

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

The application of ML in simulations

Wenxing Fang (IHEP) EPD seminar 2024.05.22

Outlines

- Fast simulation
- More accurate simulation
- Summary

Background of fast simulation

- The HL-LHC experiment will take a huge amount of experimental data. Significant computational resources are required for data processing, MC production, and analysis. Without R&D, there will be a shortage of computational resources
- The MC simulation takes most CPU resources. Implementing fast MC simulation is important
 - Traditional method: shower parameterization, frozen shower, Delphes, ...
 - ML based: fast calorimeter simulation, Ultra-Fast Simulation (without Geant4),

Generative Adversarial Networks (GAN)

- Discriminator tries to discriminate the real data and generated data
- The generator tries to produce generated data which can confuse the discriminator
- At the end of training, the discriminator can not discriminate the real or generated data. The generator learns the true underlying data distribution

 $\min_{G} \max_{D} V(D,G) = E_{x \sim p_{data}(x)}[log D(x)] + E_{z \sim p_{z}(z)}[log(1 - D(G(z)))]$

CaloGAN

The <u>CaloGAN</u> (2017) achieved a fast * calorimeter simulation based on GAN 12×6 OUTPUTS INPUTS LAGAN 12×12 particle energy rescale G E Linear Resize Scalar Combination multiplication 3×96 W₀₁ W₁₁ · 🌔 LAGAN latent LCN 024 space G 10.00 z Linear Resize Combination W12 W_{22} LAGAN G

CaloGAN performance

FIG. 8: Average π^+ GEANT4 shower (top), and average π^+ CALOGAN shower (bottom), with progressive calorimeter depth (left to right).

Hardware	Batch Size	$\mathbf{ms}/\mathbf{shower}$
CPU	N/A	1772
	1	13.1
CPU	10	5.11
	128	2.19
	1024	2.03
	1	14.5
	4	3.68
GPU	$ \frac{4}{128} $	0.021
	512	0.014
	1024	0.012
	CPU CPU GPU	Hardware Batch Size CPU N/A 10 128 1024 1024 GPU 128 512 1024

		Test on				
		Geant4	CALOGAN			
Train on	Geant4	$99.6\% \pm 0.1\%$	$96.5\% \pm 1.1\%$			
	CALOGAN	$98.2\% \pm 0.9\%$	$99.9\% \pm 0.2\%$			
e^+ vs. γ						
Test on						
		Geant4	CALOGAN			
Train on	Geant4	$66.1\% \pm 1.2\%$	$70.6\%\pm2.6\%$			
I all 01						

CaloGAN $54.3\% \pm 0.8\% 100.0\% \pm 0.0\%$

The LHCb case

The LHCb case (performance)

(a) The transverse width of real and generated clusters

(c) ΔX between cluster center of mass and the true particle coordinate

(b) The longitudinal width of real and generated clusters

(d) The sparsity of real and generated clusters

(e) The transverse asymmetry of real and generated clusters

(f) The longitudinal asymmetry of real and generated clusters

The **BESIII** case

Reference from the LHCb one

• The y $(y_1 + y_2)$ contains the momentum of particle and the relative position and angular between the particle and the calorimeter.

 $\circ y_1$

- > Momentum: the momentum of the particle.
- > $\Delta \phi^{\text{Mom}}$: the ϕ difference between the momentum of incoming particle and the direction of the crystal.
- > $\Delta \theta^{\text{Mom}}$: the θ difference between the momentum of incoming particle and the direction of the crystal.

• *y*₂

- $\blacktriangleright \Delta Z^{Pos}$: the Z difference between the hit point of incoming particle and the z of front center of the crystal.
- $\rightarrow \Delta \phi^{Pos}$: the ϕ difference between the hit point of incoming particle and the ϕ of front center of the crystal.
- \succ Z: the Z value of hit point

The BESIII case (performance)

The BESIII case (performance)

e⁻

The BESIII case (performance)

Apply the GAN simulation in BESIII offline software

The ATLAS case

- AltFast3 (a detector response fast simulation system):
 - FastCaloGAN V2 (ML-based)
 - FastCaloSim V2 (parametrizationbased)
 - Geant4 (limited to specific cases)

FastCaloGAN:

- Simulating calorimeter showers for particles between 256 MeV and 4 TeV over full detector acceptance (protons only at -0.25 ≤ η ≤ 0.25)
- WGANs trained on each of the 100 bins in | η | and conditioned on truth momentum
- Total 300 GANs

ACAT2024

The ATLAS case (performance)

- 3 15 speed-up in simulation time with respect * to Geant4, depending on the physics process
- Simulation time in AtlFast3 completely dominated by full simulation of the Inner Detector

Jijets plead, 1.3-1.8 TeV

3.2 Tev

" 160-400 GeV

ACAT2024

tt Semi-Leptonic

Dijets plead

lijets p^{lea}

20-60 GeV

Normalizing Flows

 $\log(p_x(x)) = \log(p_z(f^{-1}(\mathbf{x}))) + \log(\det \mathbb{J}_{f^{-1}}(\mathbf{x}))$ $p_x(\mathbf{x}) = p_z(\mathbf{z}) \det \left| \frac{d\mathbf{z}}{d\mathbf{x}} \right|$

What we need

multi-dimensional gaussian

FullSim data, pdf unknown!

CaloFlow

ROS Transformation The <u>CaloFlow</u> (2021) uses the same dataset as $z = f(x; \vec{\kappa})$ CaloGAN and shows much better physics performance \leftarrow density estimation in training, E_{inc} from GEANT4 data GEANT4 data $3 \dim$. Normalizing Flow Bijector — Flow I pre-processing Base dist. E_0, E_1, E_2 MADE $E_{\rm inc}$ MADE MADE 5 MADF $E_{\rm inc}$ $E_{\rm inc}$ $E_{\rm inc}$. . . Block Block Block Block sampled E_0, E_1, E_2 ROS perm. ROS *** perm. ROS perm. post-processing sampling of E_0, E_1, E_2 for E_{inc} GEANT4 data \leftarrow density estimation in training, E_0, E_1, E_2 from GEANT4 data \leftarrow 504 dim. Normalizing Flow Bijector — Flow II

CaloFlow (performance)

 The performance seems much better than CaloGAN

The ILC case

Dataset:

- photon showers in ECAL
- 30x30x30 voxels

Architecture

Simulator	Hardware	Batch size		time [ms]		Speedup
GEANT4	CPU	1	4081.53	±	169.92	×1.0
BIB-AE	CPU	1	102.25	\pm	0.64	×40.0
		10	37.81	\pm	0.13	$\times 108.0$
		100	48.51	\pm	0.01	×84.1
		1000	48.19	\pm	0.01	×84.7
Flow	CPU	1	1746.61	\pm	64.50	x2.3
		10	392.61	\pm	0.34	×10.4
		100	228.86	\pm	7.09	×17.8
		1000	275.55	\pm	3.01	×14.8
BIB-AE	GPU	1	74.22	\pm	3.18	×42.5
		1000	0.249	\pm	0.002	$\times 16326.1$
Flow	GPU	1	2471.07	±	70.20	×1.7
		1000	3.39	\pm	0.09	×1202.3

Preliminary Results

18

Diffusion model

The <u>diffusion model</u> is proposed in 2020

- ♦ Diffusion process: $x_0 \rightarrow x_T$
 - Adding noise step by step, making $x_T \sim \mathcal{N}(0, \mathbf{I})$
- Train a model to invert the diffusion process
- When do simulation, start from N(0, I) and denoise it step by step using the trained model

CaloDiffusion

- <u>CaloDiffusion</u> (a fast calorimeter simulation method based on diffusion model)
- Dataset:
 - ATLAS-like geometry, 5 layer cylinder with irregular binning, 368 voxels
- Denoise model:
 - U-net architecture with 3D convolutions
 - Input: Noisy shower
 - Condition inputs: incident particle energy, diffusion step
 - Output: noise
- Good agreement with Geant4, some properties (e.g. total shower energy), can still be improved
- Generation time is slower than other ML approaches (still faster than Geant4)

Ultra-Fast Simulation

- Without Geant4 simulation, from MC particle to physics analysis object simulation
 - Such as LHCb Lamarr, CMS FlashSim

- Most parts are ML-based:
 - GBDT for acceptance
 - MLP for tracking efficiency
 - GAN for tracking resolution and PID
- Simulating ECAL with an ultra-fast approach requires to face the particle-to-particle correlation problem:
 - Sequence of N generated photons \rightarrow sequence of N' reconstructed clusters
 - Approached as a language translation problem

