<u>2024年BES111新物理研讨会</u>

₿€SII

Dark photon and muon-philic particle at BESIII

Zhi-Jun Li (李志军) 2024.8.27 杭州

lizhj37@mail2.sysu.edu.cn

OUTLINE

- Introduction
- Massive dark photon
- Massless dark photon
- Muon-philic particle
- Summary

SM and dark sector

Standard model (SM): $SU(3)_C \times SU(2)_L \times U(1)_Y$

- Successful!
- But also some **puzzles**

• Dark matter

Fermion mass hierarchy

• Matter and anti-matter asymmetry

• $g_{\mu} - 2$ anomaly

We believe there are something new beyond the SM: dark sector

Portal to connect the dark sector

The dark photon

2024/8/27

The coupling and production of the dark photon

 $\mathcal{L} = e J_{\mu} A^{\mu} + e \epsilon J_{\mu} A^{\prime \mu} + e^{\prime} J^{\prime}{}_{\mu} A^{\prime \mu}$ γ' The coupling $\alpha_{\rm D}$. of the dark photon $\alpha_D = \frac{e'^2}{4\pi}$ Similar couplings with SM photon dark photon couples but with ϵ^2 times coupling strength to dark fermion $\alpha \epsilon^2$ The production of the dark photon Dark photon produced in dark fermion radiation

Dark photon can be produced in any process by replacing SM photon

The decay of the dark photon

Why we need the dark photon

The experimental method of the dark photon

The (massive) dark photon at BESIII

(massive) dark photon at this talk

	SM Process	Branching fraction
	$J/\psi o \gamma \eta'$	0.53%
	$J/\psi o \gamma \eta$	0.11%
	$J/\psi o \gamma \eta_c$	1.41%
	$\psi(2S) \rightarrow \gamma \chi_{cJ}$	~10%
on	$\chi_{c1} \to \gamma J/\psi$	34.3%
	$\chi_{c2} \to \gamma J/\psi$	19.5%
	 Data samples at B 10¹⁰ J/ψ 2.7 × 10⁹ ψ(2S) 20 fb⁻¹ @ 3.773 	ESIII Less statisti GeV

• >
$$20fb^{-1}$$
 @ > 4 GeV

...

C

2024/8/27

 $e^+e^-
ightarrow \gamma \gamma'$

 $J/\psi \rightarrow \gamma' \eta'$

 $J/\psi
ightarrow \gamma' \eta$

Massless dark photon, muon-philic particle? Discuss later...

How do we detect the dark photon

- $m_{\gamma \prime} = 1 \text{ GeV}, \epsilon < 10^{-3} \rightarrow \Gamma_{ee} \lesssim 2 \times 10^{-3} eV$ \rightarrow Width could be ignored
- $m_{\gamma\prime} = 1 \text{ GeV}, P_{\gamma\prime} = 1 \text{ GeV} \rightarrow L_{\gamma\prime} \sim \frac{8 \times 10^{-12}}{3\epsilon^2} \text{ cm}$ $\epsilon \sim 10^{-3} \rightarrow \text{Decay length could be ignored}$

- $m_{\gamma'} = 1 \text{ GeV}, m_{\chi} \ll m_{\gamma'}, \alpha_D = 0.1 \rightarrow \Gamma \sim 33 \text{ MeV}$ • $m_{\gamma'} = 1 \text{ GeV}, m_{\chi} \ll m_{\gamma'}, \alpha_D = 0.01 \rightarrow \Gamma \sim 3 \text{ MeV}$
- Width can be ignored only when $lpha_D \lesssim 0.01$

Our target: observe the dark photon or constraint the mixing strength ϵ BUT Summary: no significant signal is found

OUTLINE

- Introduction
- Massive dark photon
- Massless dark photon
- Muon-philic particle
- Summary

Mixing strength from $J/\psi \rightarrow \gamma' \eta^{(\prime)}$, $\gamma' \rightarrow e^+e^-$

Phys. Rev. D 99, 012013 (2019)

 $J/\psi \rightarrow \gamma' \eta'$

SM Process	BF
$J/\psi \to \gamma \eta'$	0.53%
$J/\psi ightarrow \gamma\eta$	0.11%

 η' has better sensitivity

- Only using $\sim 10^9 J/\psi$ events, but now we have $10^{10} J/\psi$ events
- What about using the full data? Will discuss later...

