

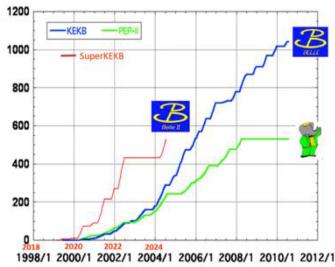
Recent results on new physics at Belle and Belle II

Tao Luo (Fudan University)
On Behalf of the Belle/Belle II Collaboration
Aug. 26-30, 2024
New Physics Group Worshop (NPG Workshop 2024)
Hangzhou

Physics beyond SM

- Different ways of hunting for new physics
- Belle/Belle II operate at the "Intensity Frontier"
 - √ Key words: High-precision measurement, probing the SM indirectly.
 - ✓ e.g. Deviations from SM predictions
 - √ e.g. Measurement of the SM-forbidden or suppressed process
- B-Factories:

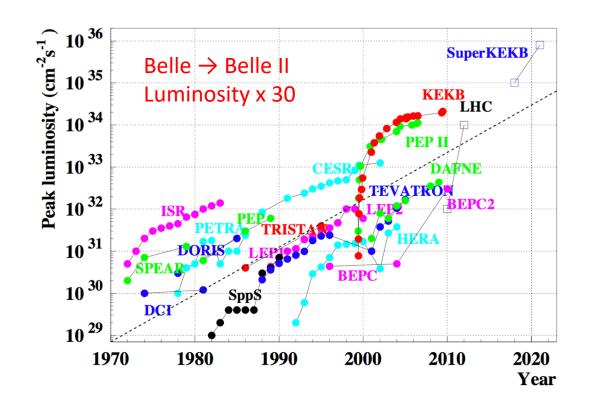
$$e^+e^- @ \Upsilon(4S) (\rightarrow B\overline{B})$$

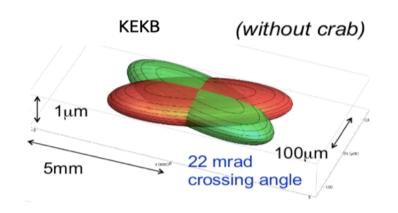

 Belle
 KEKB
 06/1999 - 06/2010

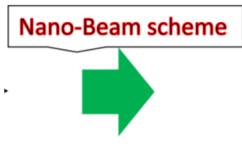
 BaBar
 PEPII
 10/1999 - 04/2008

 Belle II
 SuperKEKB
 03/2019 - current

SuperKEKB Accelerator


- Reduction in the beam size by 1/20 at the IP.
- 1.5 times increase in beam currents.


Targets:


Peak luminosity: $6 \times 10^{35} cm^{-2} s^{-1}$

Integrated luminosity: 50ab⁻¹ by 2031

Achieved 4.7×10³⁴ cm⁻²s⁻¹ (current world record, June 2022)

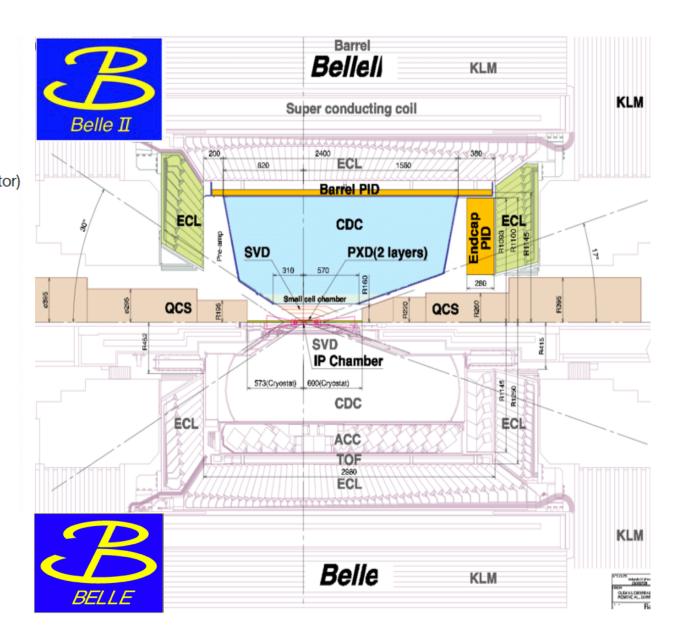
The Belle/Belle II Detector

Belle II

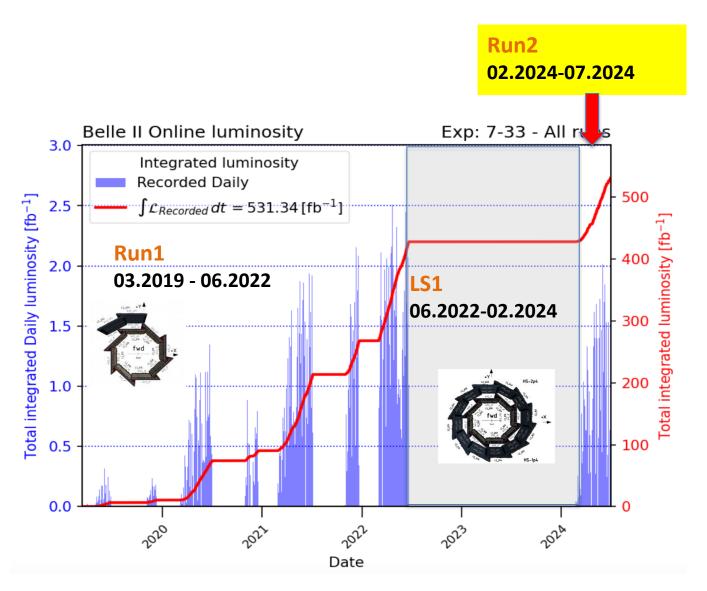
2019 - current

+ 2-layer PXD (Pixel Detector)

Vertex: 4-layer SVD (Silicon Vertex detector)

