


The JUNO Experiment

 Jiangmen Underground Neutrino Observatory

 Main physics goals
 Determination of the mass ordering at the 3σ level in 

6 years of data taking

 Precise measurement (1% level) of oscillation parameters, 
�12, ∆�21

2  and ∆�31
2  

 JUNO also serves as an observatory detecting neutrinos 
from Supernova, Sun, Atmosphere and Earth etc.
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JUNO Location

Reactor neutrino energy spectrum 
expected to be observed

Experiment Target Mass E Resolution
KamLAND 1000t 6%@1MeV
D. Chooz 8+22t

8%@1MeVRENO 16t
Daya Bay 20t
Borexino 300t 5%@1MeV

JUNO 20000t 3%@1MeV



JUNO Site
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~ 650 m

Experiment 
Hall

564 m
Vertical Tunnel

1266 m Slope tunnel

Surface buildings / campus
• Office / Dorm
• Surface Assembly Building
• LAB storage (5 kton)
• Water purification / Nitrogen
• Computing
• Power station
• Cable train



The JUNO Detector
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Top Tracker
Three layers plastic 

scintillator to veto muons

~650m overburden
(1800 m.w.e)

Water Cherenkov Detector
35 kton of ultrapure water as 

passive shield and 
cherenkov detector Central Detector

World-largest acrylic vessel (Φ 
35.4 m, 124±4 mm thickness)

20 kton LS
17,612  20” PMTs 

and 25,600  3” PMTsStainless steel truss

～78% PMT coverage
3%@1MeV energy resolution



JUNO Reconstruction Road-map (for NMO)

5Work shown in this talk is non-exhaustive
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Outline 

 PMT waveform reconstruction
 Photon counting and calibration data based reconstruction

 Particle reconstruction in MeV region
 Reactor neutrino vertex and energy recostruction

 Particle reconstruction in GeV region
 Atmospheric neutrino directionality, PID and energy reconstruction 

 Muon track reconstruction
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PMT waveform reconstruction
Photon counting and calibration data based reconstruction



ML Based Photon Counting

 Energy resolution is crucial for NMO sensitivity in JUNO, where PMT charge smearing 
is one of the dominant factors

 Can we use ML to predict the number of received photons of each PMT?

 Perform 1-D convolution on the raw waveform

 Use a classification model to “count the photons”
8Details in Guihong’s talk 



ML Based Photon Counting

   Model: Customized RawNet
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RawNet CMCharge classification CM

2% to 2.8% relative improvement 
on the energy resolution can be 
achieved



Calibration-based Waveform Reconstruction
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 Assemble “fake” waveform using calibration data, then train ML model  (MLP) to learn from 
calibration data, and reconstruct number of PEs

 Immune from the MC-data discrepancy problem

 Deconvolution-based waveform reconstruction algorithm is improved

• Input: 
“Fake” waveform

• Model:
32*64 MLP network

• Output:
Number of PEs

Ref. Junting’s poster
@Neutrino2024

work in progress

work in progress

work in progress



Particle reconstruction in MeV region
Reactor ν vertex and energy



Reactor Neutrino Reconstruction: Principle
 Reactor neutrinos (��) are detected via the inverse beta decay reaction in the CD

 The �+ generates a prompt signal in the CD

 The neutron generates a delayed signal in the CD, with a 2.2 
MeV gamma from the neutron capture process

 Seek the coincidence between the detection of a positron and 
a neutron signal, with ~200 μs

 Classical methods are based on likelihood algorithms, taking
 Charge, first hit time, position of each fired PMT

Energy and radial 
resolution of 

QTMLE 

Can this be further 
improved using ML?