2024/8/27

Mixing strength from $e^+e^- \rightarrow \gamma \gamma'$, $\gamma' \rightarrow l^+l^-$

The future of visible dark photon at BESIII

 $N_{sig} \sim \epsilon^2 \rightarrow \text{data statistic 10000}$ \uparrow, \mathcal{B} sensitivity 100 \uparrow, ϵ sensitivity 10 \uparrow

2024/8/27

Mixing strength from $e^+e^- \rightarrow \gamma \gamma'$, γ' invisibly

The future?

- \Box (20 2.93) fb^{-1} data @3.773 GeV
- Lower mass region
- Limit improvement with the statistic

• $\epsilon \sim \sqrt{s}$, improved by $\frac{4.2 \text{ GeV}}{3.773 \text{ GeV}} < 1.113$

\Box New method: gamma conversion to tag γ

- Better solution, lower background
- Wider mass range
- But only $\sim \frac{1}{100}$ statistic
- $\Box I/\psi \rightarrow \gamma' \eta'$ with $10^{10} I/\psi$, invisible γ'
- Lower mass region
- $\epsilon \sim 10^{-3}$ level

OUTLINE

- Introduction
- Massive dark photon
- Massless dark photon
- Muon-philic particle
- Summary

Massless dark photon

Massless dark photon has no interaction with the SM matter in the dimension-4 operator

The interaction of the massless dark photon

Dimension-six operator

PRL 94, 151802 (2005)

 $\mathcal{L}_{NP} = \frac{1}{\Lambda_{NP}^2} \left(C_{jk}^U \bar{q}_j \sigma^{\mu\nu} u_k \tilde{H} + C_{jk}^D \bar{q}_j \sigma^{\mu\nu} d_k H + C_{jk}^L \bar{l}_j \sigma^{\mu\nu} e_k H + h.c. \right) \bar{F}_{\mu\nu}$

Up type quarks coupling

Down type quarks coupling

Charged leptons coupling

Massless dark photon

- $\checkmark \Lambda_{NP}$: effective heavy mass (NP energy scale)
- ✓ $C_{jk}^{U}, C_{jk}^{D}, C_{jk}^{L}$: dimensionless coefficients about dimension-six operators, independent
- ✓ Both Λ_{NP} and $C_{jk}^U, C_{jk}^D, C_{jk}^L$ depend on NP, $C_{jk}^U, C_{jk}^D, C_{jk}^L$ are not necessarily related to another

- ✓ q_j , l_j : left-handed quark / lepton doublet
- ✓ d_k, u_k, e_k: right-handed down/up type quark
 / charged lepton
- ✓ $\bar{F}_{\mu\nu}$: dark photon's field-strength tensor

Why we need the massless dark photon

FCNC process with massless dark photon

Upper limit of $D^0 \to \omega \gamma'$ and $D^0 \to \gamma \gamma'$

OUTLINE

- Introduction
- Massive dark photon
- Massless dark photon
- Muon-philic particle
- Summary

Why we need the muon-philic particle

Muon-philic scalar or vector particle $X_{0,1}$

- Similar to the previous dark photon, an extra U(1) group is added as minimal extension to the SM
- $U(1)_{L\mu-L\tau}$ model: A new massive scalar boson X_0 or vector boson X_1 only couples to the second and third generations of leptons $(\mu, \nu_{\mu}, \tau, \nu_{\tau})$ with the coupling strength $g'_{0,1}$