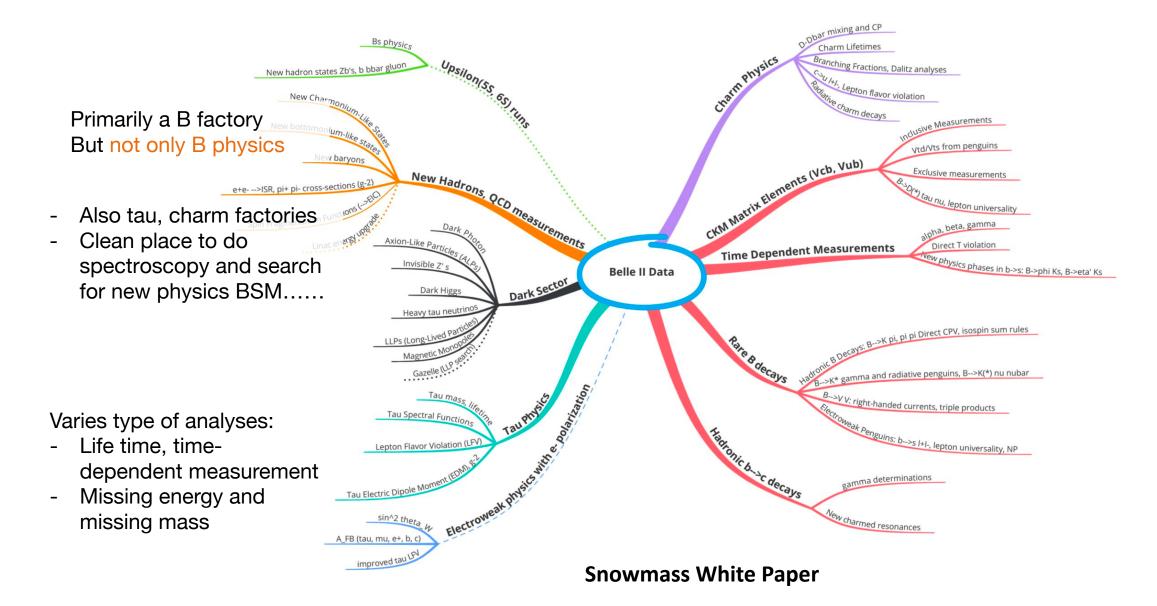

CDC(central drift chamber): Larger volume, smaller drift cell. Faster electronics

PID: (Particle Identification) More compact, better K/pi separation under higher background level

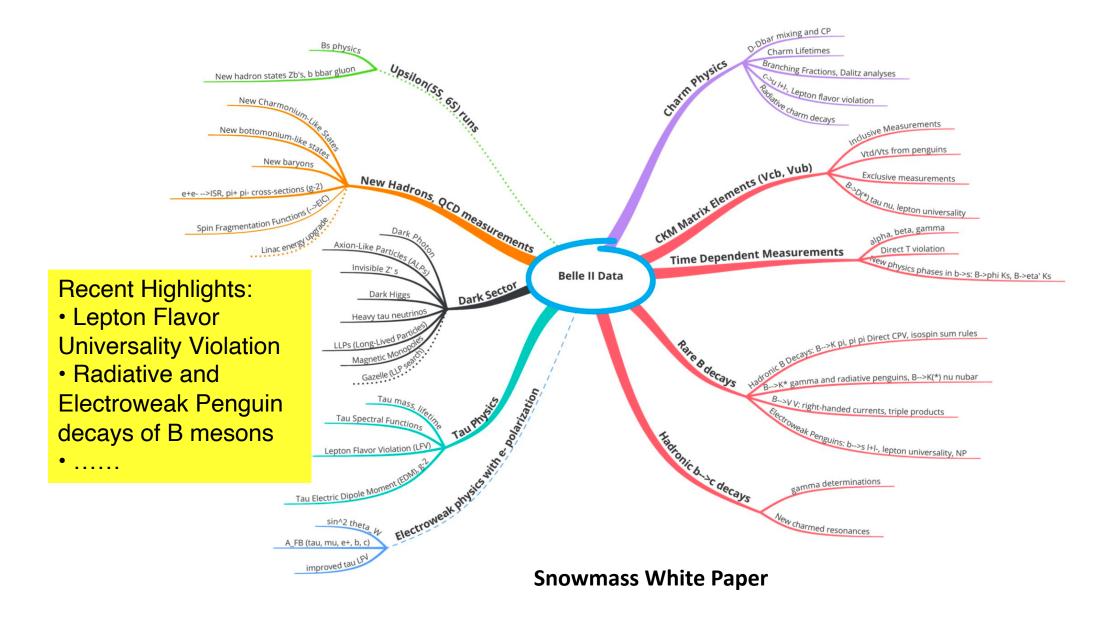

ECL: (electromagnetic Calorimeter) **Updated** electronics

Belle

1999 - 2010



Status of Belle II data taking

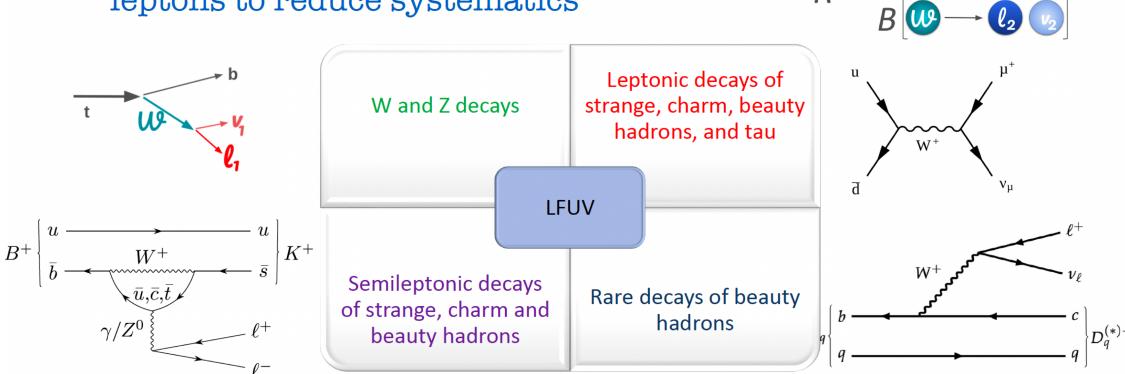


- Run1 from spring 2019 (424 fb⁻¹ recorded)
- LS1 motivated by the installation of the 2layer PXD
 - √ Replacement of beam-pipe
 - √ Replacement the photomultipliers of the TOP
 - Improved CDC gas distribution and monitoring system
 - ✓ DAQ upgrade ...
- Resumed data-taking at early 2024:
 - √ So far: > 100 fb⁻¹ collected
 - √ ~90% data taking efficiency
- Current issue: Sudden beam loss leading to large dose in the interaction region: -
 - ✓ PXD was turned off as a precautionary measure
 - ✓ Preventing reaching higher currents
 - Operating stably at 4.5x10⁻³⁴ cm⁻² s⁻¹

Belle and Belle II physics program

Belle and Belle II physics program

Test of Lepton Flavor Universality


LFUV AND B Anomalies

- Lepton Flavor Violating (LFV) decays:
 - √ Forbidden in the Standard Model w/o neutrino-oscillation
 - ✓ Can occur via ν mixing but are highly suppressed $(\frac{m_{\nu}^2}{m_W^2})$
- $b \xrightarrow{W} W$ $b \xrightarrow{NP} S$ e

