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Background of fast simulation

❖ The HL-LHC experiment will take a huge 
amount of experimental data. Significant 
computational resources are required for 
data processing, MC production, and 
analysis. Without R&D, there will be a 
shortage of computational resources

❖ The MC simulation takes most CPU
resources. Implementing fast MC 
simulation is important

⚫ Traditional method: shower 
parameterization, frozen shower, Delphes, 
…

⚫ ML based: fast calorimeter simulation,
Ultra-Fast Simulation ( without Geant4 ),
…
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Generative Adversarial Networks (GAN) 

❖ Discriminator tries to discriminate the 
real data and generated data

❖ The generator tries to produce 
generated data which can confuse the 
discriminator

❖ At the end of training, the discriminator 
can not discriminate the real or 
generated data. The generator learns the 
true underlying data distribution
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https://arxiv.org/abs/1406.2661


CaloGAN

❖ The CaloGAN (2017) achieved a fast 
calorimeter simulation based on GAN 
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https://arxiv.org/pdf/1712.10321.pdf


CaloGAN performance 
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The LHCb case

7CHEP2018

https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_02034.pdf


The LHCb case (performance)
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The BESIII case

❖ Reference from the LHCb one
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The BESIII case (performance)
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Dataset:

• 𝑒± showers in 

ECAL Barrel

• 11x11 voxels

𝑒−



The BESIII case (performance)
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The BESIII case (performance)
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❖ Apply the GAN simulation in BESIII offline software
𝑒−



The ATLAS case

❖ AltFast3 (a detector response fast 
simulation system):

⚫ FastCaloGAN V2 (ML-based)

⚫ FastCaloSim V2 (parametrization-
based) 

⚫ Geant4 (limited to specific cases)

❖ FastCaloGAN:

⚫ Simulating calorimeter showers for 
particles between 256 MeV and 4 TeV
over full detector acceptance (protons 
only at -0.25 ≤ η ≤ 0.25)

⚫ WGANs trained on each of the 100 
bins in | η | and conditioned on truth 
momentum

⚫ Total 300 GANs
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ACAT2024

https://indico.cern.ch/event/1330797/contributions/5796510/attachments/2816905/4917912/ATL-COM-SOFT-2024-012.pdf
https://indico.cern.ch/event/1330797/contributions/5796510/attachments/2816905/4917912/ATL-COM-SOFT-2024-012.pdf


The ATLAS case (performance)

14

proton

e− 𝛾

❖ 3 – 15 speed-up in simulation time with respect 
to Geant4, depending on the physics process

❖ Simulation time in AtlFast3 completely dominated 
by full simulation of the Inner Detector

ACAT2024

https://indico.cern.ch/event/1330797/contributions/5796510/attachments/2816905/4917912/ATL-COM-SOFT-2024-012.pdf
https://indico.cern.ch/event/1330797/contributions/5796510/attachments/2816905/4917912/ATL-COM-SOFT-2024-012.pdf


Normalizing Flows
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reversible



CaloFlow

❖ The CaloFlow (2021) uses the same dataset as 
CaloGAN and shows much better physics performance
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https://arxiv.org/pdf/2106.05285.pdf


CaloFlow (performance)
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❖ The performance 
seems much better 
than CaloGAN



The ILC case
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⚫ Dataset:

• photon showers in ECAL

• 30x30x30 voxels

CHEP2023

https://indico.jlab.org/event/459/contributions/11716/attachments/9654/14222/main.pdf


Diffusion model

❖ The diffusion model is proposed in 2020
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❖ Diffusion process: 𝑥0 → 𝑥𝑇

⚫ Adding noise step by step, making 𝑥𝑇 ~ 𝒩(0, 𝐈)

❖ Train a model to invert the diffusion process

❖ When do simulation, start from 𝒩(0, 𝐈) and denoise it 
step by step using the trained model

https://arxiv.org/pdf/2006.11239


CaloDiffusion

❖ CaloDiffusion (a fast calorimeter 
simulation method based on diffusion 
model)

❖ Dataset: 

⚫ ATLAS-like geometry, 5 layer cylinder with 
irregular binning, 368 voxels

❖ Denoise model:

⚫ U-net architecture with 3D convolutions

⚫ Input: Noisy shower

⚫ Condition inputs: incident particle energy, 
diffusion step

⚫ Output: noise

❖ Good agreement with Geant4, some 
properties (e.g. total shower energy), can 
still be improved

❖ Generation time is slower than other ML 
approaches (still faster than Geant4) 20

https://indico.jlab.org/event/459/contributions/11736/attachments/9599/14176/CHEP23_CaloDiffusion.pdf


Ultra-Fast Simulation
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❖ Without Geant4 simulation, from MC particle 
to physics analysis object simulation

⚫ Such as LHCb Lamarr，CMS FlashSim

❖ Most parts are ML-based:

⚫ GBDT for acceptance

⚫ MLP for tracking efficiency

⚫ GAN for tracking resolution and PID

❖ Simulating ECAL with an ultra-fast approach 
requires to face the particle-to-particle 
correlation problem:

⚫ Sequence of N generated photons → sequence of N′

reconstructed clusters

⚫ Approached as a language translation problem

https://indico.jlab.org/event/459/contributions/11454/attachments/9426/14314/Lamarr_mbarbetti_CHEP2023.pdf
https://indico.jlab.org/event/459/contributions/11718/attachments/9544/13848/flashsim_chep.pdf


More accurate simulation 

❖ The reduce systematic uncertainty is important for 
physics analysis. 