 $\mathcal{L}_{\mu}^{\text{scalar}} = -g_0 X_0 \,\overline{\mu} \,\mu,$ $\mathcal{L}_{\mu}^{\text{vector}} = -g_1 X_{1\alpha} \,\overline{\mu} \,\gamma^{\alpha} \,\mu.$

Three cases of muon-philic particles

"vanilla" $L_{\mu} - L_{\tau}$ model

• Large mass of dark matter kind: $m_{\chi} > m_{X_1}/2$ • $\mathcal{B}(X_1 \rightarrow v\bar{v}) = 33\% - 100\%$ with different m_{X_1}

- Light dark matter kind: $m_{\chi} < m_{X_1}/2$
- $g'_D \gg g'_1$ • $\mathcal{B}(X_1 \rightarrow \chi \bar{\chi}) \sim 100\%$

- "scalar" U(1) model g'_D , χ X_0 , χ X_0 , χ long-lived
 - Assuming the X₀ is longlived or only decay to invisible final states

2024/8/27

Coupling constraint from $J/\psi \rightarrow \mu^+ \mu^- X$

PHYS. REV. D 109, L031102 (2024)

OUTLINE

- Introduction
- Visible dark photon
- Invisible dark photon
- Massless dark photon
- Muon-philic particle
- Summary

Summary

- Dark photon / muon-philic particle provides a portal to connect the dark sector and resolve some puzzles beyond the SM
- Unfortunately, no evidence is found
- > BESIII has collected $10^{10} J/\psi$, 2.7 × $10^9 \psi$, 20 fb⁻¹ @ 3.77 GeV data ($D\overline{D}$) and more...
- More & better results are coming soon

The future of Dark Sector is Bright !

 $J/\psi
ightarrow \gamma' \eta^{(\prime)}$, $\gamma'
ightarrow e^+e^-$

Phys. Rev. D 99, 012006 (2019)

\square Reconstruction of η :

- $\eta \rightarrow \gamma \gamma$ (39.36%)
- $\eta \rightarrow \pi^+ \pi^- \pi^0$ (23.02%)
- $\hfill\square$ Reconstruction of η'
- $\eta' \rightarrow \pi^+ \pi^- \gamma$ (29.5%)
- $\eta' \rightarrow \pi^+ \pi^- \eta$ (42.5%), $\eta \rightarrow \gamma \gamma$ (39.36%)

```
\square Reconstruction of \gamma'
```

• $\gamma' \rightarrow e^+e^-$ (10%~100%)

Phys. Rev. D 99, 012013 (2019)

Main background of $J/\psi \rightarrow \gamma' \eta^{(\prime)}$, $\gamma' \rightarrow e^+e^-$

- Usually can not be removed
- Peak around zero but long tail
- Main background: $\gamma^* \rightarrow e^+ e^-$

M_{ee} spectrum of $J/\psi \rightarrow \gamma' \eta^{(\prime)}, \gamma' \rightarrow e^+e^-$

Mixing strength from $J/\psi \rightarrow \gamma' \eta^{(\prime)}$, $\gamma' \rightarrow e^+e^-$

BF

- Only using $\sim 10^9 J/\psi$ events, but now we have $10^{10} J/\psi$ events
- What about using the full data? Will discuss later...

 $e^+e^-
ightarrow \gamma\gamma'$, $\gamma'
ightarrow l^+l^-$

EMC

- Data: 2.93 fb^{-1} data taken at $\sqrt{s} = 3.773$ GeV
- $\gamma'
 ightarrow e^+e^-$ and $\gamma'
 ightarrow \mu^+\mu^-$
- Untagged photon method (high efficiency)

Phys. Lett. B 774, 252 (2017)

Main background: $\gamma^* \rightarrow e^+ e^-$

M_{ee} spectrum of $e^+e^- \rightarrow \gamma \gamma'$, $\gamma' \rightarrow l^+l^-$

- Below 1.5 GeV, $\pi^+\pi^-\gamma$ cross section with muon misidentification dominate the $m_{\mu\mu}$ spectrum
- Above 3.4 GeV, larger hadronic $q \bar{q}$ process background
- $J/\psi \rightarrow l^+l^-$ peaks are removed in the fit

