Charm Search for FCNC decays

Liang Sun Wuhan U. 202/08/27

Outline

- Motivation
- Current status
- BESIII charm datasets
- A selection of recent charm FCNC-related results:
 - $D^0 \to \pi^0 \nu \bar{\nu}$ [PRD 105, L071102 (2022)]
 - $D_s^+ \rightarrow h(h')e^+e^-$ [arXiv:2404.05973, accepted by PRL]
 - $D_s^+ \rightarrow \gamma \rho(770)^+$ [arXiv:2408.03980, submitted to JHEP]
- Prospects & summary

Summary of charm decays

BFs expected in SM

10-0		Charm provide	a unique environment for	
	testing	the SM rare/forl	bidden decays and searching for NP	
10 ⁻¹		Complementa	ry information to B and K	
10 ⁻²	Cabibbo favor	sectors with de	own-type quarks	
10 ⁻³	Single Cabibbo supp	ressed		
10 ⁻⁴	Doubly Cabibbo supp	ressed		
10 ⁻⁵	Radiative decays		$D^0 \rightarrow K^{*0} \gamma / \phi \gamma / \phi \gamma / \phi \gamma$	
10 ⁻⁶			$D^+_{(S)} \rightarrow K^{*+} \gamma / \rho^+ \gamma$	
10 ⁻⁷	Long distance:			
10 ⁻⁸	Vector meson Domina	ance (SM)	$D^{\circ+} \rightarrow \gamma \gamma / V V' (I^{+}I^{-}) / NV (I^{+}I^{-}) / NN' V (I^{+}I^{-})$	Rare decays
10 ⁻⁹				•
10 ⁻¹⁰	Short distance FCNC	(SM+NP)	D ^{0/+} →γγ/VI+I [_] /hI+I [_] /hh′I+I [_]	
10 ⁻¹¹			$D^0 \rightarrow \mu^+ \mu^- / e^+ e^-$	
10 ⁻¹²				
10 ⁻¹³			D→(hh)µ+µ+/(hh)e+e+	
10 ⁻¹⁴	/	(NP)	D→(h)µ+e [_]	
10-15	Forbidden decays: L	NV, LFV, BNV	D→(h)pe ⁻	

3

Flavor Changing Neutral Currents in charm

 10^{-5}

 10^{-7}

 $\stackrel{+}{\underbrace{0}}_{10^{-13}}^{10^{-13}}$

 $q^2 \, [\text{GeV}^2]$

- $c \rightarrow u$ processes forbidden at tree level in SM, only allowed in loop and box diagrams
 - Strongly suppressed due to GIM cancellation:
 - Expected SM BF ~O(10⁻⁹)
 - NP might manifest in the loops
- $D \rightarrow X\ell^+\ell^- \& D \rightarrow \gamma X$ dominated by Long-Distance contributions $/ dq^2 [GeV]$
 - Vector Meson Dominance (VMD)
 - BF ~O(10⁻⁶) for $D \rightarrow X\ell^+\ell^-$
 - BF up to 10⁻⁴ for $D \rightarrow \gamma X$
- No VMD in $D \to X \nu \overline{\nu}$

VMD

Results on rare charm decays (D⁰)

Results on rare charm decays

Still lots of unexplored channels...

https://hflav-eos.web.cern.ch/hflav-eos/charm/rare/Spring2021/rare_charm.html

BEPCII & BESIII

Time-of-Flight (TOF) $\sigma t > 90$ ps (barrel) $\sigma t > 120$ ps (end-caps)

Superconducting solenoid (1 Tesla)

Main Drift Chamber (MDC) $\sigma r \phi > 130 \, \mu m$ (single wire) $\sigma p_t % > 0.5 \pm$ [™] 1 GeV

M. Ablikim et al. (BESIII Collaboration), Nucl. Instr. Meth. A614, 345 (2010)

Charm datasets @ BESIII

• Pairs of charm hadrons produced near threshold w/o additional hadrons

- $e^+e^- \rightarrow D_s D_s^*$, $\sqrt{s} = 4.128 4.226$ GeV, $\mathcal{L}_{int} = 7.33$ fb⁻¹
- Advantages:
 - Low background level
 - Full event info, neutrino kinematics can be inferred
 - Absolute branching fraction measurement possible with one $\overline{D}_{(s)}$ tagged
 - Superb EMC performance on e / γ / π^0

Double-Tag method

- Fully reconstructed \overline{D} at tag side (ST)
- Requiring signal decay at the other side (DT)

ST yields: $N_{D_{(s)}}^{ST} = 2 \times N_{D\overline{D}} \times B_{ST} \times \varepsilon_{ST}$ **DT yield:** $N_{DT}^{signal} = 2 \times N_{D\overline{D}} \times B_{ST} \times B_{sig} \times \varepsilon_{ST,sig}$ **The signal branching fraction:**

$$\boldsymbol{B}_{\text{sig}} = \frac{N_{\text{DT}}^{\text{signal}}}{N_{\boldsymbol{D}_{(s)}}^{\text{ST}} \times \boldsymbol{\varepsilon}}$$

$$D^0 \to \pi^0 \nu \overline{\nu}$$

- First search on charm hadron decays into $\nu \overline{\nu}$ final states
- Reliable modeling of K_L^0 backgrounds crucial for this analysis with $D^0 \rightarrow \pi^0 K_L^0 X$ decays as dominating residual background
- Two steps based on data-driven methods:
 - Model K_L^0 energy deposit ($E_{\text{EMC}}^{K_L^0}$) using high-purity samples of $J/\psi \to \phi K^{\pm} \pi^{\mp} K_L^0$ and $J/\psi \to K^{\pm} \pi^{\mp} K_L^0$
 - Model energy deposit of $X^-(E^X_{\rm EMC})$ and K^0_L kinematics using data sample of $D^0 \to \pi^0 K^0_S(\pi^+\pi^-)X$

$D^0 \to \pi^0 \nu \overline{\nu}$

 First upper limit based on 2.93 fb⁻¹ data @ 3.773 GeV:

 $B\left(D^0 \to \pi^0 \nu \overline{\nu}\right) < 2.1 \times 10^{-4} @ 90\% CL$

TABLE I. Summary of systematic uncertainties on the signal yield and detection efficiencies.

Source	Size
Number of π^0	4.0%
π^0 reconstruction	2.0%
Number of charged tracks	1.6%
$M_{\rm miss}^2$ requirement	0.7%
Signal model	0.5%
Wrong-tag background	1.7
$\pi^0 K_I^0 X$ background shape	Negligible
Branching fraction of $\pi^0 \to \gamma\gamma$	Negligible

Search for $D_s^+ \rightarrow hh' e^+ e^-$

- First search for four-body FCNC processes of D_s^+
- Using 7.33 fb⁻¹ data @ 4.128-4.226 GeV
- D_s^+ mainly from $e^+e^- \rightarrow D_s^{*\pm}D_s^{\mp}$, with total number of $N_{D_s^{\pm}D_s^{\mp}} = (64.7 \pm 0.3) \pm 10^5$
- Single-tag method, the BF for a given channel is given by:

$$\mathcal{B}(D_s^+ \to h^+(h^0)e^+e^-) = \frac{N_{\text{sig}}}{2 \cdot N_{D_s^{\pm} \to D_s^{\mp}} \cdot \epsilon \cdot \mathcal{B}_{\text{inter}}}$$

• 2D optimization of requirements on M_{rec} vs. ΔM

$$M_{\rm rec} = \sqrt{\left(E_{\rm cm} - \sqrt{|\vec{P}_{D_s^+}|^2 + m_{D_s^+}^2}\right)^2 - |P_{D_s^+}|^2},$$

$$\Delta M = M(D_s^+\gamma) - M(D_s^+),$$

Results on $D_s^+ \rightarrow h(h^0)\phi(e^+e^-)$

- $M(e^+e^-) \in [0.98, 1.04] \, \text{GeV}/c^2$
- $M(\pi^+\pi^0) \in [0.60, 0.95] \,\mathrm{GeV}/c^2$
- Unbinned maximum likelihood fits to the $M(D_s^+)$ distributions

Decay	$N_{ m sig}$	ϵ (%)	$\mathcal{B}~(imes 10^{-5})$				
$D_s^+ \to \pi^+ \phi, \phi \to e^+ e^-$	$38.2^{+7.8}_{-6.8}$	25.1	$1.17^{+0.23}_{-0.21}\pm0.03$				
$D_s^+ \to \rho^+ \phi, \phi \to e^+ e^-$	$37.8^{+10.3}_{-9.6}$	12.1	$2.44^{+0.67}_{-0.62}\pm0.16$				
7.8 σ for $D_s^+ \to \pi^+$	$\phi, \phi \rightarrow$	e ⁺ e ⁻	improved by a factor of three				
4.4 σ for $D_s^+ \to \rho^+$	$\phi, \phi \rightarrow$	e^+e^-	first evidence				
IB: Using $D^+_{(s)} \rightarrow \pi^+ \phi$, LHCb measured							
$\pi = 1.022 \pm 0.012 (\text{stat}) \pm 0.048 (\text{syst})$							

