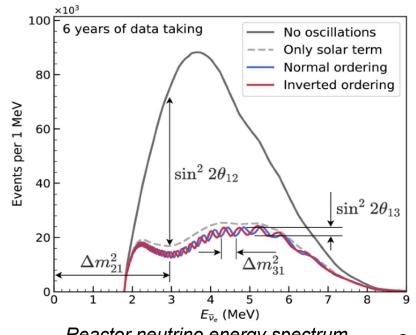


The JUNO Experiment

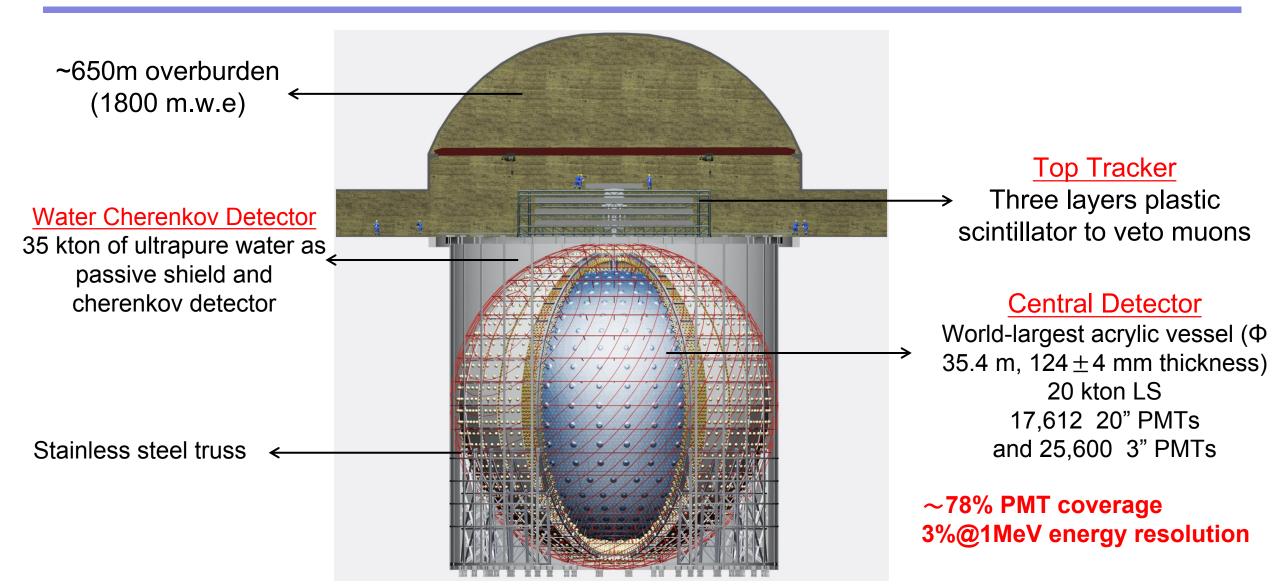
- Jiangmen Underground Neutrino Observatory
- Main physics goals
 - Determination of the mass ordering at the 3σ level in 6 years of data taking
 - Precise measurement (1% level) of oscillation parameters, θ_{12} , Δm^2_{21} and Δm^2_{31}
- JUNO also serves as an observatory detecting neutrinos from Supernova, Sun, Atmosphere and Earth etc.

Experiment	Target Mass	E Resolution
KamLAND	1000t	6%@1MeV
D. Chooz	8+22t	
RENO	16t	8%@1MeV
Daya Bay	20t	
Borexino	300t	5%@1MeV
JUNO	20000t	3%@1MeV