21

More accurate simulation

- The reduce systematic uncertainty is important for physics analysis.
- One possible way is to improve the data MC agreement (achieve more accurate simulation)
- Usually, for fast simulation, it has a great speed while the accuracy is lower
- By using ML, one can improve the accuracy of the simulation

Refining

- The interested variables can be refined by ML
- CMS shows how to <u>refine</u> the jet flavor variable (from fast simulation)
 - Input: x^{Fast} (4 jet flavor discriminators), y (gen jet p_T, η , flavor)
 - Output: the refined $x^{Refi.}$

UI2I (Cycle-GAN)

- Often success for color and texture translations
- Little success for geometric changes

zebra → horse

horse \rightarrow zebra

24

UI2I (LArTPC)

Translation

identity loss

----> Loss

- An example from DUNE
 <u>LArTPC</u> detector (<u>ACAT2024</u>)
- For a set of simulated simple particle tracks:
 - Domain A: a low fidelity quasione dimensional (1D) response function is applied
 - Domain B: a high-fidelity 2D response function is applied

UI2I LArTPC performance

		$A ext{ to } B$	B to A			
Algorithm	ℓ_1	ℓ_2	ℓ_1	ℓ_2		
CycleGAN	0.074	0.180	0.061	0.159		
ACL-GAN	0.083	0.566	0.039	0.121		
U-GAT-IT	0.078	1.187	0.073	1.161		
UVCGAN	0.030	0.033	0.025	0.027		

Domain Adversarial Neural Network

Domain Adversarial Neural Network (<u>DANN</u>)

DANN (ATLAS)

ATLAS signal background classification

- Signal 5%: $t\bar{t}H(H \rightarrow b\bar{b})$
- Background 95%: $t\overline{t} + b\overline{b}$ (two samples with different generators)
- Detector simulation: Delphes simulation

Data-driven simulation

 Learning the distribution of real data and applying it in simulation. For example, the BESIII dE/dx simulation

	$\pi +$	$\pi +$	K^+	K^-	p^+	p^-
Training data	1M	1M	0.5M	0.5M	2M	2M
Testing data	0.4M	0.4M	0.2M	0.2M	0.9M	0.9M

Table 1. The number of training and testing data in million (M).

Figure 2. The dE/dx distribution of π^+ . The left (right) plots are dE/dx versus momentum (θ). The top (bottom) plots for simulated (data).

Summary

- There are many applications of ML for simulation
- Mainly focus on improving the simulation speed and accuracy
- Many promising results and many challenges
- The field is in a rapid development stage. Please stay tuned
- More in <u>HEPML-LivingReview</u>

Backup

Detector simulation

- Calorimeter Fast simulation:
 - FastCaloGAN: a fast simulation of the ATLAS Calorimeter with GANs
 - gaede_chep23_caloml_v01 (jlab.org)
 - <u>Generating Accurate Showers in Highly Granular Calorimeters Using</u>
 <u>Normalizing Flows</u>
 - Fast and Accurate Calorimeter Simulation with Diffusion Models
 - Transformers for Generalized Fast Shower Simulation
- Ultra-fast simulation
 - THE LHCB ULTRA-FAST SIMULATION OPTION, LAMARR
 - Flashsim: an ML simulation framework
- <u>Refining fast simulation using machine learning</u>
- Hadronic Simulation with conditional Masked Autoregressive Flow

量能器快速模拟(1)

- 由于要训练的 GAN 模型个数多(500 个) 且每个 GAN 模型的训练也不容易(训练过程 不稳定、需要优化超参数)。因此,需要解决 GAN 模型训练的问题
- 为此 ATLAS 实验利用 Active Learning 的技术 • , 实现网络模型的自动训练和超参数的优化:
 - iDDS (intelligent Data Delivery Service) 负责根据 当前模型训练的结果产生下一批模型训练作业 (如利 用贝叶斯算法、GP 等算法缩小超参数范围)
 - PanDA 系统将作业调度到分布式的异构计算资源上进 行模型的训练,返回训练结果

BSM Parameter 1

What active learning can do for us

33

The CEPC case (performance) CEPC 2019

Dataset:

