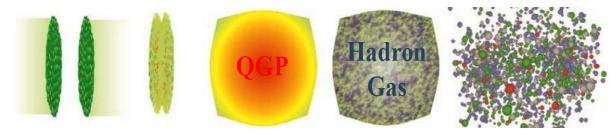


Exploring the Nuclear Shape Phase Transition in Ultra-Relativistic Xe+Xe Collisions at the LHC

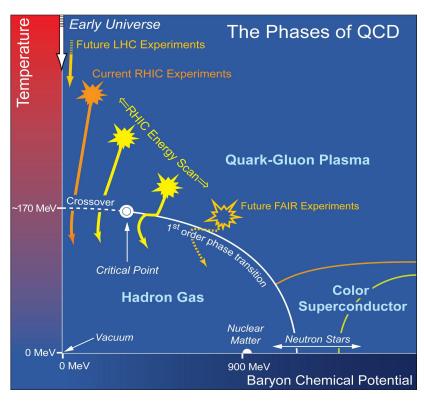
Shujun Zhao (赵沭钧), Peking University in collaboration with Hao-jie Xu, You Zhou, Yu-Xin Liu, Huichao Song

Relativistic Heavy-Ion Collisions



Relativistic heavy ion collisions

- create and study QGP
- the QCD phase diagram
- the QCD vacuum

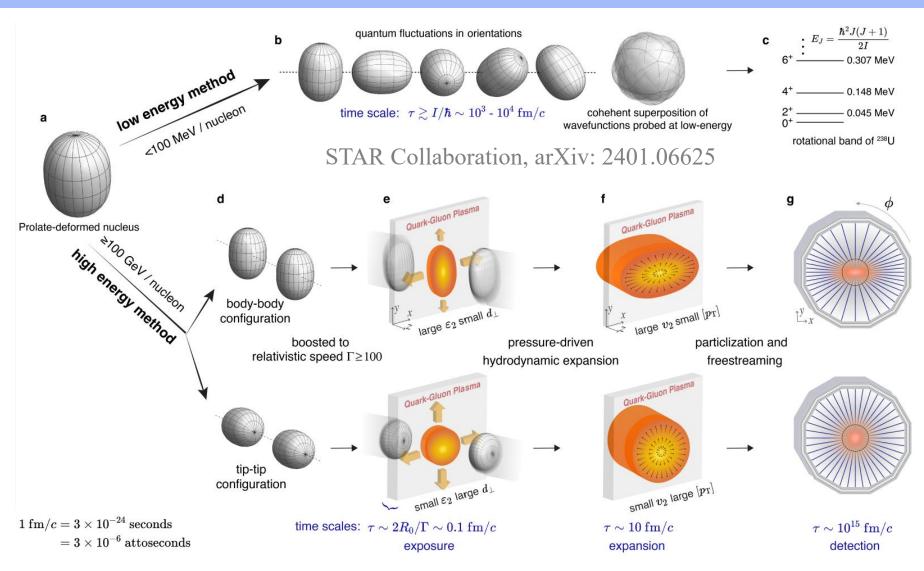


Probing Nuclear Shape in Heavy-Ion Collisions

Relativistic heavyion collisions providing a novel way for detecting the intrinsic shape of nuclei.

Event-by-event linear responses:

$$V_n \propto \mathcal{E}_n \ rac{\delta[p_T]}{[p_T]} \propto -rac{\delta R_\perp}{R_\perp}$$



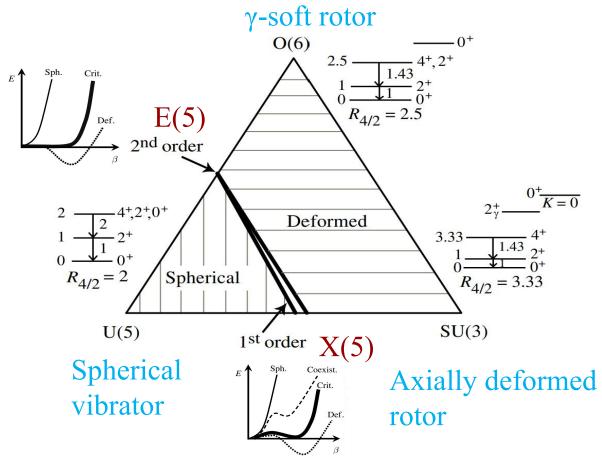
Shape Phase Transition

Critical Point Symmetry capture different times of SPT.

IBM framework: the Xe isotopes undergo a shape phase transition from a γ -soft rotor to a spherical vibrator

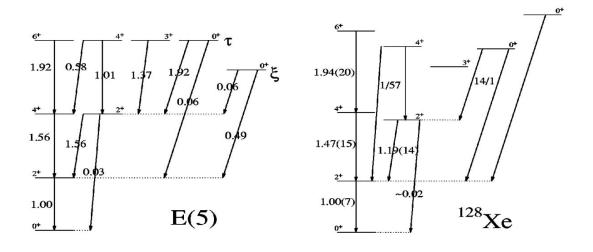
R. F. Casten, Nucl. Phys. A 439, 289 (1985). G. Puddu, O. Scholten, and T. Otsuka, Nucl. Phys. A 348, 109 (1980). R. F. Casten and P. Von Brentano, Phys. Lett. B 152, 22 (1985).

The critical point is described by the E(5) symmetry, associated with a 2^{nd} order phase transition



F. lachello, Phys. Rev. Lett. 87, 052502 (2001). F. lachello, Phys. Rev. Lett. 85, 3580 (2000).

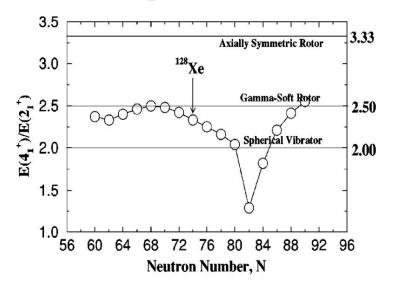
Exp evidence of E(5) symmetry for ¹²⁸Xe



Nucleus	$E(4_1^+)/E(2_1^+)$	$E(0_2^+)/E(2_1^+)$	$E(0_3^+)/E(2_1^+)$
¹²⁸ Xe	2.33	3.57	4.24
130 Xe	2.25	(3.35)	(3.76)
¹³² Xe	2.16		
¹³⁴ Xe	2.04		

Evolution of $E(4_1^+)/E(2_1^+)$ ratio close to 2.2 Existence of two 0^+ states with $3 < E(0_n^+)/E(2_1^+) < 4$ Energy spectroscopy: good agreement with E(5) prediction

 128 Xe lies in between γ-soft rotor and spherical vibrator.

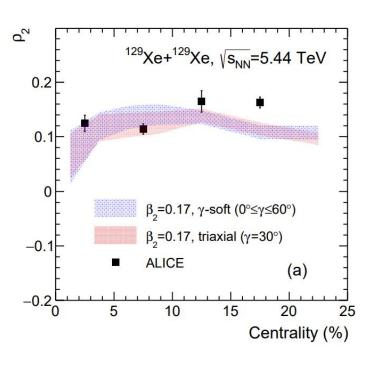


Results: 3-particle correlations

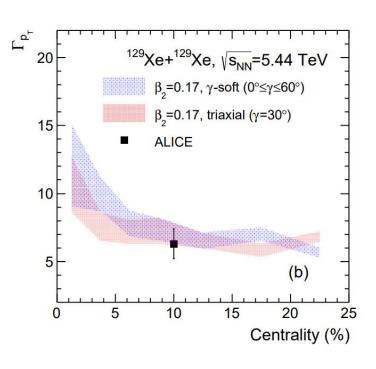
Liquid-drop model prediction:

$$\rho_2, \Gamma_{p_T} \propto \beta_2^3 \cos(3\gamma)$$

$$\rho_2 \equiv \frac{\text{cov}(v_2\{2\}^2, [p_T])}{\sqrt{\text{var}(v_2\{2\}^2)}\sqrt{\text{var}([p_T])}}.$$



$$\Gamma_{p_T} = \frac{\langle \delta p_{T,i} \delta p_{T,j} \delta p_{T,k} \rangle \langle [p_T] \rangle}{\langle \delta p_{T,i} \delta p_{T,j} \rangle^2},$$



No effects both from initial and final stage.

