.24-27, Kunming, Yunnan

Dark photons

 Dark photon was originally proposed as a hypothetical vector boson that couples to charged particles only through kinetic mixing

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{A'}$$
$$\mathcal{L}_{A'} = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \underbrace{\frac{\epsilon}{2} B_{\mu\nu} F'^{\mu\nu}}_{2} - \frac{1}{2} m_{A'}^{2} A'_{\mu} A'^{\mu}$$

ϵ : kinetic mixing term

 $B^{\mu\nu}$: hyper charge field strength $F'^{\mu\nu}$: U'(1) field strength

Dark photons

- Many similar particles to the original dark photon have been proposed, with different names in various contexts
 - Dark photons: massive A', massless γ_D via the kinematic mixing coupling
- For the topic of massless A', see <u>Vu Ngoc Khanh's talk</u>

- Extra gauge bosons: direct gauge coupling
 - Z': $U(1)_{B-L} Z', U(1)_{L_{\alpha}-L_{\beta}} Z' (\alpha, \beta \in \{e, \mu, \tau\}, B$: baryon number, L_{α} lepton flavor number)
- Hidden sectors:
 - Dark Z bosons: Z_D via the Higgs $H H_D$ mixing coupling
 - Dark photon dark matter models
- The common feature of these particles: New massive force mediator of new Abelian gauge symmetry U'(1) (or $U(1)_D$)
- In this talk, all these new force mediators are referred as dark photons

Minimal dark photon models: massive A'

Minimal A'

- No direct interaction between dark photon and the SM fermions exists
- Dark photon can couple to the SM fermions through the kinetic mixing
- Only two free parameters: $m_{A'}, \epsilon$
- Production: Bremsstrahlung, Annihilation, Meson decay and Drell-Yan

A' ~~~~

Minimal A'

Minimal A': experimental searches

- Experimental search: $A' \rightarrow ff$ resonances in beam-dump, fixed target, and collider experiments $(pp, p\bar{p}, ee)$
- Prompt searches
 - Sensitive to shorter lifetimes
 - Bump hunt on large background
- Displaced searches
 - Sensitive to longer lifetimes
 - smaller ϵ region
 - Background free

$$au_{A'} \propto [m_{A'}\epsilon^2]^{-1}$$

- A: bump hunts
- **B**: displaced vertex searches, short decay lengths
- **C**: displaced vertex searches, long decay lengths

LHCb $A' \rightarrow \mu\mu$ search

PRL 124, 041801 (2020)

- Used 5.5fb⁻¹ Run2 data
- Prompt searches
 - Meson decays : $m_{A'} < 1 \text{ GeV}$
 - Drell-Yan: $m_{A'} > 1 \ GeV$
- Displaced searches (0.1 1cm) for long lived A' search

 \Rightarrow isolation applied

- $214 < m_{A'} < 350 \, MeV$

 10^{7}

10⁶

10⁵

10⁴

 10^{3}

 10^{2}

Candidates $/\sigma[m(\mu^+\mu^-)]/2$

10

CMS $A' \rightarrow \mu\mu$ prompt search

- Data driven search for a narrow dimuon resonance in [11.5, 200] GeV
 - Bump hunt on the dimuon mass using analytical signal and background PDFs
 - The [45, 75] GeV and [110, 200] GeV resonance mass ranges exploiting conventional triggers
 - The [11.5, 45] GeV mass range relying on scouting triggers

CMS $A' \rightarrow \mu\mu$ prompt search (2)

- Search for GeV-scale $A' \rightarrow \mu \mu$ ([1, 8] GeV)
- Use scouting data with trigger p_T threshold down to 3 GeV

JHEP 12 (2023) 070

Extra gauge bosons: Z'

$$L_{\mu} - L_{\tau} Z'$$

- Beyond the minimal model, dark photon can have direct interactions with the SM particles
- Well motivated and studied symmetries are
 - $\begin{array}{ll} & U(1)_{B-L} \, Z' \\ & U(1)_{L_{\alpha}-L_{\beta}} \, Z' \end{array} \end{array} \overset{B: \text{ baryon number, } L_{\alpha} \text{ lepton flavor number} \\ \alpha, \beta \in \{e, \mu, \tau\}, \\ L_{Z'} = -\frac{1}{4} F_{\alpha\beta} F^{\alpha\beta} + \frac{1}{2} M_{Z'}^2 Z'^{\alpha} Z'_{\alpha} g_{Z'} Z'_{\alpha} (\bar{\ell}_2 \gamma^{\alpha} \ell_2 + \bar{\mu} \gamma^{\alpha} \mu \bar{\ell}_3 \gamma^{\alpha} \ell_3 \bar{\tau} \gamma^{\alpha} \tau), \end{array}$
- Less constrained and almost anomaly free
 - Possible explanation of muon g-2 and flavor anomalies
- $L_{\mu} L_{\tau} Z'$ is particularly interesting since it is the least constrained experimentally