- well beyond any experimental sensitivity
- Recent measurements of b-hadron decays have provided experimental indications of the lepton flavor universality violation (LFUV) - deviations from:
 - \checkmark μ /e universality in b→ s*ll* neutral-current transitions
 - \checkmark τ/μ (and τ/e) universality in b \rightarrow clv charged-current transitions
- ➤ LFUV is often accompanied by lepton flavor violation (LFV) in theoretical models (PRL 114 (2015), 091801)
- The observation of LFUV or LFV in the charged sector would be a clear sign of physics beyond the Standard Model! LFUV experimental bounds can be intepreted as constraints on New Physics

How can we observe LFUV

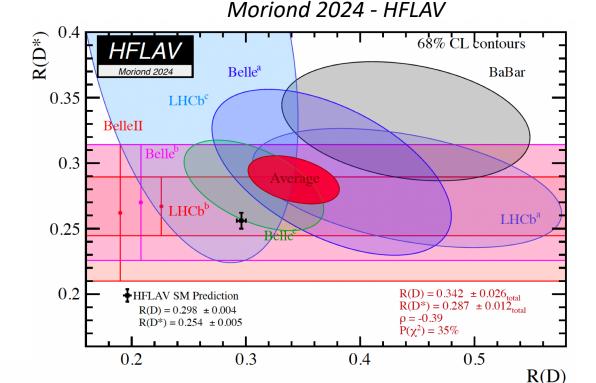
• Measure ratios of processes with different leptons to reduce systematics

Charge conjugated processes implied

A.Knue

Test of LFU with inclusive semitauonic B decay

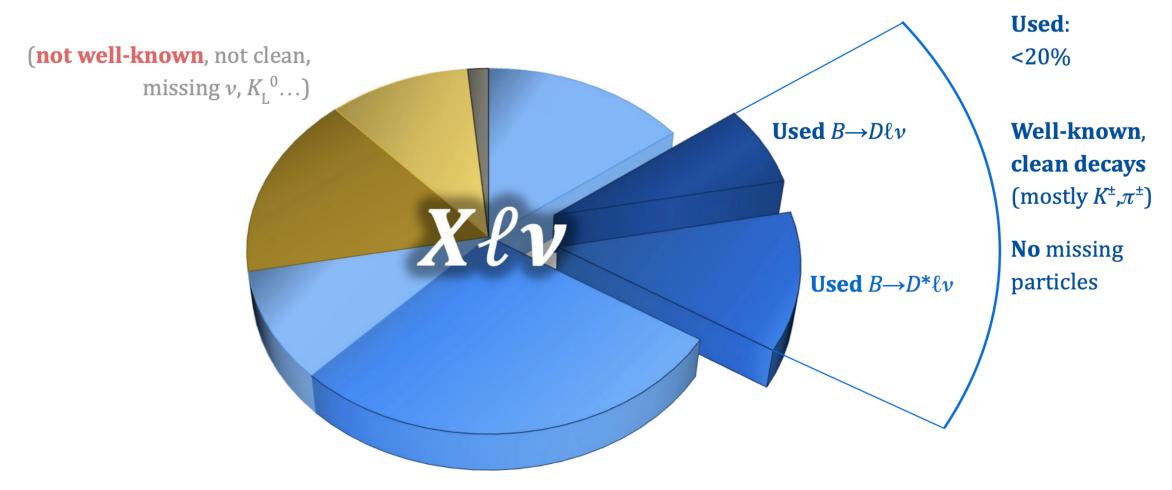
The $b \rightarrow c\tau v$ excess


Q: What if the "anomaly" is just a shared systematic?

Or a problem with the (shared) theory description?

Is there anything we can do except **measure** R(D) and $R(D^*)$ over and over again?

$$R(H_{\tau/l}) = \frac{\mathcal{B}(B \to H\tau\nu_{\tau})}{\mathcal{B}(B \to Hl\nu_{l})}$$


$$\mbox{Where $H=D,D^*,X,\pi$, etc.} \ \ \mbox{and $l=e,\mu$}$$

$$\mbox{``Traditional'' modes}$$

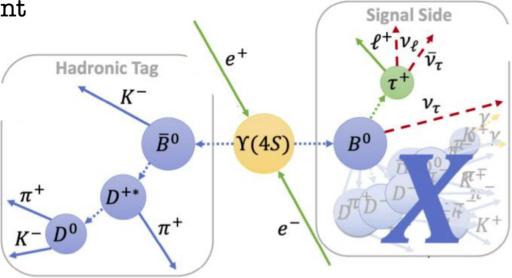
$$\mbox{Tension of $R(D^{(*)})$ with SM \sim3$$ σ}$$

R(D) and R(D*) combined average:

• 3.31 σ tension with the SM prediction considering the correlation

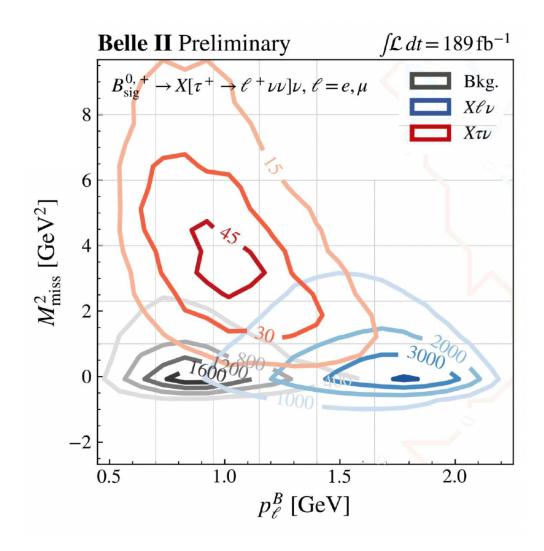
First measurement of $R(X_{\tau/\ell})$ as an inclusive test of the $b \to c \tau \nu$ anomaly A followup to last-year's light lepton ratio $R(X_{\mu/e})$, a first Phys. Rev. Lett.132.211804 (2024) Test of Light-Lepton Universality in the Rates of Inclusive Semileptonic B-Meson Decays at Belle II $\tau (\longrightarrow \ell \nu \nu)$ L. Aggarwal et al. (Belle II Collaboration) W Phys. Rev. Lett. 131, 051804 - Published 2 August 2023 Physics See synopsis: Standard Model Stays Strong for Leptons Phys. Rev. Lett.131.051804 (2023) B

So then: how can we use "not well-known" as the signal?


This measurement is statistically and theoretically distinct from $R(D^{(*)})$, and is potentially more precise.

