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High-Energy Nuclear Collisions and QCD Phase Diagram 
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1) RHIC beam energy scan → search for 1st-order phase transition and QCD critical point 
2) Baryon-baryon interaction (e.g. N-N, Y-N) → inner structure of compact stars
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Hyperon Puzzle: difficulty 
to reconcile the measured 
masses of neutron stars 
with the presence of the 
hyperons in their interiors



Light- and Hyper-nuclei Productions
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1) Light- and Hyper-Nuclei are abundantly 
produced at high baryon density region 

2) Light-Nuclei carry information about 
local baryon density fluctuations at 
freeze-out; offers insights on the Final 
State Interaction: N-N 

3) Hyper-Nuclei provide access to the 
hyperon–nucleon interaction: Y-N 

4) Collective flow is sensitive to the 
Equation-of-State of nuclear matter[1] A. Andronic et al. Phys.Lett.B 697, 203 (2011) 

[2] J. Steinheimer et al. Phys.Lett.B 714, 85 (2012) 
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Collective Flow
Collective Flow analysis

Analysis steps with event plane method
1) Signal extraction for a given ϕ - Ψn bin:

2) Fit dN/d(ϕ - Ψn) distribution in rapidity bins to extract 
observed flow coefficients vR

n

3) Correct  with signal number weighted EP resolution 
:

vR
n

<
1
Rn

>

1) The initial pressure gradient of the collision system is directly 
related to the magnitude of vn, which is a sensitive observable 
for studying EoS 

2) Collectivity of light- and hyper-nuclei in heavy-ion collisions 
at high baryon density regions is important for understanding 
their formation mechanism
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v2 = < (p2
x − p2

y )/p2
T >v1 = < px /pT >

— v1  Directed flow                  — v2  Elliptic flow 

The nth order coefficient of the fourier expansion of the 
azimuthal distribution in the momentum space

[1] H. Masui et al., Nucl. Instrum. Methods Phys. Res. A 833, 181 (2016)
[2] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998) 

Heavy ion collisions: Initial spatial anisotropy 
→ Pressure gradient → Anisotropic flow 

NR(ϕ − ψn) = ∫ dM
1
Rn

dN
d(ϕ − ψn)

< vn > = < vR
n > <

1
Rn

>

<
1
Rn

> =
ΣiNi * < 1

Rn
>

ΣiNi
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STAR Detector System 
Major Upgrades in BES-II: 

[1] iTPC: https://drupal.star.bnl.gov/STAR/starnotes/.   public/sn0619. 
[2] eTOF: STAR and CBM eTOF group,  arXiv: 1609.05102.  
[3] EPD: J. Adams, et al. NIM A968, 163970 (2020)

1) Enlarged rapidity acceptance  
2) Improved particle identification   
3) Enhanced event plane resolution

iTPC:
Improves dE/dx
Extends η coverage from 1.0 to 1.5
Lowers pT cut-in from 125 to 60 MeV/c
Ready in 2019 

eTOF:
Forward rapidity coverage
PID at η = -1.1 to -1.6
Ready in 2019

EPD:
Improves trigger
Event plane measurements 
Ready in 2018

https://drupal.star.bnl.gov/STAR/starnotes/


Dataset and Event Plane Reconstruction 

DataSet
√sNN = 3.0 GeV 

(2018) 
 (ytarget = -1.04 )

3.2 GeV (2019) 
 (ytarget = -1.14 )

3.5 GeV (2020) 
 (ytarget = -1.25 )

3.9 GeV (2020) 
(ytarget = -1.37 )

4.5 GeV (2020) 
(ytarget = -1.52 )

Events ~260 M ~210 M ~115 M ~120 M ~120 M

•EP reconstruction: Q vector method 

•Re-center and shift calibration 

•EP resolution: three sub-events 

method

Event plane reconstruction
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The EP resolution is determined as: 

[1] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998) 

R1 = ⟨cos(Ψa
1 − Ψr)⟩

=
⟨cos(Ψa

1 − Ψb
1)⟩⟨cos(Ψa

1 − Ψc
1)⟩

⟨cos(Ψb
1 − Ψc

1)⟩

5-40% centrality bin used in this analysis
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Particle Identification and Topological Selection 

1) Good particle identification capability based on TPC and TOF 
2) The hyper-nuclei reconstruction with KFParticle package based on the Kalman filter method 

providing a full set of the particle parameters together with their uncertainties 
3) Decay topology tremendously helped on particle identification and background suppression
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Decay Topology