S. Zhao, H. Xu, Y. Zhou, Y. Liu, H. Song, arXiv: 2403.07441 [nucl-th], Phys. Rev. Lett. Accepted

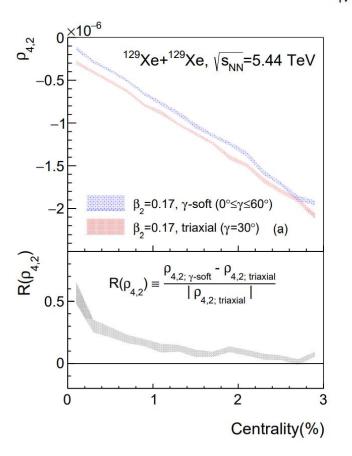
Results: 6-particle correlations

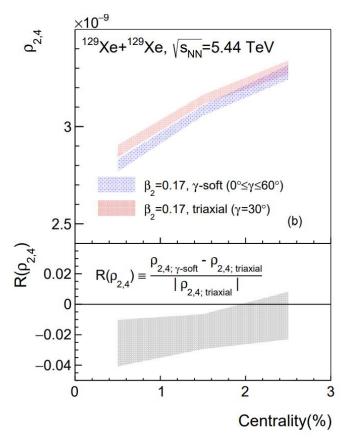
Clear enhencement (suppression) for the γ -soft (regid triaxial) shape, consistent with liquid drop calculations.

Effects on $\rho_{4,2}$ are one magnitude larger than $\rho_{2,4}$.

By constraining 3- and 6-particle correlations simultaneously, it would be possible to determine the details of traxial shape of ¹²⁹Xe.

$$R(\rho_{m,n}) = \frac{\rho_{m,n; \gamma\text{-soft}} - \rho_{m,n; \text{triaxial}}}{|\rho_{m,n; \text{triaxial}}|}.$$



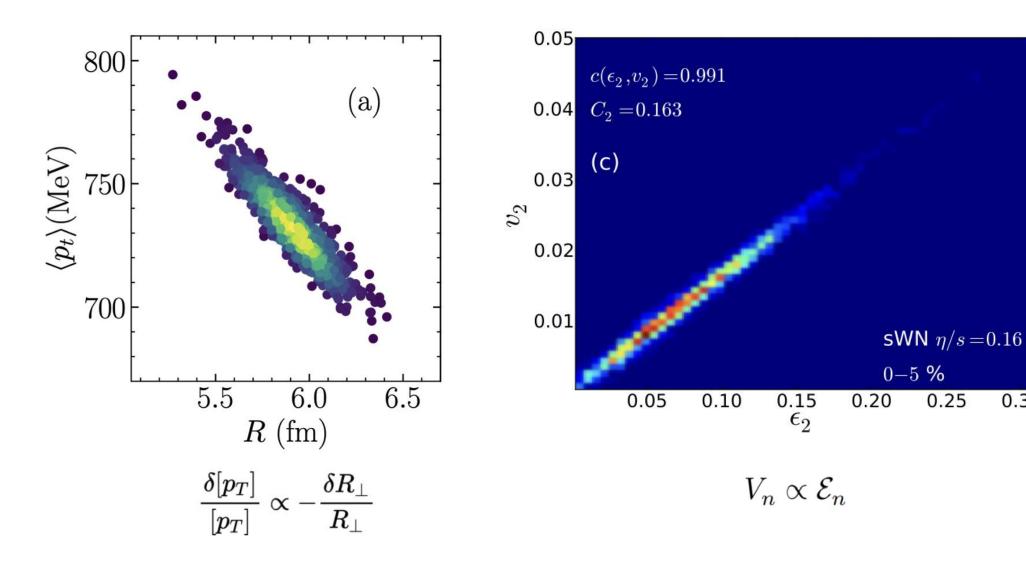


Summary

- ¹²⁹Xe may lay in the critical region of the second order shape phase transition along the Xe isotropes. Studing the traxial structure in ¹²⁹Xe may help for a better understanding the shape phase transition.
- 3-particle correlations cannot distinguish the traxial and γ -soft configurations of ¹²⁹Xe.
- By measuring the 3- and 6-particle correlations simultaneously, it would be possible to impose a constraint on the γ configuration of 129 Xe.
- This work suggest the possibility for studing the nuclear shape phase transition using relativistic heavy-ion collisions.