- Possible to compare the inclusive rates
- Tag B reconstructed using FEI method
- Search for the signal B in the rest of the event
 - Leptonic $\tau \to e/\mu \bar{\nu} \nu$ decay
 - Remaining reconstructed particles in the event form the hadronic system "X"
 - Additional experimental challenge due to unspecified hadronic "X" system
- Primary experimental challenge is modelling/ characterizing backgrounds:
 - $B \rightarrow Xlv$ (l=e, μ)decays
 - Generic $B\bar{B}$ events with mis-reconstruction
 - Continuum $q\bar{q}$ events

$$R(X) = \frac{\mathcal{B}(B \to X\tau\nu_{\tau})}{\mathcal{B}(B \to X\ell\nu_{\ell})}$$


 $e: p_T/p_{\rm lab} > 0.3 \,{\rm GeV}/0.5 \,{\rm GeV}$ $\mu: p_T/p_{\rm lab} > 0.4 \,{\rm GeV}/0.7 \,{\rm GeV}$

To reject misidentifed lepton

Use a data-driven corrections for the "not well-known" stuff...

- Signal determined from 2D distribution of p_l^B vs M_{miss}^2
- Pata-driven X $\ell\nu$ modelling and reweighting using $M_{\rm X}$ distribution in $p_l^B > 1.4~GeV$ sideband region
- Systematics dominated by datadriven corrections to background and signal modelling

$$R(X_{e/\mu}) = 1.007 \pm 0.009(\text{stat}) \pm 0.019(\text{syst})$$

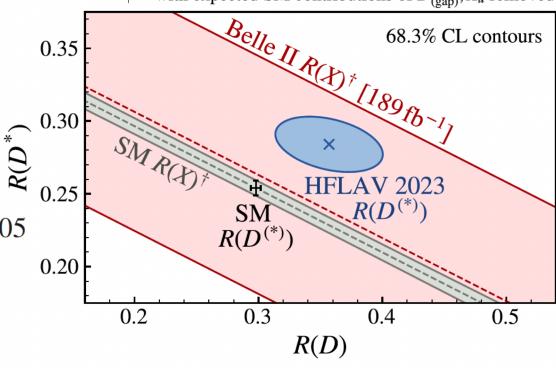
$$R(X_{\tau/e}) = 0.232 \pm 0.020(\text{stat}) \pm 0.037(\text{syst}),$$

$$R(X_{\tau/\mu}) = 0.222 \pm 0.027(\text{stat}) \pm 0.050(\text{syst}),$$

Combined

$$R(X_{\tau/\ell}) = 0.228 \pm 0.016(\text{stat}) \pm 0.036(\text{syst})$$

Average of SM expectation: 0.223 ± 0.005


PRD 105, 073009 (2022)
JHEP 11 007 (2022)

Limited by systematics, even with smallish data set

Phys. Rev. Lett.132.211804 (2024)

189 fb⁻¹ collected at 2019 and 2021

 \dagger = with expected SM contributions of $D_{(gap)}^{**}, X_u$ removed

Consistent with SM predictions!

Main sources of syst. uncertainties: $X_c \ell \nu M_X$ shape: 7.1%, $\mathcal{B}(B \to X \ell \nu)$:7.7%, $X_c \tau(\ell) \nu$ form factors: 7.8%

Using τ to test Lepton Flavor Universality

Lepton Flavor Universality is an intrinsic and accidental property or symmetry of the SM: couplings of EW boson to leptons are flavor-independent and the only

difference between leptons is their mass (Yukawa) In τ decays, testing LFU symmetry is in

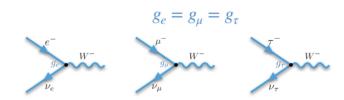
principle very simple: compare the rates τ^-

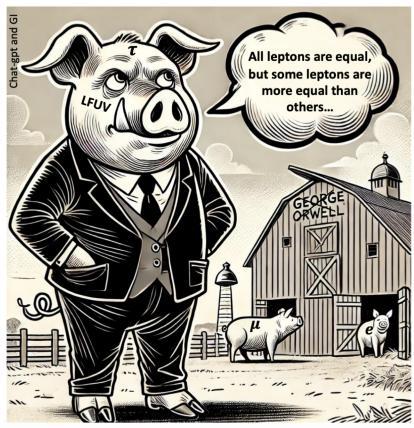
of $\tau \rightarrow \mu vv$ vs $\tau \rightarrow evv$

$$R_{\mu} = \frac{BF[\tau^{-} \rightarrow \mu^{-} \bar{\nu_{\mu}} \nu_{\tau}]}{BF[\tau^{-} \rightarrow e^{-} \bar{\nu_{e}} \nu_{\tau}]}$$

Slightly smaller than 1 in the SM due to the $e - \mu$ mass difference ($R_{\mu}^{SM} = 0.9726$)

$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau} = \sqrt{\frac{BF[\tau^{-} \to \mu^{-}\bar{\nu_{\mu}}\nu_{\tau}]}{BF[\tau^{-} \to e^{-}\bar{\nu_{e}}\nu_{\tau}]}} \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})}$$


$$f(x) = -8x + 8x^{3} - x^{4} - 12x^{2}\log x$$


Exactly 1 in the SM

NP could enter in different ways:

- LFUV charged currents
- LFV neutral currents [ex. Soni et al., $L_{\mu}-L_{\tau}~Z'$ Phys. Lett. B 2016 09 046]

Measurement by BaBar [PRL 105 051602]: $R_{\mu} = 0.9796 \pm 0.0016_{stat} \pm 0.0036_{sys}$ $\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau} = 1.0036 \pm 0.0020$

Test of LFU in leptonic τ decays at Belle II: 1x1 event topology

We use the 1x1 event topology.

 $1\pi^{\pm}2\pi^{0}\nu$

hadronic mode

(PID) as μ or e.

The "tag side" is a 1-prong (i.e. one charged track) τ decay containing one charged hadron (π^{\pm}) and at least a π^0 (i.e. $\tau^+ \to \pi^+ \pi^0 \overline{v_{\tau}}$, $\tau^+ \to \pi^+ \pi^0 \pi^0 \overline{v_{\tau}}$ and C.C.). The signal side is a fully leptonic tau decay (i.e. $\tau^- \to e^- \overline{v_e} v_{\tau}$, $\tau^- \to \mu^- \overline{v_{\mu}} v_{\tau}$, and C.C.)