❖ One possible way is to improve the data MC 
agreement (achieve more accurate simulation)

❖ Usually, for fast simulation, it has a great speed while 
the accuracy is lower

❖ By using ML, one can improve the accuracy of the 
simulation  
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Refining

❖ The interested variables can be refined by ML

❖ CMS shows how to refine the jet flavor variable ( from 
fast simulation )

⚫ Input:  xFast ( 4 jet flavor discriminators ), y ( gen jet pT, η, flavor )

⚫ Output: the refined xRefi.
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https://indico.jlab.org/event/459/contributions/11725/attachments/9653/14070/20230511chep_MoritzWolf_Refinement_v2.pdf


UI2I (Cycle-GAN)

❖ Unpaired Image-to-Image (UI2I) 
translation task

❖ Cycle-GAN
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❖ Often success for color 
and texture translations

❖ Little success for 
geometric changes

https://arxiv.org/pdf/1703.10593


UI2I (LArTPC)

❖ An example from DUNE 
LArTPC detector (ACAT2024)

❖ For a set of simulated simple 
particle tracks:

⚫ Domain A: a low  fidelity quasi-
one dimensional (1D) response 
function is applied

⚫ Domain B: a high-fidelity 2D 
response function is applied
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https://arxiv.org/pdf/2304.12858
https://indico.cern.ch/event/1330797/contributions/5796872/attachments/2818547/4921276/2024-03-12_acat_presentation_final.pdf


UI2I LArTPC performance
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Domain Adversarial Neural Network

❖ Domain Adversarial Neural Network (DANN)
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https://arxiv.org/pdf/2005.00568


DANN (ATLAS)

❖ ATLAS signal background classification

⚫ Signal 5%: t ҧtH(H → bതb)

⚫ Background 95%: t ҧt + bതb (two samples with different 
generators)

⚫ Detector simulation: Delphes simulation
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Data-driven simulation

❖ Learning the distribution of real data and applying it in 
simulation. For example, the BESIII dE/dx simulation
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Summary

❖ There are many applications of ML for simulation

❖ Mainly focus on improving the simulation speed and 
accuracy

❖ Many promising results and many challenges 

❖ The field is in a rapid development stage. Please stay 
tuned

❖ More in HEPML-LivingReview
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https://github.com/iml-wg/HEPML-LivingReview
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Detector simulation

❖ Calorimeter Fast simulation:

⚫ FastCaloGAN: a fast simulation of the ATLAS Calorimeter with GANs

⚫ gaede_chep23_caloml_v01 (jlab.org)

⚫ Generating Accurate Showers in Highly Granular Calorimeters Using 
Normalizing Flows

⚫ Fast and Accurate Calorimeter Simulation with Diffusion Models

⚫ Transformers for Generalized Fast Shower Simulation

❖ Ultra-fast simulation

⚫ THE LHCB ULTRA-FAST SIMULATION OPTION, LAMARR

⚫ Flashsim: an ML simulation framework

❖ Refining fast simulation using machine learning

❖ Hadronic Simulation with conditional Masked Autoregressive 
Flow
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https://indico.jlab.org/event/459/contributions/11762/
https://indico.jlab.org/event/459/contributions/11777/attachments/9359/13597/gaede_chep23_caloml_v01.pdf
https://indico.jlab.org/event/459/contributions/11716/attachments/9654/14222/main.pdf
https://indico.jlab.org/event/459/contributions/11736/attachments/9599/14176/CHEP23_CaloDiffusion.pdf
https://indico.jlab.org/event/459/contributions/11742/attachments/9625/14221/Copy%20of%20CHEP'23%20Transformers%20for%20FastSim.pdf
https://indico.jlab.org/event/459/contributions/11454/attachments/9426/14314/Lamarr_mbarbetti_CHEP2023.pdf
https://indico.jlab.org/event/459/contributions/11718/attachments/9544/13848/flashsim_chep.pdf
https://indico.jlab.org/event/459/contributions/11725/attachments/9653/14070/20230511chep_MoritzWolf_Refinement_v2.pdf
https://indico.jlab.org/event/459/contributions/11759/attachments/9730/14224/CHEP_2023.pdf


量能器快速模拟（1）

❖ 由于要训练的 GAN 模型个数多（500 个），
且每个 GAN 模型的训练也不容易（训练过程
不稳定、需要优化超参数）。因此，需要解决
GAN 模型训练的问题

❖ 为此 ATLAS 实验利用 Active Learning 的技术
，实现网络模型的自动训练和超参数的优化：

⚫ iDDS（intelligent Data Delivery Service）负责根据
当前模型训练的结果产生下一批模型训练作业（如利
用贝叶斯算法、GP 等算法缩小超参数范围）

⚫ PanDA 系统将作业调度到分布式的异构计算资源上进
行模型的训练，返回训练结果
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Chosen epoch

https://indico.jlab.org/event/459/contributions/11472/
https://indico.jlab.org/event/459/contributions/11482/


The CEPC case (performance)
CEPC 2019

Dataset:

• photon showers in 

ECAL Barrel

• 31x31x29 voxels

https://indico.ihep.ac.cn/event/9960/contributions/113735/attachments/61025/70387/BES_CEPC_20191118.pdf

