Searches for New Physics at LHCb

谢跃红,华中师范大学

BESIII新物理研讨会, 杭州, 2024年8月26-28日

Outline

- LHCb experiment
- Dark sector: dark photon, dark scalar, ALP, sterile neutrino, LLP
- Rare and forbidden *K*, *D*, *B* decays: LFV, LNV, BNV, FCNC, LFUV
- Summary

LHCb Experiment

LHCb合作组 22个国家,99家单位,1698名成员

中国单位:

清华大学,华中师范大学,中国科学院大学, 武汉大学,高能所,华南师范大学,湖南大学, 北京大学,兰州大学

- 理解正反物质不对称 (重味强子衰变中的CP破坏)
- 间接寻找新物理效应
- 理解强相互作用机制
- 前向区域的物理研究
- (稀有衰变、轻子普适性检验)
- (强子性质、新强子态)
- 🕻 (电弱物理、重离子物理、QCD、新物理直接寻找)

LHCb pp collision data taking

第三运行期: Run 3 (2022-), Ongoing

Portals to the dark sector

Four portals: new particles [arXiv: 2209.04761]

- Dark photons
- □ Higgs portal scalars
- □ Sterile neutrinos
- Axion-like-particles coupling to photons, fermions, gluons

Dark physics at LHCb

Soft trigger and forward acceptance \rightarrow light mass and low lifetime

Dark photons: $A' \rightarrow \mu^+ \mu^-$ PF

PRL 124 (2020) 041801

□ Searches for prompt-like ($\tau \sim 0$) and long-lived ($\tau \sim O(1)$ ps) dark photons using Run 2 data □ Kinetic mixing of the dark photon A' with off-shell photon γ^* , with coupling $\alpha' = \varepsilon^2 \alpha_{\rm EM}$ □ Normalize $A' \rightarrow \mu^+ \mu^-$ to $\gamma^* \rightarrow \mu^+ \mu^-$

Prompt search

Displaced search

Dark photons: $A' \rightarrow \mu^+ \mu^-$

PRL 124 (2020) 041801

- Prompt search in large range: $2m(\mu) < m(\mu\mu) < m(Z)$
- Displaced search in sensitive region $214 < m(\mu\mu) < 350 \text{ MeV}$

arXiv:2203.07408

Future prospect

Search for low mass $X \rightarrow \mu^+ \mu^-$

JHEP 10 (2020) 156

 \Box Probe additional dark-sector particles, dropping the assumption of kinetic mixing with γ^*

Model-independent limits: $X \rightarrow \mu^+ \mu^-$

JHEP 10 (2020) 156

Displaced search

Model-dependent limits: $X \rightarrow \mu^+ \mu^-$

JHEP 10 (2020) 156

Limits on X-H mixing angle in two-Higgs doublet models with a complex singlet X (2HDM+S), from prompt search results

 $q\bar{q} \to X \to f\bar{f}$

Limits on γ-Z_{HV} kinetic mixing strength in Hidden-Valley scenario with a heavy HV boson Z_{HV}, from displaced search results

 $\begin{aligned} q\bar{q} &\to Z_{\rm HV} \to q_{\rm HV} \bar{q}_{\rm HV} \to N_\omega \omega_{\rm HV} + N_\eta \, \eta_{\rm HV} \\ \omega_{\rm HV} \to f\bar{f} \end{aligned}$

Higgs-like particles in *B* decays

□ Search for long-lived scalar decay $\chi \rightarrow \mu^+ \mu^-$ in $b \rightarrow s$ decays using Run 1 data

Higgs-like particles in *B* decays

J. Phys. G 47 (2020) 010501

Higgs-like particle to neutral LLP pair

EPJC 76 (2016) 664

Limits on cross section of a Higgs-like boson decaying to two long-lived particles (neutralinos), each decaying into 3 quarks, using Run 1 data

