Baryon Correlations and Strange Di-baryon Search at RHIC-STAR

<u>2nd Nov, 2024</u>

- Ke Mi (米柯) **Central China Normal University**
- The 1st International Workshop on Physics at High Baryon Density (PHD2024, 第一届高重子密度物理国际研讨会) 1-4 November, 2024, Wuhan, China

Outline

- 2. Motivation
- 3. RHIC-STAR Experiment
- 4. Results
 - p-d, d-d, d- Λ correlation at 3 GeV
 - p- Ξ , Λ - Λ , p- Ω correlation at 200 GeV
- 5. Summary & Outlook

1. Femtoscopy and Two-particle Correlation Function

✓ Two-particle correlation function: Model $C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r} =$

 $S(\vec{r})$: Source function $\Psi(\vec{k}^*, \vec{r})$: Pair wave function $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum Nature 178 1046-1048(1956) \vec{r} : relative distance ALICE Coll. Nature 588, 232–238 (2020) R. Lednicky, et al, Sov.J.Nucl.Phys. 35 (1982) 770

2024/11/02

\Rightarrow In high energy collisions, Femtoscopy is inspired by

Hanbury Brown and Twiss (HBT) interferometry, but different scale (~several fm)

→ Spatial and temporal extent of emission source

→ Final-state Interactions (Coulomb, Strong interaction) \rightarrow Bound state

<u>Experimental</u>

 $\frac{N_{same}(k^*)}{N_{mixed}(k^*)}$

✓ Two-particle correlation function: Model $C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r}$

 $S(\vec{r})$: Source function $\Psi(\vec{k}^*, \vec{r})$: Pair wave function $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum Nature 178 1046-1048(1956) \vec{r} : relative distance ALICE Coll. Nature 588, 232–238 (2020) R. Lednicky, et al, Sov.J.Nucl.Phys. 35 (1982) 770

2024/11/02

\Rightarrow In high energy collisions, Femtoscopy is inspired by

Hanbury Brown and Twiss (HBT) interferometry, but different scale (~several fm)

→ Spatial and temporal extent of emission source

→ Final-state Interactions (Coulomb, Strong interaction) \rightarrow Bound state

✓ Two-particle correlation function: Model $C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r}$

 $S(\vec{r})$: Source function $\Psi(\vec{k}^*, \vec{r})$: Pair wave function $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum Nature 178 1046-1048(1956) \vec{r} : relative distance ALICE Coll. Nature 588, 232–238 (2020) R. Lednicky, et al, Sov.J.Nucl.Phys. 35 (1982) 770

2024/11/02

\Rightarrow In high energy collisions, Femtoscopy is inspired by

Hanbury Brown and Twiss (HBT) interferometry, but different scale (~several fm)

→ Spatial and temporal extent of emission source

→ Final-state Interactions (Coulomb, Strong interaction) \rightarrow Bound state

✓ Two-particle correlation function: Model $C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*,\vec{r})|^2 d^3\vec{r}$

 $S(\vec{r})$: Source function $\Psi(\vec{k}^*, \vec{r})$: Pair wave function $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum Nature 178 1046-1048(1956) \vec{r} : relative distance ALICE Coll. Nature 588, 232–238 (2020) R. Lednicky, et al, Sov.J.Nucl.Phys. 35 (1982) 770

2024/11/02

\Rightarrow In high energy collisions, Femtoscopy is inspired by

Hanbury Brown and Twiss (HBT) interferometry, but different scale (~several fm)

→ Spatial and temporal extent of emission source

→ Final-state Interactions (Coulomb, Strong interaction) \rightarrow Bound state

Motivation

- Formation mechanism of light nuclei are under debate ⇒ Coalescence : final-state interaction
 - ⇒ Thermal : produced directly from fireball
- Indirect approach of many body interactions

J.Cleymans et al, Phys.Rev.C 74, 034903 (2006) K. Blum et al, Phys.Rev.C 99, 04491 (2019) St. Mrówczyński and P. Słoń, Acta Physica Polonica B 51, 1739 (2020) St. Mrówczyński and P. Słoń, Physical Review C 104, 024909 (2021)