Lailin Xu

- Z' only couplings to μ , τ , ν_{μ} , ν_{τ}
- Only two free parameters: $m_{Z'}$, g
- Produced in Drell-Yan production at the LHC
 - Rare Z decays: $pp \rightarrow Z^{(*)} \rightarrow Z' \mu \mu$
 - Rare W decays: $pp \rightarrow W^{\pm(*)} \rightarrow Z' \mu v$

Xiao-Gang He *et al, <u>PRD 44 (1991) 2118-2132</u>*

8/25/2024

ATLAS $L_{\mu} - L_{\tau} Z'$ search in rare Z decay

Lailin Xu

 10^{3}

mz' [GeV]

ATLAS $L_{\mu} - L_{\tau} Z'$ search in rare W decay

• 3μ final state: $pp \to W^{\pm(*)} \to Z'\mu\nu \to \mu\mu\mu\nu$

arXiv:2402.15212

Model-independent limits

ATLAS $L_{\mu} - L_{\tau} Z'$ search

• Statistical combination of 3μ and 4μ final states

arXiv:2402.15212

m_{z'} [GeV]

Manuel Drees et al, PLB 791 (2019) 130-136

Hidden sectors: Dark Higgs, Dark Matter

Dark Sector SM $U(1)_D$ $U(1)_Y$ $SU(3) \times SU(2)_L$ G_D $\times U(1)_Y$ Dark particles(dark photon Fermions, g, γ, W, Z, H A', dark Higgs h_D , ...) ϵ

The Higgs portal

- Mass of dark photon indicates that $U(1)_D$ is spontaneously broken
- A' can acquire a mass from a dark Higgs mechanism \rightarrow A new scalar (dark Higgs boson, H_D)

$$V(H, H_D) = -\mu_H^2 |H|^2 - \mu_{H_D}^2 |H_D|^2 + \kappa |H|^2 |H_D|^2 + \lambda |H|^4 + \lambda_D |H_D|^4$$

- Give rise to rich phenomenology
 - Rare Z boson decays: $Z \rightarrow A'h_D$
 - Rare Higgs boson decays: $h \rightarrow ZZ_D$, $h \rightarrow Z_DZ_D$

 κ : mixing between the SM Higgs and the dark Higgs

ATLAS A' search in rare Z decays

- Dark Higgs-strahlung process in $Z \to A'h_D$, $h_D \to A'A'^{(*)}$, $A' \to ff$
 - Final state: $4l + X (4e, 4\mu, 2e2\mu)$
 - $m_{h_D} > 2m_{A'}$: three on-shell A'
 - $m_{A'} < m_{h_D} < 2m_{A'}$: two on-shell A'

CMS A' search in rare Higgs decays

- $h \rightarrow ZZ_D$: through $Z Z_D$ mixing, the kinetic-mixing parameter ϵ
 - 118 < m_{4l} < 130 GeV, 40 < m_{Z1} < 120 GeV

CMS A' search in rare Higgs decays

• $h \rightarrow Z_D Z_D$: through $h - h_D$ mixing, the Higgs mixing parameter κ

CMS A' non-prompt search

- Search for long-lived A' via the Higgs portal
- Use early Run3 data at 13.6 TeV (36.6 fb⁻¹ collected in 2022)
- Run 3 trigger improvements to mitigate efficiency
 - Achieved similar sensitivity to Run 2 data with only 1/3 of the luminosity in Run 3 (2022)

Signature :
≥ 1 displaced dimuon vertex

 H_{D}

JHEP 05 (2024) 047

 $\mathbf{Z}_{\mathbf{D}}$

 $\mathbf{Z}_{\mathbf{D}}$

Lailin Xu

 μ^{-}

ATLAS A' non-prompt search EPJC 84 (2024) 719

- Search for long-lived A' with $m_{A'} \in [0.1, 15]$ GeV from exotic Higgs decays
- The Falkowski-Ruderman-Volansky-Zupan (FRVZ) model is used as a benchmark signal
 - Higgs decays into a pair of dark fermions $H \rightarrow f_d f_d$
 - f_d further decays into a long-lived A' and an undetected hidden lightest stable particle (HLSP):
 - Due to the large Lorentz boosts, A' decay products are collimated \rightarrow referred to as dark-photon jets (DPJ) (JHEP 06 (2023) 153)