IBD Reconstruction: Planar CNN

 Treating the JUNO detector as a camera and 
using the image recognition technique
 The PMT data is projected onto the planar surface, 

and fed into CNN models

 VGG and ResNet models are customized for JUNO

 Distortion, i.e. breaking of the SO(3) 
symmetry is a potential problem

 Can we do better? 13
13

VGG-J

ResNet-J



IBD Reconstruction: Spherical GNN

 The Spherical GNN method takes the SO(3) 
symmetry of JUNO detector into account

 Convolution is performed on the graph using 
spectral graph method

 Convergence becomes easier compared to 
planar CNN

 Both methods gives similar resolution as 
classical methods 14

GNN-JHEALPix Sampling
Scheme to pixelise 

the detector

Then build Graph with 
adjacency matrix

 Nucl.Instrum.Meth.A 1010 (2021) 165527



Particle reconstruction in GeV region
Atm. ν directionality, PID, energy and muon track



Methodology
 Light received by a PMT is the superposition of light from many points on tracks in the detector

 The number of photo-electrons (PEs) seen by a PMT as a function of time is determined by the 
event topology

 Features related to event topology can be extracted from deconvoluted PMT waveform to get:
 Track direction
 Track starting and stopping points
 Track dE/dx

16
PMTs at different angles wrt the track 
see distinct shapes of nPE(t) Ref. Duyang’s talk @TIPP2023

slope

θ

Directionality
Energy
PID



Methodology
 Event reconstruction with Deep-learning and Waveform INformation (EDWIN)

Deconvoluted PMT Waveform

PMT Features

Point Clouds

Spherical Projection

Planer Projection EfficientNetV2

DeepSphere

PointNet++

Direction
Energy
Flavor
Vertex
Track
Others...

Output



Atmospheric Neutrino Directionality Reconstruction

Opening angle resolution

Zenith angle resolution

�� 퐶퐶

�� 퐶퐶

�� 퐶퐶

�� 퐶퐶

• Neutrino direction is directly 
reconstructed rather than the final-
state charged lepton direction, with 
good angular resolution.

• World’s first attempt to reconstruct 
atmospheric neutrinos’ directionality 
in a large homogeneous LS detector.

Phys. Rev. D 109.052005



Atmospheric Neutrino Flavor Identification
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Strategy 1: 
• Hybrid model: PointNet++ and DGCNN
• PMT features from primary trigger fed into PointNet++
• Scalar neutron capture features fed into DGCNN
Strategy 2: 
• Spherical image-based model: DeepSphere
• Multiple neutron-candidate triggers are fed together with 

the primary trigger
• All features are at the PMT-level

3-label classification: 
• Discriminate �� 퐶퐶, �� 퐶퐶 and �퐶  
2-label classification: 
• Discriminate �/�
3+2 label classification:
• Combine the 3-label and 2-label models to 

achieve 5-label classification (roughly consistent)



Atmospheric Neutrino Energy Reconstruction

�� 퐶퐶
visible energy

�� 퐶퐶
visible energy

1% - 8% visible energy resolution for �e CC from 0.2-15GeV 

work in progress work in progress

�� 퐶퐶
visible energy

�� 퐶퐶
visible energy

work in progress work in progress

1% - 5% visible energy resolution for �� CC from 0.2-15GeV 
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퐹퐶 �� 퐶퐶
neutrino energy

• Results based on the Spherical GNN

• Visible energy resolution is promising
• Neutrino energy resolution for fully 

contained neutrinos is sub-optimal, 
but still provides better sensitivity with 
preliminary NMO analysis

work in progress



Muon Track Reconstruction: Methodology

 Isotopes produced by cosmic muons are the main backgroud of IBD signals 

 Precise reconstruction of muon tracks is critical to veto major backgrounds

 Current ML-based reconstruction strategy for muons:
 Classify through-going, stop and bundle muons

 Reconstruct the entry point and exit point of LS through going, stop and bundle muons

21



Muon Track Reconstruction: Performance
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work 
in progress

work 
in progress

through-going muon through-going muon

through-going muon
~0.25°

through-going muon
~0.09m

Muon Classification CM 
Classification is precise

work in progress



Summary

 Numerous ML models are (being) developed in JUNO
(this talk shows only a sub-set)

 Even more exciting work is ongoing

 In general, comparable or superior performance can be 
achieved using ML, enhancing the NMO sensitivity

 Challenges ahead:

 JUNO is a big detector, bringing challenges due to large 
quantities of data, sophisticated geometry and readout
(training speed, GPU memory, ...)

 MC-Data discrepancy is the major challenge damaging the 
reliability of ML models

 Studies making use of calibration data have started

23



Thanks for your attention