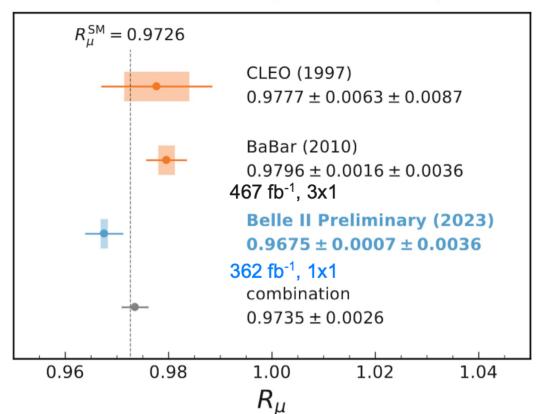
• Large BFs, low backgrounds and high trigger efficiency

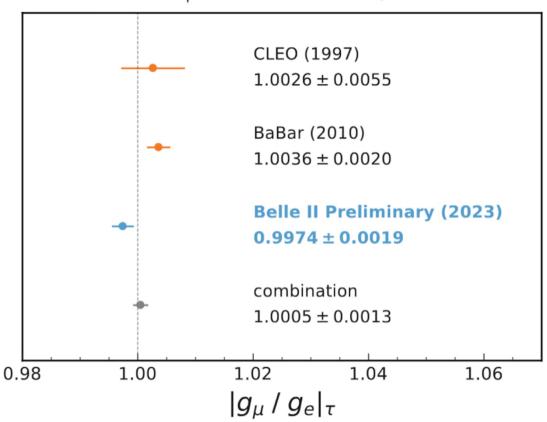
decay

mode

Signal side pre-selection $\bar{v}_{e/\mu}$ $\bar{v$

tag side

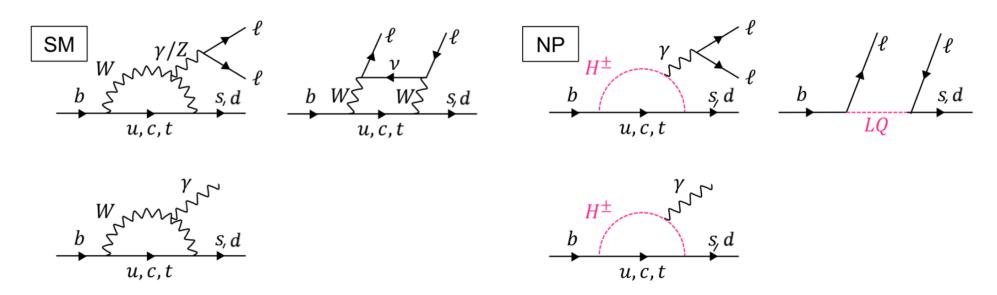

Use the full "on resonance" Run 1 data (2019-2022), corresponding to 362 fb⁻¹


Tag side pre-selection

Test of LFU in leptonic τ decays at Belle II: results

$$R_{\mu} = \frac{BF[\tau^{-} \rightarrow \mu^{-} \bar{\nu_{\mu}} \nu_{\tau}]}{BF[\tau^{-} \rightarrow e^{-} \bar{\nu_{e}} \nu_{\tau}]}$$

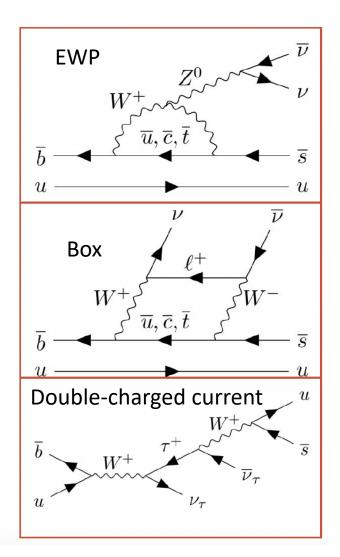
$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau} = \sqrt{\frac{BF[\tau^{-} \to \mu^{-} \bar{\nu_{\mu}} \nu_{\tau}]}{BF[\tau^{-} \to e^{-} \bar{\nu_{e}} \nu_{\tau}]}} \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})}$$



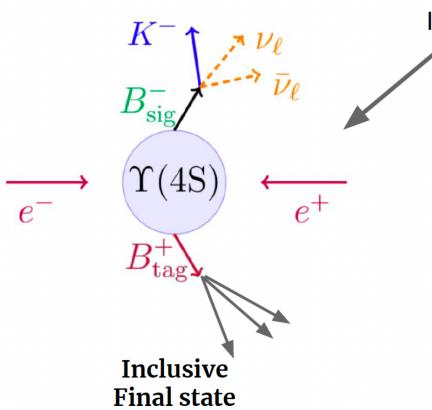
World's most precise test of LFU in τ decays and most precise determination of R_{μ} and $|g_{\mu}/g_e|$ Submitted to JHEP, see <u>ArXiv 2405.14625</u>

Radiative and Electroweak Penguin decays of B mesons

- ➤ Flavor-changing-neutral-current (FCNC) occurs only by loop diagrams in the SM
 - New physics (NP) appearing in the loop can change the variables like branching ratio, CP asymmetry, and isospin asymmetry
 - Electroweak Penguin (EWP) is one of such loop diagrams
- > FCNC of B meson is relatively large thanks to V_{tb}~1
 - → Highly sensitive to NP
- ➤ One of the main targets of B factory experiments


$B^+ \to K^+ \nu \bar{\nu}$ decays

- $B^+ \rightarrow K^+ \nu \bar{\nu}$ is a challenging \Rightarrow single charged track in the final state
- $\mathfrak{B}(SM) = (5.58 \pm 0.37) \times 10^{-5} [PRD 107, 014511]$
- New physics could alter the rate (also angular observables for $B \rightarrow K^* \nu \overline{\nu}$)


 Advantages at Belle II:
- Constraints from well-known initial state kinematics;
- Lower average multiplicity at the Y(4S) compared to hadronic collisions.

NP scenarios:

- Light: axions [PRD 102, 015023 (2020)],
- dark scalars [PRD 101, 095006 (2020)],
- axion-like particles [<u>JHEP 04 (2023) 131</u>]
- Heavy: Z' [PL B 821 (2021) 136607],
- leptoquarks [PRD 98, 055003 (2018)]

B-tagging algorithm

Inclusive tag analysis (ITA)

- Select first signal kaon that minimizes q²_{rec} (computed as K⁺ recoil)
- Nested BDT to suppress background
- Fit q²_{rec} and BDT output

Hadronic tag analysis (HTA)

- Select first tag B decaying hadronically
 [Comput Softw Big Sci 3, 6 (2019)]
- Single BDT to suppress background
- Fit BDT output

Hadronic K^+ Final state

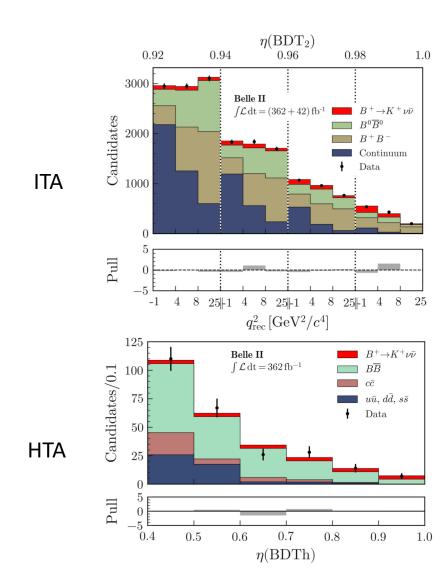
signal efficiency = 8%; purity = 0.9%

signal efficiency = 0.4%; purity = 3.5%

$B^+ \to K^+ \nu \bar{\nu}$ signal extraction

Variables

- η : a signal classifier* remapped so that signal is **flat**
- $q^2_{\rm rec}$: inferred neutrino mass squared