Pair of displaced high-multiplicity vertices

Future prospect of ALP search

□ Search for short-lived axion-like-particle decays: $a \rightarrow \pi \pi(\gamma, \eta)$, $a \rightarrow \gamma \gamma$

Searched for in $B \to K^{(*)}a$

Produced in gg fusion

Search for pair of long-lived particles EPJC 75 (2015) 595

Limits on cross section of pair of charged massive stable particles using ring imaging Cherenkov detectors

Separation of LLPs and muons

Search for Majorana neutrinos

Limits on BFs of B and D decays to final states with a same-sign muon pair mediated by a Majorana neutrino, using Run 1 data

 $\mathcal{B}(B^- \to \pi^+ \mu^- \mu^-) < 4 \times 10^{-9} @ 90\% \text{ CL}$ PRL 122 (2015) 131802

 $\mathcal{B}(B^- \to D^0 \pi^+ \mu^- \mu^-) < 1.6 \times 10^{-6} @ 95\% \text{ CL}$ PRD 85 (2012) 112004

 $\mathcal{B}(D_s^- \to \pi^+ \mu^- \mu^-) < 1.2 \times 10^{-7} @ 90\% \text{ CL}$ PLB 124 (2013) 203

Search for $K_S^0 \rightarrow \mu^+ \mu^-$

PRL 125 (2020) 231801

Search for $K^0_{S/L} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

PRD 108 (2023) L031102

□ Limits on BFs of $K^0_{S/L} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ using Run 2 data

 $\mathcal{B}(K_S^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 5.1 \times 10^{-12} @ 90\% \text{ CL}$ $\mathcal{B}(K_L^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 2.3 \times 10^{-9} @ 90\% \text{ CL}$

SM prediction dominated by LD contribution $\mathcal{B}\left(K_{S(L)}^{0} \rightarrow \mu^{+}\mu^{-}\mu^{+}\mu^{-}\right) \sim 10^{-14}(10^{-13})$

Observation of $\Sigma^+ \rightarrow p \mu^+ \mu^-$

 \Box 279 ± 19 signals observed in Run 2 data, no $\mu^+\mu^-$ structure around 214.3 MeV

p

• <u>HyperCP anomaly</u>

Search for $D^0 \rightarrow \mu^+ \mu^-$

PRL 131 (2023) 041804

 \Box Limit on BF of $D^0 \rightarrow \mu^+ \mu^-$ with $D^{*+} \rightarrow D^0 \pi^+$, using Run 2 data

 $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 3.1 \times 10^{-9} @ 90\% \text{ CL}$

SM prediction dominated by LD contribution $\mathcal{B}(D^0 \to \mu^+ \mu^-) \sim 10^{-11}$

 W^{\pm}

 W^{\pm}

 ν_{μ}

SD

25 rare and forbidden $D^+_{(s)}$ **decays**

□ Limits for FCNC, LFV and LNV decays between 1.4 × 10⁻⁸ and 6.4 × 10⁻⁶, using 2016 data

Search for $D^{*0} \rightarrow \mu^+ \mu^-$

EPJC 83 (2023) 666

 \Box Limit using Run 2 data, with $B^- \rightarrow D^{*0} \pi^-$ as source of D^{*0}

 $\mathcal{B}(D^{*0} \to \mu^+ \mu^-) < 2.6 \times 10^{-8} @ 90\% \text{ CL}$

SM prediction highly suppressed due to large strong decay width $\mathcal{B}(D^{*0} \rightarrow \mu^+ \mu^-) \sim 10^{-19}$

Search for $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ decay

□ Limit for $m(\mu^+\mu^-) < 508$ MeV or $m(\mu^+\mu^-) > 1060$ MeV, using Run 2 data

 $\mathcal{B}(\Lambda_c^+ \to p \mu^+ \mu^-) < 2.9 \times 10^{-8} @ 90\% \text{ CL}$