2024/11/02

Coalescence

Direct production

Motivation

- Formation mechanism of light nuclei are under debate ⇒ Coalescence : final-state interaction
 - ⇒ Thermal : produced directly from fireball
- Indirect approach of many body interactions
- Strange Dibaryons, have never been found experimentally
 o Possible bound state:

H-dibaryon $\Rightarrow \Lambda + \Lambda / p + \Xi^{-}$

(Strange)Dibaryon $\Rightarrow p + \Omega$

o Momentum correlation provides a new way to explore

Experimental measurements are needed!

Phys.Rev.C 99, 064905 (2019) *Phys.Rev.C* 84, 064910 (2011) *Phys. Rev. C* 83 (2011) 015202

2024/11/02

	Dibaryon	Particle	Mass (MeV)	Decay
P		f_0	980	$\pi\pi$
C		a_0	980	$\pi\eta$
	2	K(1460)	1460	$K\pi\pi$
		$\Lambda(1405)$	1405	$\pi\Sigma$
		$\Theta^{+}(1530)$	1530	KN
		Н	2245	$\Lambda\Lambda$
		$N\Omega$	2573	$\Lambda \Xi$

Motivation

- Formation mechanism of light nuclei are under debate ⇒ Coalescence : final-state interaction
 - ⇒ Thermal : produced directly from fireball
- Indirect approach of many body interactions
- Strange Dibaryons, have never been found experimentally
 o Possible bound state:

H-dibaryon $\Rightarrow \Lambda + \Lambda / p + \Xi^{-}$

(Strange)Dibaryon $\Rightarrow p + \Omega$

• Momentum correlation provides a new way to explore

Experimental measurements are needed!

Phys.Rev.C 99, 064905 (2019) *Phys.Rev.C* 84, 064910 (2011) *Phys. Rev. C* 83 (2011) 015202

2024/11/02

RHIC-STAR Experiment

Particle Identification & Reconstruction

Results — p-d, d-d Correlation

2024/11/02

⇒ First measurements of p-d/d-d correlation functions in STAR

⇒ Clear depletion in low k*

Coulomb repulsive & strong interaction

⇒ Fitted with L-L model simultaneously,

- in different centrality:
- Different R_G
- **Common** f_0 and d_0

STAR: arXiv:2410.03436v1 SMASH: J. Weil et al. Phys.Rev.C 94 (2016) 5, 054905 Coalescence: W.Zhao et al. Phys. Rev. C.98 (2018) 5,054905

Results — p-d, d-d Correlation

2024/11/02

⇒ Simulated with SMASH model, consider two deuteron formation mechanism:

- **Direct production**
 - Hadronic scattering
 - Fail to describe data at certain k* lacksquare
- **Coalescence production**
 - Wigner function
 - Well description to data
 - **<u>Coalescence</u>** is the dominant process for deuteron formation in the highenergy nuclear collisions

STAR: arXiv:2410.03436v1 SMASH: J. Weil et al. Phys.Rev.C 94 (2016) 5, 054905 Coalescence: W.Zhao et al. Phys. Rev. C.98 (2018) 5,054905

Results — p-d, d-d Correlation

STAR: arXiv:2410.03436v1

Results — p-d, d-d Interaction

- ⇒ Extracted spin-averaged final state interaction parameters (f_0 , d_0) with LL model
- ⇒ For both p-d and d-d interaction, the spin-averaged

f_0 is negative

- **Combination of repulsive interactions in quartet (quintet)** spin state for p-d (d-d) along with the presence of bound states (³He for p-d and ⁴He for d-d)
- ⇒ For p-d interaction, the result is consistent with theory calculation and low-energy scattering experiment measurement
- Support the feasibility of extracting interaction parameters with Femtoscopy technique

STAR: arXiv:2410.03436v1

Results — d- Λ **Correlation**

- \Rightarrow Simultaneously fit to data in different centralities with L-L approach