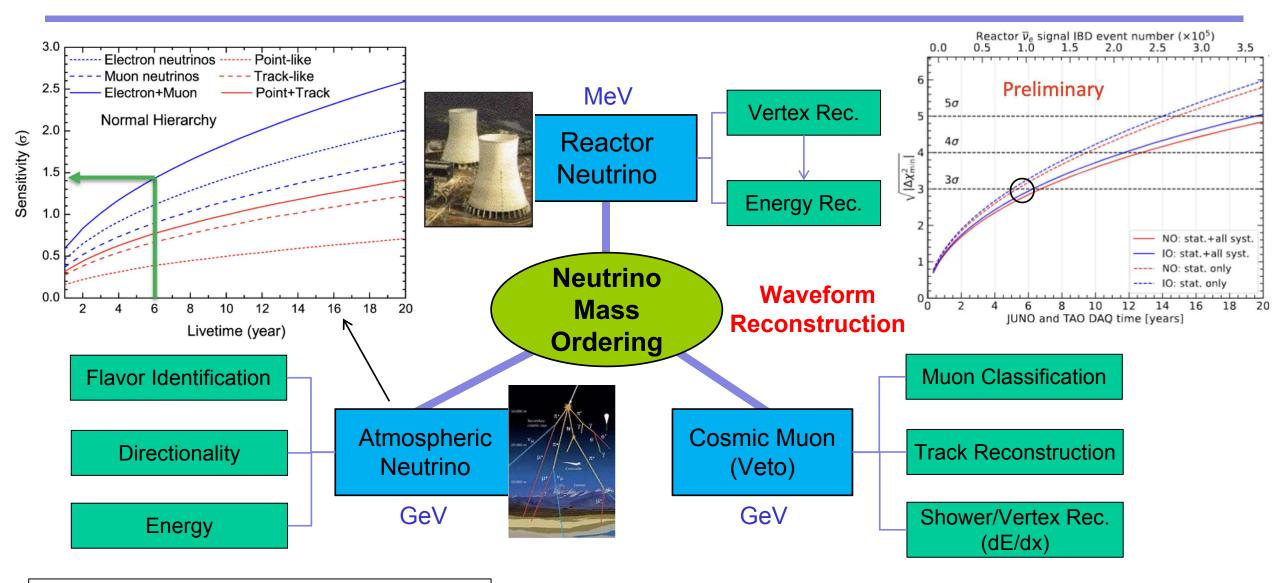


JUNO Site

The JUNO Detector



JUNO Reconstruction Road-map (for NMO)



Outline

PMT waveform reconstruction

Photon counting and calibration data based reconstruction

Particle reconstruction in MeV region

Reactor neutrino vertex and energy recostruction

Particle reconstruction in GeV region

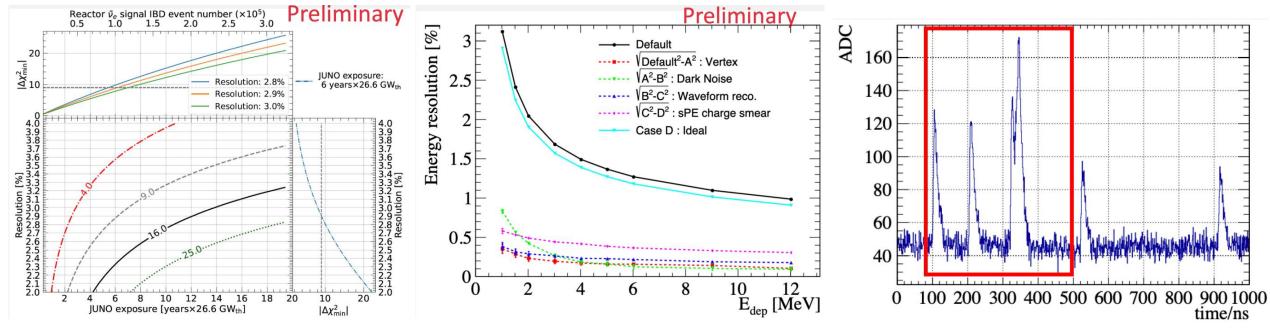
- Atmospheric neutrino directionality, PID and energy reconstruction
- Muon track reconstruction

PMT waveform reconstruction

Photon counting and calibration data based reconstruction

ML Based Photon Counting

 Energy resolution is crucial for NMO sensitivity in JUNO, where PMT charge smearing is one of the dominant factors



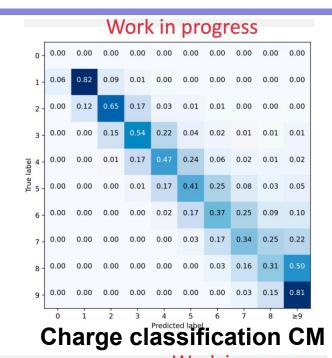
- Can we use ML to predict the number of received photons of each PMT?
 - Perform 1-D convolution on the raw waveform
 - Use a classification model to "count the photons"