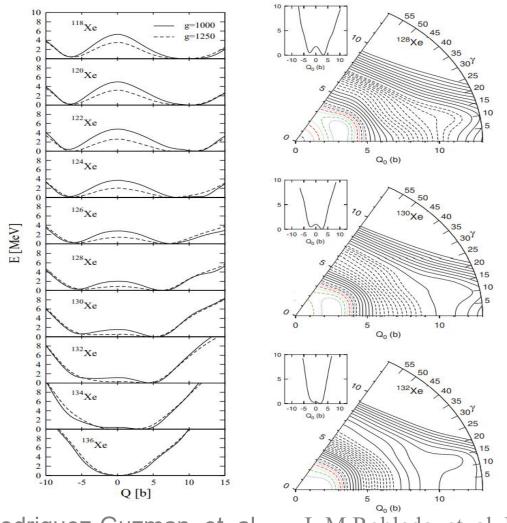
Backup

Linear response between ini. & fin. stage

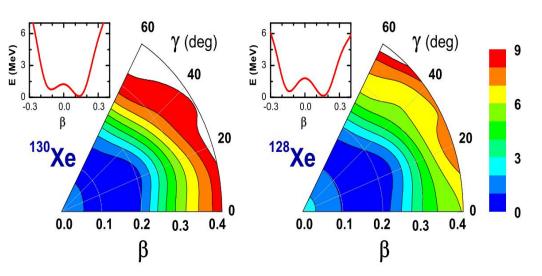


0.30

Th. predictions on E(5) symmetry near ¹²⁸⁻¹³⁰Xe



R. Rodriguez-Guzman, et. al. L.M.Robledo, et. al. Phys. Phys. Rev. C 76, 064303 (2007) Rev. C 78 (2008) 034314



Z. P. Li, T. Niksic, D. Vretenar, and J. Meng (2010)

Various theoretical calculations indicate a critical point of the second-order shape phase transition (E(5) symmetry) lies in the vicinity of $^{128-130}$ Xe, associated with a γ -soft deformation

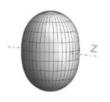
Involving y fluctuation at initial stage

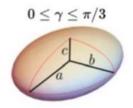
Initial Conditions (TRENTO)

Nucleons are sampled from Woods-Saxon distribution:

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1 + e^{(r-R(\theta,\phi))/a_0}}$$

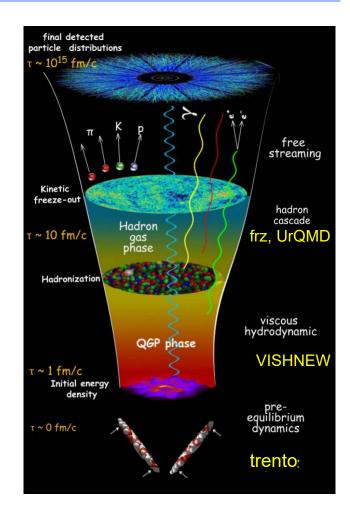
$$R(\theta, \phi) = R_0(1 + \beta_2[\cos \gamma Y_{2,0}(\theta, \phi) + \sin \gamma Y_{2,2}(\theta, \phi)]).$$