SM prediction dominated by LD contribution $\mathcal{B}_{SD}(\Lambda_c^+ \to p\mu^+\mu^-) \sim 10^{-8}$ $\mathcal{B}_{LD}(\Lambda_c^+ \to p\mu^+\mu^-) \sim 10^{-6}$

Short distance SM Long distance SM

 $B_{(s)}^{\mathbf{U}}$ *pμ*⁻

PRD 108 (2023) 012021

□ Limits on BFs using Run 2 data

 $\mathcal{B}(B^0 \to p\mu^-) < 2.6 \times 10^{-9} @ 90\% \text{ CL}$ $\mathcal{B}(B_s^0 \to p\mu^-) < 12.1 \times 10^{-9} @ 90\% \text{ CL}$

JHEP 06 (2023) 073

□ Limits on BFs using Run 2 data

 $\mathcal{B}(B^{0} \to K^{*0} \mu^{\pm} e^{\mp}) < 10.1 \times 10^{-9} \quad @ 90\% \text{ CL} \\ \mathcal{B}(B_{s}^{0} \to \phi \mu^{\pm} e^{\mp}) < 16.0 \times 10^{-9} \quad @ 90\% \text{ CL}$

$$B^0 o K^{*0} au^{\pm} \mu^{\mp}$$

JHEP 06 (2023) 143

 \Box First limits on BF using Run 2 data, with $\tau^- \rightarrow \pi^- \pi^+ \pi^- (\pi^0) \nu_{\tau}$

 $\mathcal{B}(B^{0} \to K^{*0}\tau^{+}\mu^{-}) < 1.0 \times 10^{-5} \quad @ 90\% \text{ CL}$ $\mathcal{B}(B^{0} \to K^{*0}\tau^{-}\mu^{+}) < 8.2 \times 10^{-6} \quad @ 90\% \text{ CL}$

$$m_{corr} = \sqrt{p_{\perp}^2 + m_{K^*\tau\mu}^2 + p_{\perp}}$$
missing momentum
perpendicular to B^0
direction

$$B_s^0 \rightarrow \phi \tau^{\pm} \mu^{\mp}$$

arXiv: 2405.13103

 \Box Limit on BF using Run 2 data, with $\tau^- \rightarrow \pi^- \pi^+ \pi^- (\pi^0) \nu_{\tau}$

 $\mathcal{B}(B_s^0 \to \phi \tau^{\pm} \mu^{\mp}) < 1.0 \times 10^{-5} @ 90\% \text{ CL}$

$m_{\rm fit}$ calculated using PV and SV constraints

$B^+ \rightarrow K^+ \tau^+ \mu^-$ using B^*_{s2} decays

 \Box Limits on BF using Run 2 data, with inclusive τ reconstruction

 $\mathcal{B}(B^+ \to K^+ \tau^+ \mu^-) < 3.9 \times 10^{-5} @ 90\% \text{ CL}$

Belle result $\mathcal{B}(B^+ \to K^+ \tau^+ \mu^-) < 0.59 \times 10^{-5}$ @ 90% CL

 $m_{\rm miss}$ calculated using PV and SV constraints

More LFV results

$$\begin{split} &\mathcal{B}(B^+ \to K^+ \mu^- e^-) < 7.0 \times 10^{-9} \quad @ 90\% \text{ CL, PRL 123 (2019) 241802} \\ &\mathcal{B}(B^+ \to K^+ \mu^+ e^-) < 6.4 \times 10^{-9} \quad @ 90\% \text{ CL, PRL 123 (2019) 241802} \\ &\mathcal{B}(B^0 \to \mu^\pm \tau^\mp) < 1.4 \times 10^{-5} \quad @ 95\% \text{ CL, PRL 123 (2019) 211801} \\ &\mathcal{B}(B^0_s \to \mu^\pm \tau^\mp) < 4.2 \times 10^{-5} \quad @ 95\% \text{ CL, PRL 123 (2019) 211801} \\ &\mathcal{B}(B^0 \to e^\pm \mu^\mp) < 1.0 \times 10^{-9} \quad @ 95\% \text{ CL, JHEP 03 (2018) 078} \\ &\mathcal{B}(D^0 \to e^\pm \mu^\mp) < 4.6 \times 10^{-8} \quad @ 90\% \text{ CL, PLB 754 (2016) 167} \\ &\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) < 3.9 \times 10^{-5} \quad @ 90\% \text{ CL, JHEP 02 (2015) 121} \end{split}$$