ITA:

- Simultaneous on-/off-resonance fit
- (4 bins in η)×(3 bins in q_{rec}^2)

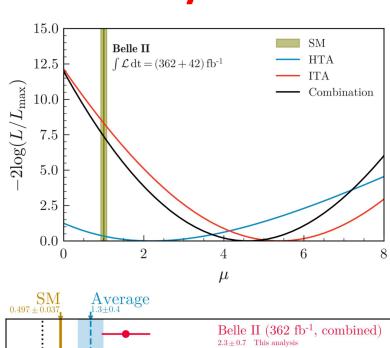
HTA:

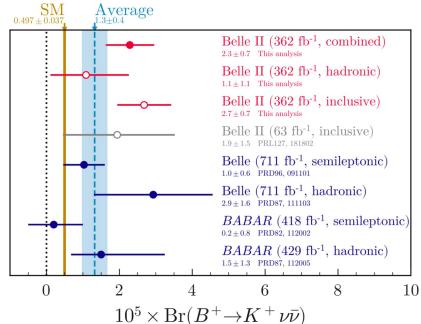
• Fit to six bins of signal classifier $\eta(BDTh)$

(the key is extensive controls/validations)

Evidence for $B^+ \to K^+ \nu \bar{\nu}$ decays

Combined ITA and HTA:


- Signal strength ($\mu_{\text{SM, short-range}} \equiv 1$): $\mu = 4.6 \pm 1.0 (stat) \pm 0.9 (syst) = 4.6 \pm 1.3$
- Branching fraction:


$$[2.3 \pm 0.5(\text{stat})^{+0.5}_{-0.4}(\text{syst})] \times 10^{-5} = (2.3 \pm 0.7) \times 10^{-5}$$

ITA and HTA results are **compatible**, **independent**, and both approximately equally limited by stats and systematics

- \triangleright First evidence for the decay $B^+ \rightarrow K^+ \nu \overline{\nu}$ (3.5 σ)
- \triangleright BF is 2.7 σ away from SM prediction.
- New Inclusive method established

Phys. Rev. D **109**, 112006 (2024)

First measurement of B->K*(892) γ at Belle II

Flavour changing neutral current decays sensitive to new physics

First observed FCNC decay [PRL 71 (1993) 674]

 $CP(A_{CP})$ and isospin (Δ_{+0}) asymmetries are theoretically clean thanks to form factor cancellations

Asymmetries are ideal for BSM searches [PRD 88 (2013) 094004] [PRL 106 (2011) 141801]

Belle measurement found evidence of isospin asymmetry at 3.1σ [PRL 119 (2017) 191802]

$$A_{CP} = \frac{\Gamma(\bar{B} \to \overline{K^*}\gamma) - \Gamma(B \to K^*\gamma)}{\Gamma(\bar{B} \to \overline{K^*}\gamma) + \Gamma(B \to K^*\gamma)}$$
 SM prediction is small (~1%)

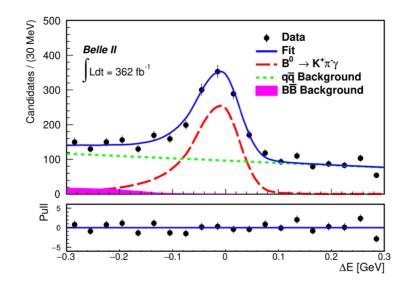
$$\Delta A_{CP} = A_{CP}(B^0 \to K^{*0}\gamma) - A_{CP}(B^+ \to K^{*+}\gamma)$$

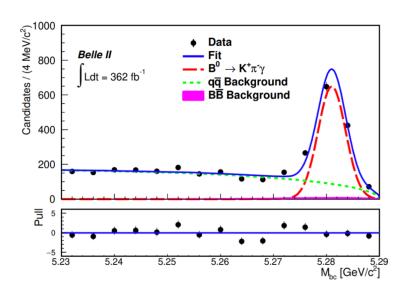
$$\Delta_{+0} = \frac{\Gamma(B^0 \to K^{*0}\gamma) - (B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + (B^+ \to K^{*+}\gamma)}$$

 $u \longrightarrow$ SM prediction: 4.9 ± 2.6% [PRD 88 (2013) 094004]

$$\overline{b}$$
 \overline{w}
 \overline{v}
 \overline{v}

B->K*(892) γ : Analysis


Signal:


•
$$B^0 \to K^{*0} [\to K^+ \pi^-] \gamma$$

•
$$B^0 o K^{*0} [o K_S^0 \pi^0] \gamma$$

- $B^+ \to K^{*+} [\to K^+ \pi^0] \gamma$
- $B^+ o K^{*+} [o K_S^0 \pi^+] \gamma$

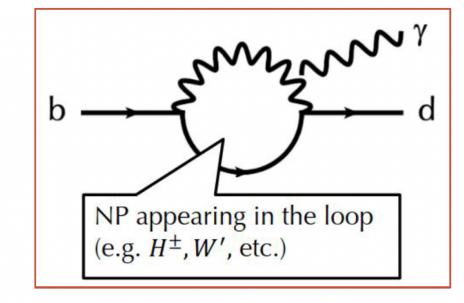
- 2D fit on Belle II (362 fb^{-1}) data
 - M_{bc} , ΔE

B->K*(892) γ : Results

$$\mathcal{B}[B^0 \to K^{*0}\gamma] = (4.16 \pm 0.10 \pm 0.11) \times 10^{-5},$$

$$\mathcal{B}[B^+ \to K^{*+}\gamma] = (4.04 \pm 0.13 \pm 0.13) \times 10^{-5},$$

$$\mathcal{A}_{CP}[B^0 \to K^{*0}\gamma] = (-3.2 \pm 2.4 \pm 0.4)\%,$$


$$\mathcal{A}_{CP}[B^+ \to K^{*+}\gamma] = (-1.0 \pm 3.0 \pm 0.6)\%,$$

$$\Delta \mathcal{A}_{CP} = (2.2 \pm 3.8 \pm 0.7)\%, \quad \Delta_{0+} = (5.1 \pm 2.0 \pm 1.0 \pm 1.1)\%$$

- Consistent with World average and SM
- Asymmetries are statistically limited
- Similar sensitivity to Belle result despite half the data Δ_{0+} = 6.2 ± 1.5 (stat) ± 0.6 (sys) ± 1.2 (f_{+}/f_{00}) [PRL 119, 191802 (2017)] (Thanks to improved K_{S}^{0} efficiency, continuum suppression, and improved fit model)