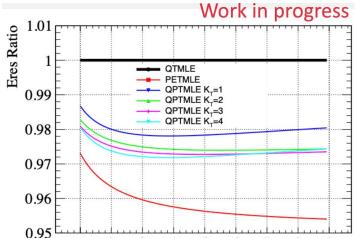
ML Based Photon Counting

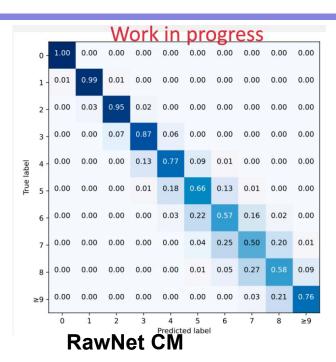
Model: Customized RawNet

Table 2: Modified RawNet architecture. For convolutional layers, numbers inside parentheses refer to filter length, stride size, and number of filters. For gated recurrent unit (GRU) and fully-connected layers, numbers inside the parentheses indicate the number of nodes.

Layer	Input	Output shape
Strided -conv	Conv(3,3,128) BN LeakyReLU	(128, 140)
Res block	Conv(3,1,128) BN LeakyReLU Conv(3,1,128) BN LeakyReLU LeakyReLU MaxPool(3)	(128, 46)
Res block	$\left\{ \begin{array}{c} Conv(3,1,256) \\ BN \\ LeakyReLU \\ Conv(3,1,256) \\ BN \\ -LeakyReLU \\ MaxPool(3) \end{array} \right\} \times 2$	(256, 1)
GRU	GRU(1024)	(1024,)
Speaker embedding	FC(128)	(128,)
Output	FC(10)	(10,)





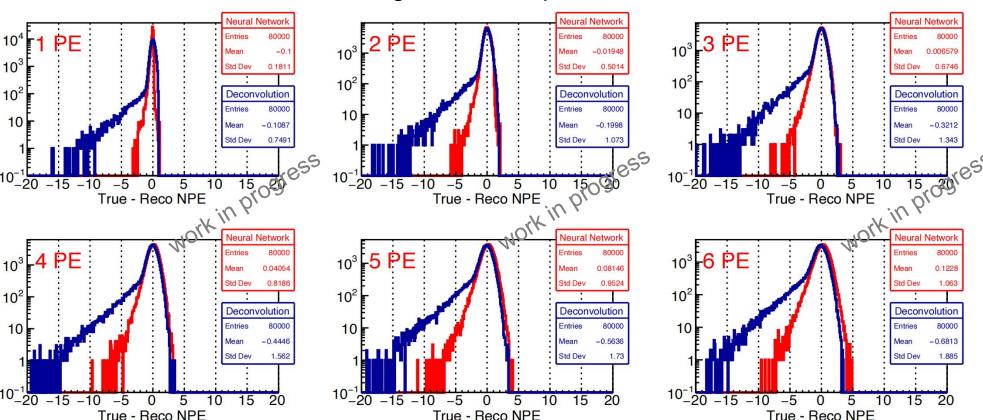


2% to 2.8% relative improvement on the energy resolution can be achieved

Calibration-based Waveform Reconstruction

- Assemble "fake" waveform using calibration data, then train ML model (MLP) to learn from calibration data, and reconstruct number of PEs
 - Immune from the MC-data discrepancy problem
 - Deconvolution-based waveform reconstruction algorithm is improved
- Input: "Fake" waveform
- Model:32*64 MLP network
- Output: Number of PEs

Ref. Junting's poster @Neutrino2024



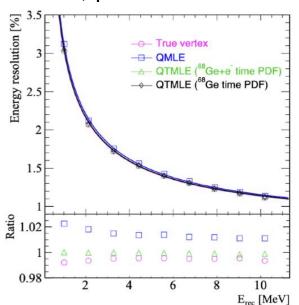
Particle reconstruction in MeV region Reactor ν vertex and energy