Jet (DPJ)

ATLAS A' non-prompt search EPJC 84 (2024) 719

- Search for long-lived A' with $m_{A'} \in [0.1, 15]$ GeV from exotic Higgs decays
- The Falkowski-Ruderman-Volansky-Zupan (FRVZ) model is used as a benchmark signal

Invisible decays: $A' \rightarrow \chi \chi$

• The minimal dark sector model: $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{A'} + \mathcal{L}_{DM}$ CMS reinterpreted the mono-jet dark matter search (JHEP 11 (2021) 153) to constrain dark photon dark matter

Inelastic Dark Matter: $A' \rightarrow \chi_1 \chi_2$

- Direct detection has put strong constraints on WIMP
- An elegant option to evade direct detection constraints is to consider inelastic Dark Matter
- Inelastic Dark Matter:
 - Two new DM mass eigenstates with a predominantly off-diagonal (inelastic) coupling and a small mass splitting
 - A dark photon serves as the portal to the SM

David Smith, Neal Weiner, PRD 64 (2001) 043502

CMS search for Inelastic Dark Matter: $A' \rightarrow \chi_1 \chi_2$

CMS

≡² α_D (m₁/m_A)⁴

>

 10^{-1}

10

 10^{-8}

10

Regions above the curves are excluded

4 5 6 7 8 10

- First dedicated collider search for inelastic dark matter: $pp \rightarrow A' \rightarrow \chi_1 \chi_2, \chi_2 \rightarrow \chi_1 \mu \mu$
 - χ_1 : a light not detectable state
 - χ_2 : a heavy state with a long lifetime

Signature :

8/25/2024

- An ISR jet ($p_T > 80 \text{ GeV}$) helps triggering
- ≥1 pair of collinear, soft, displaced, nonresonant dimuon
- $E_T^{miss} > 200 \text{ GeV}$ collimated with the dimuon pair

Mass splitting $\Delta \equiv m_{\chi_2} - m_{\chi_1}$

		•	1	
	n	•		
	 		`	L
	 	_	•	J

dimensionless interaction strength

 $\sigma v \propto \epsilon^2 \alpha_D \left(\frac{m_1}{m}\right)^4 \equiv y$

PRL 132 (2024) 041802

138 fb⁻¹ (13 TeV)

 $\Delta = 0.1 m_{1}$

Expected ($\alpha_{D} = \alpha_{EM}$) — Observed ($\alpha_{D} = \alpha_{EM}$)

Expected ($\alpha_D = 0.1$) — Observed ($\alpha_D = 0.1$)

20

30 40

 m_1 [GeV]

cL (pp

X, μ⁺ μ⁻) [pb]

10⁻¹

10⁻²

10⁻³

Summary

- Rich exploration of the dark photon and related dark sectors at the LHC
 - Minimal A', extra gauge boson Z', other dark sector particles $(h_D, \chi), \ldots$
 - Both prompt and displaced signatures
- Innovative strategies and approaches exploited to expand notably the reach of these searches
 - Scouting triggers, reconstruction techniques for LLPs, triggers for LLPs, ...

- Looking forward for the future:
 - New ideas from theorists
 - Run3 data and beyond

Backup

LHCb $A' \rightarrow \mu\mu$ search

PRL 124, 041801 (2020)

31

- Search for dark photons decaying into **a pair of muons**
- Used 5.5 fb⁻¹ of Run 2 LHCb data (13 TeV)
- Kinetic mixing of the dark photon (A') with off-shell photon (γ*) by a factor ε:
 - + A' inherits the production mode mechanisms from $\gamma_{\rm *}$
 - $A' \rightarrow \mu^+\mu^-$ can be **normalised** to $\gamma_* \rightarrow \mu^+\mu^-$
 - No use of MC → no systematics from MC → fully
 data-driven analysis
- Separate γ_* signal from background and measure its fraction
- Prompt-like search (up to 70 GeV/c²) \rightarrow displaced search (214-350 MeV/c²)
- A' is long-lived only if the mixing factor is really small

8/

CMS $L_{\mu} - L_{\tau} Z'$ search in rare Z decay

• 4μ final state: $pp \rightarrow Z^{(*)} \rightarrow Z'\mu\mu \rightarrow 4\mu$

PLB 792 (2019) 345

ATLAS A' in rare Z decays