Exclusive measurement of $B \rightarrow \rho \gamma$ at Belle and Belle II

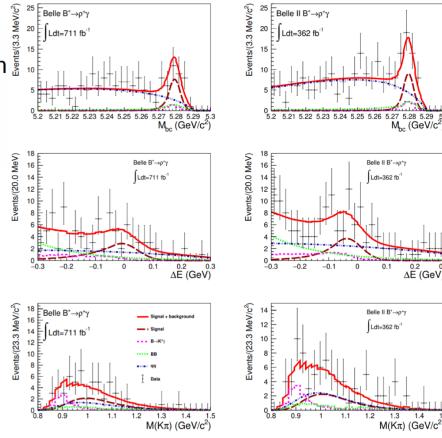
- Flavor changing neutral current with $b \rightarrow d$ transition
- Independent search for NP [PRD 88 (2013) 094004]
- SM branching fraction suppressed by |Vtd /Vts | \sim 0.04 with respect to B->K*(892) γ
- The first "charmless" study with Belle and Belle II joint data
- Earlier results from Belle [Phys. Rev. Lett. 101, 111801] and BaBar [Phys. Rev. D 78, 112001].

$$\mathcal{A}_{CP} = \frac{\Gamma(\overline{B} \to \overline{\rho}\gamma) - \Gamma(B \to \rho\gamma)}{\Gamma(\overline{B} \to \overline{\rho}\gamma) + \Gamma(B \to \rho\gamma)}$$

$$\mathcal{A}_I = rac{2\Gamma(B^{0/\overline{0}}
ightarrow
ho^0\gamma)-\Gamma(B^{+/-}
ightarrow
ho^{+/-}\gamma)}{2\Gamma(B^{0/\overline{0}}
ightarrow
ho^0\gamma)+\Gamma(B^{+/-}
ightarrow
ho^{+/-}\gamma)}$$

$$A_I^{W.A.} = (30^{+16}_{-13})\%$$
 to date

SM prediction: 5.2 ± 2.8% [PRD 88 (2013) 094004]


Current world average deviates by 2σ from SM

$B \rightarrow \rho \gamma$: Analysis

- Analysis based on Belle (711 fb⁻¹) + Belle II (362 fb⁻¹) data
- ullet Reconstruct $ho^0 o\pi^+\pi^-$ and $ho^+ o\pi^+\pi^0$, combine with prompt photon ${}^{rac{g}{2}}$
- ullet Define $M_{K\pi}$ as the invariant mass calculated assuming π^+ is K^+
- ullet The $M_{K\pi}$ helps separate $K^*\gamma$ background better compared to $M_{\pi\pi}$
- Dedicated BDTs to suppress continuum, $\pi \to \gamma \gamma$, and $\eta \to \gamma \gamma$ decays

Fit Strategy

- Perform Belle+Belle II simultaneous 3D fit of M_{bc} , ΔE and $M_{K\pi}$
- Control sample study
- Employed B \rightarrow K*⁰ [K- π +] γ to calibrate the BDTs (continuum, $\pi \rightarrow \gamma \gamma$, and $\eta \rightarrow \gamma \gamma$) and signal PDF modelling

arXiv:2407.08984, submitted to PRD

$B \rightarrow \rho \gamma$: Results

Charge Parity Asymmetry:

$$\mathcal{A}_{CP} = \frac{\Gamma(\overline{B} \to \overline{\rho}\gamma) - \Gamma(B \to \rho\gamma)}{\Gamma(\overline{B} \to \overline{\rho}\gamma) + \Gamma(B \to \rho\gamma)}$$

Isospin Asymmetry (CP average):

$$\mathcal{A}_{I} = \frac{2\Gamma(B^{0/\overline{0}} \to \rho^{0}\gamma) - \Gamma(B^{+/-} \to \rho^{+/-}\gamma)}{2\Gamma(B^{0/\overline{0}} \to \rho^{0}\gamma) + \Gamma(B^{+/-} \to \rho^{+/-}\gamma)}$$

Standard Model prediction:

$$A_I = (5.2 \pm 2.8)\%$$

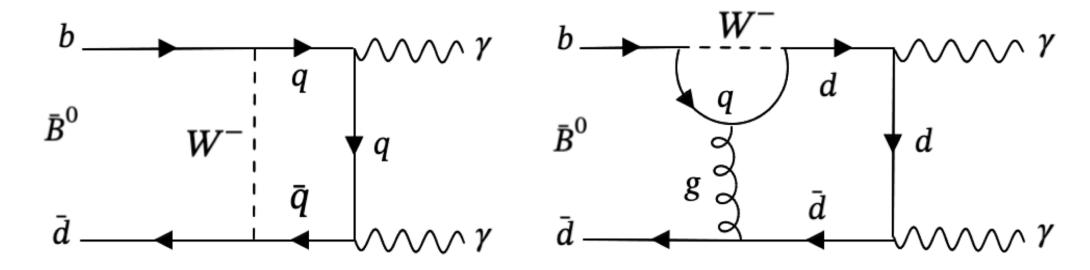
• World average of $A_I = (30^{+16}_{-13})\% - 2\sigma$ from Standard Model

arXiv:2407.08984, submitted to PRD

- Signal events:
 - $114 \pm 12 \ B^+ \to \rho^+ \gamma$
 - 99 \pm 12 $B^0 \to \rho^0 \gamma$
- Branching fractions

•
$$\mathbf{B}(B^+ \to \rho^+ \gamma) = (13.1^{+2.0+1.3}_{-1.9-1.2}) \cdot 10^{-7}$$

•
$$\mathbf{B}(B^0 \to \rho^0 \gamma) = (7.5^{+1.3+1.0}_{-1.3-0.8}) \cdot 10^{-7}$$

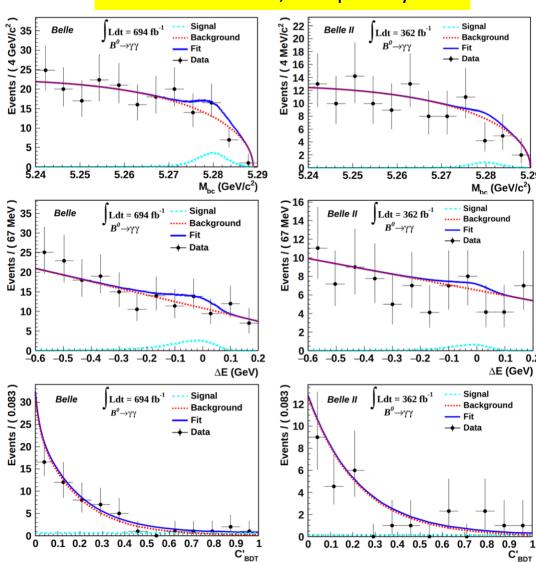

•
$$\mathcal{A}_{CP} = (B^+ \to \rho^+ \gamma) = (-8.2^{+15.2+1.6}_{-15.2-1.2})\%$$