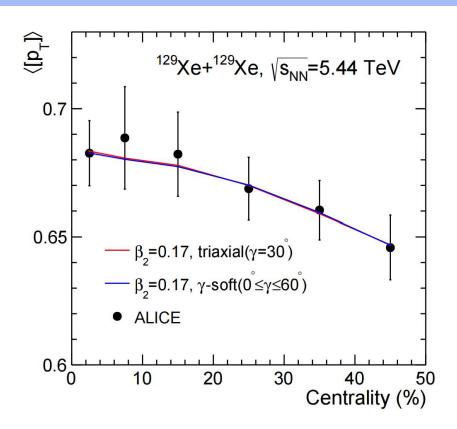


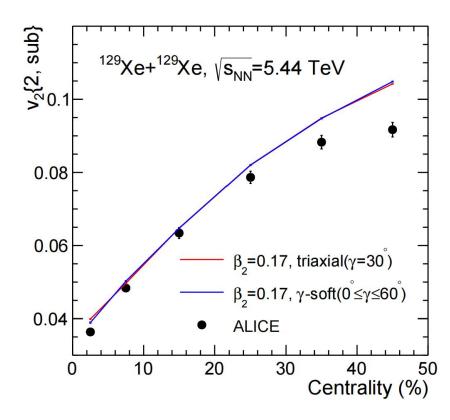
Sample the triaxial parameter gamm with different distribution:

- Rigid triaxial deformation (γ =30°)
- γ -soft (flat distribution in $0 \le \gamma \le 60^{\circ}$)



Parameter Validation





With the parameters obtained from previous Bayesian analysis (Pb+Pb coll), our iEBE-VISHNU, with rigid triaxial or γ -soft deformation of ¹²⁹Xe, can describe most of the bulk observables in Xe+Xe collisions

Results: 6-particle correlations

Here we propose the following two 6-particle correlations at the initial stage:

$$\rho_{4,2} \equiv \left(\frac{\langle \varepsilon_2^4 \delta d_{\perp}^2 \rangle}{\langle \varepsilon_2^4 \rangle \langle d_{\perp} \rangle^2}\right)_c \equiv \frac{1}{\langle \varepsilon_2^4 \rangle \langle d_{\perp} \rangle^2} \left[\langle \varepsilon_2^4 \delta d_{\perp}^2 \rangle + 4 \langle \varepsilon_2^2 \rangle^2 \langle \delta d_{\perp}^2 \rangle - \langle \varepsilon_2^4 \rangle \langle \delta d_{\perp}^2 \rangle - 4 \langle \varepsilon_2^2 \rangle \langle \varepsilon_2^2 \delta d_{\perp}^2 \rangle - 4 \langle \varepsilon_2^2 \delta d_{\perp}^2 \rangle - 4 \langle \varepsilon_2^2 \delta d_{\perp}^2 \rangle \right]
\rho_{2,4} \equiv \left(\frac{\langle \varepsilon_2^2 \delta d_{\perp}^4 \rangle}{\langle \varepsilon_2^2 \rangle \langle d_{\perp} \rangle^4} \right)_c \equiv \frac{1}{\langle \varepsilon_2^2 \rangle \langle d_{\perp} \rangle^4} \left[\langle \varepsilon_2^2 \delta d_{\perp}^4 \rangle - 6 \langle \varepsilon_2^2 \delta d_{\perp}^2 \rangle \langle \delta d_{\perp}^2 \rangle - 4 \langle \varepsilon_2^2 \delta d_{\perp} \rangle \langle \delta d_{\perp}^3 \rangle - \langle \varepsilon_2^2 \rangle \langle \delta d_{\perp}^4 \rangle + 6 \langle \varepsilon_2^2 \rangle \left(\langle \delta d_{\perp}^2 \rangle \right) \right].$$

The calculations based on the liquid-drop model suggest that

$$\langle \varepsilon_2^4 \rangle \rho_{4,2} = A\beta_2^6 (53 + 16\langle \cos(6\gamma) \rangle) + f_{4,2}(\beta_2^6, \langle \cos(3\gamma) \rangle),$$
$$\langle \varepsilon_2^2 \rangle \rho_{2,4} = \frac{A}{16} \beta_2^6 (43 - 14\langle \cos(6\gamma) \rangle) + f_{2,4}(\beta_2^6, \langle \cos(3\gamma) \rangle),$$

Thus it would be possible for distinguish the two cases (traixial shape with $\gamma=30^{\circ}$ and γ -soft in $0 \le \gamma \le 60^{\circ}$) using the two 6-particle correlations.