[1] Gorbunov and I. Kisel,  Reconstruction of decayed particles based on the Kalman filter. CBM-SOFT-note-2007-003, 7 May 2007 
[2] Ivan Kisel. Event Topology Reconstruction in the CBM Experiment. J. Phys. Conf. Ser. 1070(1), 012015 (2018)
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1) Topologically reconstructed 3ΛH 2-body 
decay (left panel), 3-body decay (middle 
panel) and 4ΛH (right panel) from 3.2, 3.5, 
3.9 and 4.5 GeV Au+Au collisions 

2) Background subtracted distributions are 
shown as red symbols. The significances 
of the mass peaks are also indicated 

3) Obvious hyper-nuclei signals can be 
observed with the reconstructed invariant 
mass distributions
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Directed flow of hyper-
nuclei are calculated 
within the selected 0.4 ≲
pT / A ≲ 0.8 GeV/c range 
as indicated by the boxes



Acceptance of p, d, t, 3He and 4He of 3.2, 3.5, 3.9, 4.5 GeV
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Directed flow of light-
nuclei are calculated 
within the selected 0.4 < 
pT / A< 0.8 GeV/c range 
as indicated by the boxes



Light- and Hyper-Nuclei Directed Flow v1
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The v1 slope is obtained by fitting the v1(y) 
distribution with a polynomial function, where 
p0 is the mid-rapidity slope  (v1)s = dv1/dy

y=0

Hyper-
Nuclei

Fitting Function y pT / A

Λ v1(y) = (v1)s·y + p1·y3 (-1.0, 0.0)  (0.4, 0.8)
3
ΛH v1(y) = (v1)s·y (-1.0, 0.0)  (0.33, 0.83)

4
ΛH v1(y) = (v1)s·y (-1.0, 0.0)  (0.30, 0.75)

Light-
Nuclei Fitting Function y pT / A

p v1(y) = (v1)s·y + p1·y3 (-1.0, 0.0) (0.4, 0.8)

d
 v1(y) = (v1)s·y + p1·y3 (-1.0, -0.2) (0.4, 0.8)

t 
 v1(y) = (v1)s·y + p1·y3 (-1.0, -0.3) (0.4, 0.8)
3He v1(y) = (v1)s·y + p1·y3 (-1.0, 0.0) (0.4, 0.8)

4He v1(y) = (v1)s·y + p1·y3 (-1.0, -0.4) (0.4, 0.8)

[1] M.S. Abdallah et al., (STAR Collaboration), Phys. Lett. B 827, 136941 (2022)
[2] B. E. Aboona et al., (STAR Collaboration), Phys. Rev. Lett. 130, 211301(2023)



Particle Mass Dependence

1) At given energy, for both light- and hyper-nuclei,  it seems that the slopes of mid-rapidity v1 are 
scaled with atomic mass number A or/and particle mass, implying coalescence is the dominant 
process for the light- and hyper-nuclei production 

2) The feature is also reproduced by transport model JAM (mean field  κ= 380 MeV) with coalescence 
afterburner calculations
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Major source 3
ΛH 4

ΛH light-nuclei

EP resolution 4% 4% 4%

Efficiency 2% 2% 2%

Topological 
cuts / PID cuts 12% 11% 5%

Total 13% 12% 6%

Systematic uncertainties for v1 slope: 
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Collision Energy Dependence

1) As the collision energy increases, the v1 slope of light- and hyper-nuclei decreases 
2) Hadronic transport model (JAM mean field κ= 380 MeV) plus coalescence afterburner 

calculations are consistent with observed energy dependence
14

Hyper-Nuclei Light-Nuclei



Summary and Outlook

1) Studied the collision energy dependence of the directed flow v1 for both light- and hyper-
nuclei in √sNN = 3.0, 3.2, 3.5, 3.9, 4.5 GeV Au + Au collisions measured by the STAR 
experiment at RHIC 

2) An approximate atomic mass number scaling and energy dependence are observed in the 
measured v1 slopes of light- and hyper-nuclei at mid-rapidity 

3) Calculations of hadronic transport model plus coalescence afterburner qualitatively 
reproduced the observed dependences for hyper-nuclei as well as light-nuclei implying 
coalescence process dominate the underlying production mechanism for those light clusters 
in these heavy ion collisions
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Outlook:
2 billion events for 3.0 GeV Au + Au collisions at RHIC-STAR will significantly enhance the 
precision and help us to further constrain coalescence parameters for both light- and hyper-nuclei 
at the high density region



Thank you for your attention!
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