2.93 fb^{-1} data

Mixing strength from $e^+e^- \rightarrow \gamma \gamma'$, $\gamma' \rightarrow l^+l^-$

Invisible dark photon from $e^+e^- \rightarrow \gamma \gamma'$

•
$$m_{\chi} < \frac{m_{\gamma'}}{2}$$

• $\alpha_D \gg \alpha \epsilon^2$
 $\rightarrow \mathcal{B}(\gamma' \rightarrow \gamma \overline{\gamma}) \sim 10^{-10}$

- Invisible in the detector
- **Missing energy**

0%

 $\Gamma(\gamma' \to \chi \bar{\chi}) = \frac{1}{3} \alpha_D m_{\gamma'} \sqrt{1 - \frac{4m_{\chi}^2}{m_{\gamma'}^2} (1 + \frac{2m_{\chi}^2}{m_{\gamma'}^2})}$ $m_{\gamma\prime} = 1 \; GeV, m_{\chi} \ll m_{\gamma'}, \alpha_D = 0.1 \rightarrow \Gamma {\sim} 33 \; MeV$ $m_{\gamma\prime}=1~GeV, m_{\gamma}\ll m_{\gamma'}, \alpha_D=0.01\to\Gamma{\sim}3~MeV$ Width can be ignored only when $\alpha_D \lesssim 0.01$

- Data: 14.9 fb^{-1} data taken at $\sqrt{s} = 4.13 \sim 4.60 \ GeV$ ٠
- Ignore the width of the invisible dark photon •
- Single energy photon

Photon energy spectrum of $e^+e^- \rightarrow \gamma \gamma'$

- Below 1.3 GeV: The trigger efficiency for single photon is low, also high background
- Above 2 GeV: Saturate the EMC electronics, lead to high background
- Detection efficiencies: $1\% \sim 6\%$ ($|cos\theta_{\gamma}| < 0.6$ to suppress the di-gamma background)

Dark photon mass range: [1.5, 2.9] GeV

Phys.Lett.B 839 (2023) 137785

 $E_{\nu} =$

Mixing strength from $e^+e^- \rightarrow \gamma \gamma'$

 \Box (20 – 2.93) fb^{-1} data @3.773 GeV

• Lower mass region

•
$$\epsilon \sim \sqrt{s}$$
, improved by $\frac{4.2 \text{ GeV}}{3.773 \text{ GeV}} < 1.113$

\square New method: gamma conversion to tag γ

- Better solution, lower background
- Wider mass range
- But only $\sim \frac{1}{100}$ statistic

lacksquare $J/\psi
ightarrow \gamma' \eta'$ with $10^{10}\,J/\psi$, invisible γ'

- Lower mass region
- $\epsilon \sim 10^{-3}$ level

 $D^0 \to \omega \gamma'$ and $D^0 \to \gamma \gamma'$

The massless dark photon is invisible

•

 $M_{BC} (GeV/c^2)$

40

1.88

1.87

0 1.84

1.85

1.86

M_{miss}^2 spectrum of $D^0 \to \omega \gamma'$ and $D^0 \to \gamma \gamma'$

Upper limit of $D^0 \to \omega \gamma'$ and $D^0 \to \gamma \gamma'$

Lower limit of Λ_{NP}

43

Summary of the massless dark photon couplings

- m: the mass of the heavier SM particle in the coupling
- In principle, these couplings are not necessarily related to one another.
- Playing a unique role in the dark sector of the charm field. 2024/8/27

 $D \rightarrow \rho \gamma'$

Massive dark photon FCNC

45

Recoil mass spectrum of $J/\psi \rightarrow \mu^+ \mu^- X$

- Data samples: $\sim 9 \times 10^9 J/\psi$ events
- Above 1 GeV, poor understanding of the background $(J/\psi \rightarrow hadron)$
- **No evidence** for signals from $X_{0,1}$ invisible decays