* Λ feed-down correction not applied

2024/11/02

First measurement of d- Λ **CF at STAR**

 \Rightarrow Strong enhancements at small k^* range -> Attractive interactions

Consider two-spin components: D (doublet, S = 1/2), Q (quartet, S=3/2)

EPJ Web Conf. 296 (2024) 14010

Results — d- Λ **Interaction**

- ⇒ First experimental extraction of strong interaction parameters of d- Λ pair
- \Rightarrow Successfully separate two spin components in d- Λ f_0 (D) = -20 $^{+3}_{-3}$ fm, d_0 (D) = 3 $^{+2}_{-1}$ fm $f_0(\mathbf{Q}) = \mathbf{16}^{+2}_{-1} \text{ fm}, \ d_0(\mathbf{Q}) = \mathbf{2}^{+1}_{-1} \text{ fm}$
 - Negative f_0 in doublet state -> ${}^3_{\Lambda}$ H bound state • **Positive** f_0 in quartet state -> Attractive interaction

Results — d- Λ **Interaction**

2024/11/02

 $\Rightarrow {}^{3}_{\Lambda}H$ binding energy (B_{Λ}): **Bethe formula from Effective Range Expansion (ERE)** $\frac{1}{-f_0} = \gamma - \frac{1}{2}d_0\gamma^2$ $B_{\Lambda} = \cdot$

> $\mu_{d\Lambda}$: reduced mass γ : binding momentum

 $\Rightarrow {}^{3}_{\Lambda}H B_{\Lambda} = [0.04, 0.33] (MeV) @ 95\% CL$

-> Consistent with the world average

 \Rightarrow Open a new way to constrain $^{3}_{\Lambda}$ H properties

EPJ Web Conf. 296 (2024) 14010 H.Bethe, Phys.Rev 76, 38 (1949)

Results — p-E Correlation

2024/11/02

Results — p- Ξ Interaction

2024/11/02

Results — Λ - Λ **Correlation**

- STAR published Λ - Λ CF at 200 GeV in Au+Au collisions with run10, run11 data
- By fitted with analytical LL function, $f_0(\Lambda\Lambda) = -1$ fm

 - More detailed study are needed to draw further conclusions

• Re-do Λ - Λ CF in Au+Au collisions at 200 GeV with high-statistics run14, run16 data **Repulsive interaction conclude from publish paper (without feed-down correction)** PRL 114, 022301 (2015)

17

Results — $p-\Omega$ Correlation

- STAR published p- Ω CF at 200 GeV in Au+Au collisions with run11, run14 data
- - Data supports the existence of bound state

• Compared with theory calculations qualitatively, VIII potential is in better agreement

Summary

⇒ Femtoscopy measurements from HIC provides a uniquetool to explore strong interactions and evolution dynamics

⇒ p-d, d-d interaction

- First determination of p-d / d-d interaction parameters in HIC
- <u>Coalescence</u> is the dominant process for deuteron formation in the high-energy collisions

\Rightarrow **d**- Λ interaction

- First experimental measurements of f_0 and d_0 in d- Λ pairs
- Provide a new way to explore hyper-nuclei properties

\Rightarrow p- Ξ , Λ - Λ , p- Ω interaction

- Attractive interaction in p- Ξ pair: $f_0 \sim 0.69$ fm
- High statistics data is needed for studying Y-N / Y-Y interaction

Backup: proton- Λ correlation

$$f_0 = 2.32^{+0.12}_{-0.11} fm$$
, $d_0 = 3.54^{+2.69}_{-1.26} fm$

Results — d- Λ **Correlation**

2024/11/02

- \Rightarrow R_G: spherical Gaussian source extracted with L-L approach
- ⇒ Collision dynamics as expected o Centrality dependence: $R_G^{central} > R_G^{peripheral}$ $\circ < m_T >$ dependence: $R_G(p - \Lambda) > R_G(d - \Lambda)$