•
$$A_I = (B \rightarrow \rho \gamma) = (10.9^{+11.2+7.8}_{-11.7-7.3})\%$$

 Measured Asymmetries are consistent with Standard Model

World best precision is achieved Independent NP search from $B \rightarrow K*\gamma$

Search for $B \rightarrow \gamma \gamma$ at Belle and Belle II


- ullet Decay in SM through loop diagram with W^- emitted and absorbed
- Long distance penguin contribution
- Suppressed by factor $|V_{td}|/|V_{ts}| \approx 0.04$ compared to $B_s \to \gamma \gamma$
- SM prediction: $\mathcal{B}(B^0 \to \gamma \gamma) = (1.4^{+1.4}_{-0.8}) \cdot 10^{-8}$ [JHEP12(2020)169]

$B \rightarrow \gamma \gamma$: Results

arXiv:2405.19734, Accepted by PRD

- Simultaneous fit of Belle (694 fb $^{-1}$) + Belle II (362 fb $^{-1}$) data
 - M_{bc} beam constrained mass $\sqrt{(\text{Beam energy})^2 (\text{Momentum of B}^0)^2}$
 - ΔE energy difference (Energy of B^0) – (Beam energy)
 - BDT trained on π^0 and η dominated events
- Signal events: $11.0^{+6.5}_{-5.5}$, 2.5σ significance
- $\mathcal{B}^{UL}(B^0 \to \gamma \gamma) < 6.4 \cdot 10^{-8}$, 90% CL
- $\mathcal{B}_{SM}^{UL}(B^0 \to \gamma \gamma) < 4.4 \cdot 10^{-8}$, 90% CL

Upper limit 5 times more restrictive than previous (BaBar) measurement [PhysRevD(2011)83]

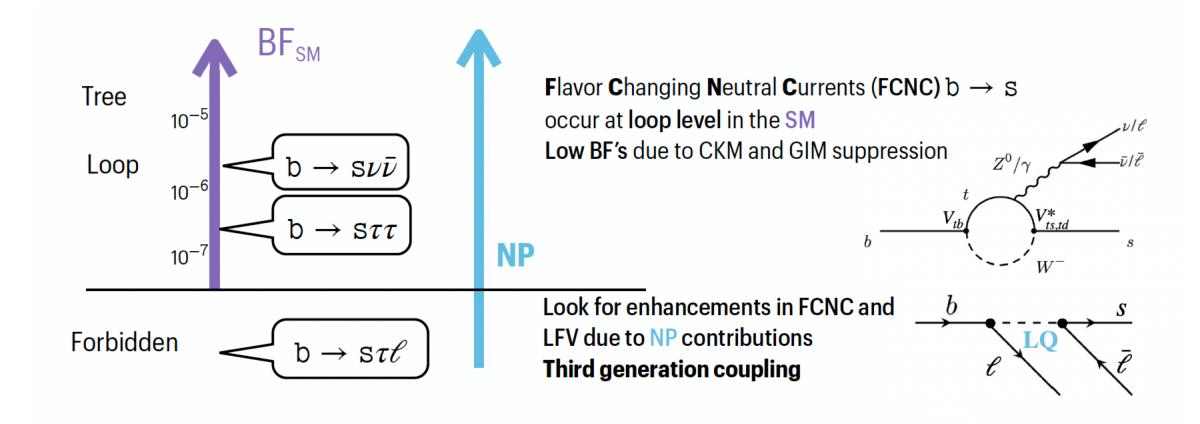
Summary

- > Test of Lepton Flavour Universality
 - ✓ Lepton Flavour Universality Violation provides powerful tools for exploration of physics beyond standard model
 - ✓ Experimentally challenging analyses, many channels tried
 - ✓ Common effort with theory to improve the interpretation of the results and the SM expectations
- Reported the EWP analyses in Belle and Belle II
 - ✓ Some studies use Belle + Belle II data to achieve the current best precision
 - √ No evidence for new physics so far
- Many world-leading results
 - √ First inclusive R(X) at Belle II
 - ✓ 3.5 σ evidence for $B^+ \to K^+ \nu \bar{\nu}$
 - ✓ World best precision for $B \to \rho \gamma$, $B \to \gamma \gamma$ by Belle + Belle II
 - ✓ Most of them are unique to Belle / Belle II for the final states with neutral particles or missing energy
- Many new results, and more analyses ongoing, just scratching the surface

Thank you for your attention

Data-driven corrections

The *invariant mass of the X system* controls the **physics** we know the least about


$$M_X^2 = \left(\frac{E_X}{p_X}\right)^2$$
Extraction variable
$$M_{\text{miss}}^2 = \left[\left(\frac{E_{\text{CMS}}}{p_{\text{CMS}}}\right) - \left(\frac{E_{\text{CMS}}/2}{p_{B_{\text{tag}}}}\right) - \left(\frac{E_\ell}{p_\ell}\right) - \left(\frac{E_X}{p_X}\right)\right]^2$$

Independent test variable
$$q^{2} = \left[\begin{pmatrix} E_{\text{CMS}}/2 \\ -\overrightarrow{p_{B_{\text{tag}}}} \end{pmatrix} - \begin{pmatrix} E_{X} \\ \overrightarrow{p_{X}} \end{pmatrix} \right]^{2}$$

TOTAL INTEGRATED LUMINOSITY FOR GOOD RUNS

- Total integrated luminosity: 424 fb-1
- Total integrated luminosity at the Y(4S) resonance: 363 fb-1
- Total integrated luminosity below Y(4S) resonance: 42 fb-1
- Total integrated luminosity above Y(4S) resonance: 19 fb-1

modeled using PYTHIA. The signal (normalization) model includes the following exclusive decays, with charge conjugation implied throughout: $B \to D\tau(\ell)\nu$, $B \to D^*\tau(\ell)\nu$, and $B \to D^{**}\tau(\mathscr{E})\nu$, where D^{**} collectively indicates the excited charmed states D_0^* , D_1' , D_1 , and D_2^* , whose masses and widths are taken from Ref. [35]. The $B \to D^{(*)}\tau(\mathscr{E})\nu$ decays are modeled with the BLPRXP form-factor parametrization [36]. The modeling of $B \to D^{**}\tau(\ell)\nu$ decays is based on the BLR model [37,38]. Semileptonic B decays into the nonresonant final states $D^{(*)}\pi\pi\tau(\mathscr{E})\nu$ and $D^{(*)}\eta\tau(\mathscr{E})\nu$ are used to fill the difference between the sum of individual branching ratios of exclusive decays, $B \to D^{(*,**)} \tau(\mathscr{E}) \nu$, and the total semileptonic B decay widths. These "gap modes" are included in dedicated simulated samples that use intermediate, broad D^{**} resonances and are modeled with BLR. We take the total width for decays to light leptons from Ref. [35]; the widths for