Results on $D_s^+ \rightarrow h(h^0)\phi(e^+e^-)$

- $M(e^+e^-) \in [0.98, 1.04] \, \text{GeV}/c^2$
- $M(\pi^+\pi^0) \in [0.60, 0.95] \,\mathrm{GeV}/c^2$
- Unbinned maximum likelihood fits to the $M(D_s^+)$ distributions

Decay	$N_{ m sig}$	ϵ (%)	$\mathcal{B}~(imes 10^{-5})$
$D_s^+ \to \pi^+ \phi, \phi \to e^+ e^-$	$38.2^{+7.8}_{-6.8}$	25.1	$1.17^{+0.23}_{-0.21}\pm0.03$
$D_s^+ \to \rho^+ \phi, \phi \to e^+ e^-$	$37.8^{+10.3}_{-9.6}$	12.1	$2.44^{+0.67}_{-0.62}\pm0.16$
7.8 σ for $D_s^+ \to \pi^+$	$\phi, \phi \rightarrow$	e ⁺ e ⁻	improved by a factor of three
4.4 σ for $D_s^+ \to \rho^+ \sigma$	$\phi, \phi \rightarrow$	e^+e^-	first evidence
IB: Using $D^+_{(s)} \rightarrow \pi$	$\alpha^+\phi$, LH	Cb m	neasured
$\pi = 1.022 \pm 0.012$	$2(\mathrm{stat})$	± 0.0	$048 ({ m syst})$

Upper limits on $D_s^+ \rightarrow hh'e^+e^-$

- Exclusion of events with $M(e^+e^-) \in [0.96, 1.05]$ GeV for mode $\pi^+\pi^0 e^+e^-$
- Likelihood scan to determine upper limits
 @ 90% CL:

Decay	$N_{ m sig}$	$\epsilon~(\%)$	$\mathcal{B}~(imes 10^{-5})$
$D_s^+ \to \pi^+ \pi^0 e^+ e^-$		7.4	< 7.0
$D_s^+ \to K^+ \pi^0 e^+ e^-$		5.3	< 7.1
$D_s^+ \to K_S^0 \pi^+ e^+ e^-$	•••	6.7	< 8.1

All first upper limits!

[arXiv:2408.24980]

Search for $D_s^+ \rightarrow \gamma \rho(770)^+$

- First search for a radiative D_s^+ decay
- BF important to test QCD-based LD calculations & predictions of CPV in D decays
- 7.33 fb⁻¹ data @ E_{cm}∈ [4.128, 4.226]
 GeV
- Double-tag method with five modes

$$\mathcal{B}(D_s^+ \to \gamma \rho(770)^+) = \frac{N_{\text{total}}^{\text{DT}}}{B(\pi^0 \to \gamma \gamma) \sum_{\alpha,i} N_{\alpha,i}^{\text{ST}} \epsilon_{\alpha,i}^{\text{DT}} / \epsilon_{\alpha,i}^{\text{ST}}},$$

[arXiv:2408.24980]

Search for
$$D_s^+ \rightarrow \gamma \rho(770)^+$$

• 2D fit to extract signal yield N_{DT} = 33 ± 14 with statistical significance of 2.5σ

[arXiv:2408.24980]

Search for
$$D_s^+ \rightarrow \gamma \rho(770)^+$$

- 2D fit to extract signal yield N_{DT} = 33 ± 14 with statistical significance of 2.5σ
- The BF is measured to be $B(D_s^+ \rightarrow \gamma \rho(770)^+) = (2.2 \pm 0.9 \pm 0.2) \times 10^{-4},$

with UL set at $< 6.1 \times 10^{-4}$ @ 90% CL

Other related BESIII results

Decay channel	Dataset	Ref.	
$D \rightarrow h(h^{(\prime)})e^+e^-$	2.93 fb ⁻¹ @ 3.773 GeV	PRD 97 (2018) 072015	
$\Lambda_c^+ \to \Sigma^+ \gamma$	4.5 fb ⁻¹ @ 4.60 4.70 GeV	PRD 107 (2022) 052002	

