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High-Energy Nuclear Collisions and QCD Phase Diagram
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1) RHIC beam energy scan — search for 1st-order phase transition and QCD critical point
2) Baryon-baryon interaction (e.g. N-N, Y-N) — 1nner structure of compact stars
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[1] A. Andronic et al. Phys.Lett.B 697,203 (2011)
[2] J. Steinheimer et al. Phys.Lett.B 714, 85 (2012)

1) Light- and Hyper-Nucle1 are abundantly
produced at high baryon density region

2) Light-Nucle1 carry information about
local baryon density fluctuations at
freeze-out; offers insights on the Final
State Interaction: N-N

3) Hyper-Nucle1 provide access to the
hyperon—nucleon interaction: Y-N

4) Collective flow 1s sensitive to the
Equation-of-State of nuclear matter




Collective Flow
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Heavy 1on collisions: Initial spatial anisotropy Collective Flow analysis
. . . The nth order coefficient of the fourier expansion of the
— Pressure gradient — Anisotropic flow azimuthal distribution in the momentum space
Nucleus of P 3 2 o0
d at P 7 d°N 1 d°N
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— — v1 Directed flow — v2 Elliptic flow

B Analysis steps with event plane method

) , 1) Signal extraction for a given ¢ - ¥, bin:

NW¢—w)=Jﬂwl i
' R, d(¢ — )

2) Fit dN/d(¢ - W») distribution in rapidity bins to extract
observed flow coefficients v¥

1) The nitial pressure gradient of the collision system 1s directly
related to the magnitude of vy, which 1s a sensitive observable

for studying EoS 3 C R with <ional b e B resolut
2) Collectivity of light- and hyper-nucler 1n heavy-i1on collisions ) olrr ec.t v With signal number weig tel resolution
at high baryon density regions 1s important for understanding & <y >=<vi>< = >
their formation mechanism 1 N * < RL
[1] H. Masui et al., Nucl. Instrum. Methods Phys. Res. A 833, 181 (2016) <2 =

Rn Zi]\']i
[2] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 88, 1671 (1998)



STAR Detector System

- Large acceptance 4
- Excellent PID with uniform & completed
efficiency All are 1n data-taking for BES-II

- Modest rates SN program

1) Enlarged rapidity acceptance
2) Improved particle identification
3) Enhanced event plane resolution

iTPC:

e Improves dE/dx

Extends n coverage from 1.0 to 1.5
Lowers pr cut-1n from 125 to 60 MeV/c
Ready 1in 2019

eTOF:

e Forward rapidity coverage
e PIDatn=-1.1to-1.6

e Ready in 2019

EPD:

e Improves trigger

e Event plane measurements
e Ready in 2018

[1]1TPC: https://drupal.star.bnl.gov/STAR/starnotes/. public/sn0619.
[2] eTOF: STAR and CBM eTOF group, arXiv: 1609.05102.
[3] EPD: J. Adams, et al. NIM A968, 163970 (2020)
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Dataset and Event Plane Reconstruction

Jsnn = 3.0 GeV
DataSet (2018)

(Ytarget = -1 04)

3.2 GeV (2019) 3.5 GeV (2020) 3.9 GeV (2020) 4.5 GeV (2020)

(Ytarget =-1.1 4) (Ytarget =-1.25 ) (Ytarget = -1.37 ) (Ytarget = -1.52 )

Events ~260 M ~210 M ~115 M ~120 M ~120 M

® Event plane reconstruction 1.0
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e Re-center and shift calibration

e EP resolution: three sub-events
method
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The EP resolution is determined as: T T T

R1=<COS(‘P?_TF)> _iillil.,*lllillli O .:i . u _
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2z 5-40% centrality bin used 1n this analysis

[1] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 88, 1671 (1998)
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Particle Identification and Topological Selection

Decay Topology

P1

Primary Vertex

Decay length <— I/Al

2
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1) Good particle identification capability based on TPC and TOF

2) The hyper-nucle1 reconstruction with KFParticle package based on the Kalman filter method
providing a full set of the particle parameters together with their uncertainties

3) Decay topology tremendously helped on particle 1dentification and background suppression

[1] Gorbunov and I. Kisel, Reconstruction of decayed particles based on the Kalman filter. CBM-SOFT-note-2007-003, 7 May 2007
[2] Ivan Kisel. Event Topology Reconstruction in the CBM Experiment. J. Phys. Conf. Ser. 1070(1), 012015 (2018)




Counts (x10°)

Hyper-Nuclei Reconstruction
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1) Topologically reconstructed 3AH 2-body
decay (left panel), 3-body decay (middle
panel) and 4AH (r1ght panel) from 3.2, 3.5,
3.9 and 4.5 GeV Au+Au collisions
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2) Background subtracted distributions are
shown as red symbols. The significances
of the mass peaks are also indicated

3) Obvious hyper-nucle1 signals can be
observed with the reconstructed invariant

mass distributions
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Acceptance of A, 3AH and 4AH of 3.2, 3.5, 3.9, 4.5 GeV

A—=p+n SH—-°He+n SH—-d+p+n H— He+m

3.2 GeV

Directed flow of hyper-
nuclel are calculated
within the selected 0.4 <

pr/ A = 0.8 GeV/c range
as indicated by the boxes
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Acceptance of p, d, t, 3He and 4He of 3.2, 3.5, 3.9, 4.5 GeV
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Directed tlow of light-
nucle1 are calculated
within the selected 0.4 <

pr/ A< 0.8 GeV/c range
as 1ndicated by the boxes
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Directed Flow v,

Light- and Hyper-Nuclei Directed Flow vy
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Particle Mass Dependence

> Systematic uncertainties for v+ slope:

Particle Mass (GeV/c?)
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1) At given energy, for both light- and hyper-nuclei, it seems that the slopes of mid-rapidity v are
scaled with atomic mass number 4 or/and particle mass, implying coalescence 1s the dominant
process for the light- and hyper-nuclei production

2) The feature 1s also reproduced by transport model JAM (mean field k= 380 MeV) with coalescence

afterburner calculations
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Collision Energy Dependence

Au+Au Collisions at RHIC
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1) As the collision energy increases, the vi slope of light- and hyper-nucle1 decreases

2) Hadronic transport model (JAM mean field k= 380 MeV) plus coalescence afterburner
calculations are consistent with observed energy dependence



Summary and Outlook

1) Studied the collision energy dependence of the directed flow vi for both light- and hyper-
nuclei in Vsnn = 3.0, 3.2, 3.5, 3.9,4.5 GeV Au + Au collisions measured by the STAR

experiment at RHIC

2) An approximate atomic mass number scaling and energy dependence are observed 1n the
measured vi slopes of light- and hyper-nucle1 at mid-rapidity

3) Calculations of hadronic transport model plus coalescence afterburner qualitatively

reproduced the observed dependences for hyper-nucler as well as light-nucler implying
coalescence process dominate the underlying production mechanism for those light clusters

in these heavy 1on collisions

Outlook:

2 billion events for 3.0 GeV Au + Au collisions at RHIC-STAR will significantly enhance the
precision and help us to further constrain coalescence parameters for both light- and hyper-nuclei
at the high density region
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Thank you for your attention!
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