Summary of LFV in B decays

 $B_{(s)}^{\mathbf{U}} \rightarrow \mu^+ \mu^-$

Very rare in the SM, sensitive to NP

• FCNC and helicity suppression

 $\mathcal{B}^{\text{SM}}(B_s^0 \to \mu^+ \mu^-) = (3.66 \pm 0.14) \times 10^{-9}$ $\mathcal{B}^{\text{SM}}(B^0 \to \mu^+ \mu^-) = (1.03 \pm 0.05) \times 10^{-10}$

 $> B_s^0 \rightarrow \mu^+ \mu^-$ observed by LHCb and CMS in 2015 Nature 522 (2015) 68

 $B_{(s)}^{\mathsf{o}} \rightarrow \mu^+ \mu^-$

	$\mathcal{B}(B^0_s o \mu^+ \mu^-)$	$\mathcal{B}(B^0 o \mu^+ \mu^-)$
LHCb (11-18)	$(3.09^{+0.46}_{-0.43} {}^{+0.15}_{-0.11}) \times 10^{-9}$	$< 2.6 \times 10^{-10}$
CMS (11-16)	$(2.9 \pm 0.7 \pm 0.2) \times 10^{-9}$	$< 3.6 \times 10^{-10}$
ATLAS (11-16)	$(2.8^{+0.8}_{-0.7}) \times 10^{-9}$	$< 2.1 \times 10^{-10}$
SM	$(3.66 \pm 0.14) \times 10^{-9}$	$(1.03 \pm 0.05) \times 10^{-9}$

$$B^0_{(s)} o au^+ au^-$$

PRL 118 (2017) 251802

 \Box Limits on BF using Run 2 data, with $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$

$$\mathcal{B}(B^0 \to \tau^+ \tau^-) < 2.1 \times 10^{-3} @ 95\% \text{ CL}$$

 $\mathcal{B}(B_s^0 \to \tau^+ \tau^-) < 6.8 \times 10^{-3} @ 95\% \text{ CL}$

SM predictions $\mathcal{B}(B^0 \to \tau^+ \tau^-) = (2.22 \pm 0.18) \times 10^{-8}$ $\mathcal{B}(B_s^0 \to \tau^+ \tau^-) = (7.73 \pm 0.49) \times 10^{-7}$

$b \rightarrow s\mu^+\mu^-$ BFs

D Data below SM predictions in low q^2 regions

□ Hadronic uncertainties difficult to estimate (FFs, nonlocal contributions)

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis

□ Broadly consistent with SM, with exception of P'_5 in low q^2 region: ~ 3σ effect PRL 125 (2020) 011802

Data-driven analysis of non-local contribution: 2. 1σ deviation from SM

arXiv:1405.17347

$R(K^{(*)})$

□ Test of lepton flavour universality in $b \rightarrow sl^+l^-$ (l = e, μ) decays

CP violation: the big picture

□ CKM theory has passed very stringent tests and seems to work well ...

Summary

□ LHCb is a general-purpose detector with a very broad physics program covering

- Precision measurements of CP violation to test CKM unitarity
- > Indirect search for new physics effects in rare and forbidden decays
- > Direct search for new particle both from *pp* collisions and from *B* decays
- □ Many topics not covered: EDM/MDM, CPT violation, strong CPV, $R(D^{(*)})$, photon polarization in $b \rightarrow s\gamma$, ...
- □ Looking forward to exciting results from LHCb Run 3, 4, ...

Hidden Valley

Slide from Matthew Strassle