Signal decays	$B(\times 10^{-5})$	3.5 F
$D^+ ightarrow \pi^+ \pi^0 e^+ e^-$	<1.4	$_{3} E_{B(\Lambda^{+} \rightarrow \Sigma^{+} x)} < 1.1 \times 10^{-4}$
$D^+ \rightarrow K^+ \pi^0 e^+ e^-$	<1.5	$S_{F}D(\Lambda_{c} \rightarrow 2\gamma) < 4.4 \times 10$
$D^+ \rightarrow K^0_S \pi^+ e^+ e^-$	<2.6	2.5
$D^+ \rightarrow K_S^0 K^+ e^+ e^-$	<1.1	a E
$D^0 \rightarrow K^- K^+ e^+ e^-$	<1.1	
$D^0 \to \pi^+\pi^- e^+ e^-$	< 0.7	
$D^0 \rightarrow K^- \pi^+ e^+ e^{-\dagger}$	<4.1	누 1.5
$D^0 ightarrow \pi^0 e^+ e^-$	< 0.4	
$D^0 ightarrow \eta e^+ e^-$	< 0.3	
$D^0 ightarrow \omega e^+ e^-$	< 0.6	
$D^0 \rightarrow K_S^0 e^+ e^-$	<1.2	0.5
[†] in $M_{e^+e^-}$ regions:		0 E
$[0.00, 0.20) \text{ GeV}/c^2$	$<3.0 \ (1.5^{+1.0}_{-0.9})$	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
$[0.20, 0.65) \text{ GeV}/c^2$	< 0.7	$B(\Lambda_{c}^{+}\rightarrow\Sigma^{+}\gamma)$
$[0.65, 0.90) \text{ GeV}/c^2$	$< 1.9 \ (1.0^{+0.5}_{-0.4})$	

Prospects

	10-6				10-6
Decay	Upper limit	Experiment	Year	Ref.	BESIII Expected
$D^0 \to \pi^0 e^+ e^-$	0.4	BESIII	2018	[35]	0.1
$D^0 \rightarrow \eta e^+ e^-$	0.3	BESIII	2018	[35]	0.1
$D^0 ightarrow \omega e^+ e^-$	0.6	BESIII	2018	[35]	0.2
$D^0 \rightarrow K^0_S e^+ e^-$	1.2	BESIII	2018	[35]	0.5
$D^0 \rightarrow \rho e^+ e^-$	124.0	E791	2001	[36]	0.5
$D^0 \rightarrow \phi e^+ e^-$	59.0	E791	2001	[36]	0.5
$D^0 \to \bar{K}^{*0} e^+ e^-$	47.0	E791	2001		0.5
$D^0 \to \pi^+\pi^- e^+ e^-$	0.7	BESIII	2018	20 fb ⁻¹	0.3
$D^0 \to K^+ K^- e^+ e^-$	1.1	BESIII	2018	2 3.773 GeV	0.4
$D^0 \to K^- \pi^+ e^+ e^-$	4.1	BESIII	2018	[35]	1.6
$D^+ \rightarrow \pi^+ e^+ e^-$	1.1	BaBar	2011	[37]	0.12
$D^+ \to K^+ e^+ e^-$	1.0	BaBar	2011	[37]	0.46
$D^+ \to \pi^+ \pi^0 e^+ e^-$	1.4	BESIII	2018	[35]	0.5
$D^+ \to \pi^+ K^0_S e^+ e^-$	2.6	BESIII	2018	[35]	1.0
$D^+ \to K^0_S K^+ e^+ e^-$	1.1	BESIII	2018	[35]	0.4
$D^+ \to K^+ \pi^0 e^+ e^-$	1.5	BESIII	2018	[35]	0.6
$D_s^+ \to \pi^+ e^+ e^-$	13.0	BaBar	²⁰¹ 6 f	b-1@ 4.18 GeV	70.0
$D_s^+ \rightarrow K^+ e^+ e^-$	3.7	BaBar	201		1.7

20

Summary

- Rare D decays related to $c \rightarrow u$ processes offer unique opportunities for indirect NP searches
- With world's largest data samples near charm thresholds, and superb detector performance, BESIII has great potentials to make significant impacts in the field
- A lot of analyses still in the pipeline, stay tuned!
 - Updated searches on $D \rightarrow h(h^{(\prime)})e^+e^-$
 - Radiative $D_{(s)}$ decays
 - Invisible $(D_{(s)} \rightarrow X \nu \overline{\nu})$ decays