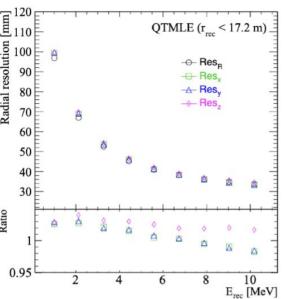
Reactor Neutrino Reconstruction: Principle

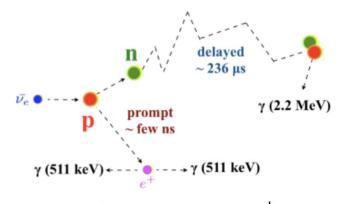
- * Reactor neutrinos ($\bar{\nu}_e$) are detected via the inverse beta decay reaction in the CD
 - The e⁺ generates a prompt signal in the CD
 - The neutron generates a delayed signal in the CD, with a 2.2 MeV gamma from the neutron capture process
 - Seek the coincidence between the detection of a positron and a neutron signal, with ~200 µs
- Classical methods are based on likelihood algorithms, taking
 - Charge, first hit time, position of each fired PMT

Energy and radial resolution of QTMLE

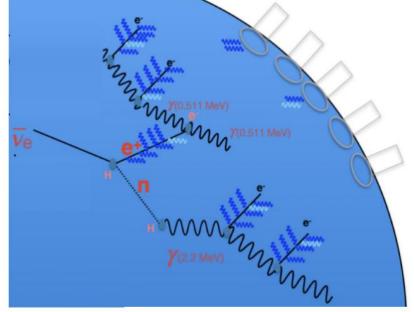
Can this be further improved using ML?





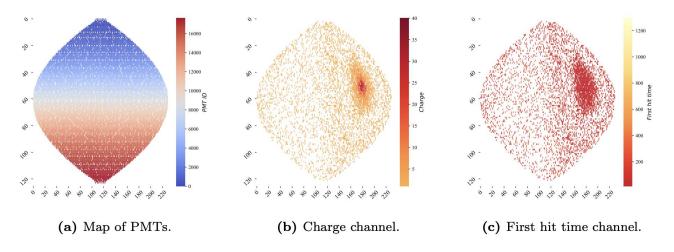


$$\bar{\nu}_e + p \rightarrow n + e^+$$

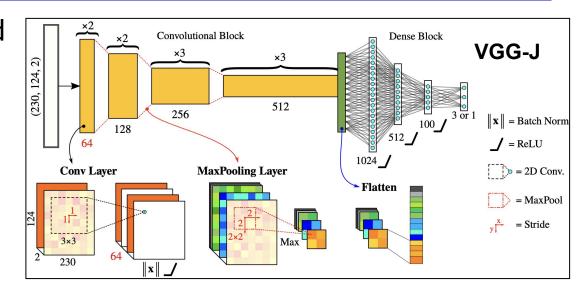


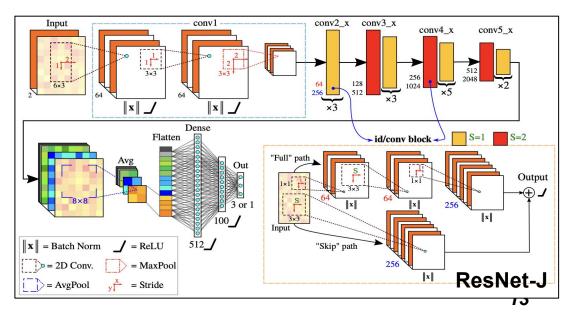
IBD Reconstruction: Planar CNN

- Treating the JUNO detector as a camera and using the image recognition technique
 - The PMT data is projected onto the planar surface, and fed into CNN models
 - VGG and ResNet models are customized for JUNO



- Distortion, i.e. breaking of the SO(3) symmetry is a potential problem
- Can we do better?





IBD Reconstruction: Spherical GNN

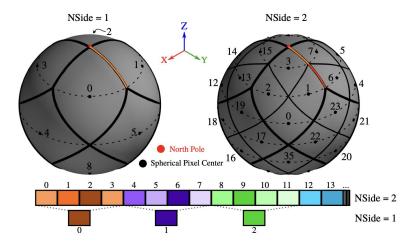
- The Spherical GNN method takes the SO(3) symmetry of JUNO detector into account
 - Convolution is performed on the graph using spectral graph method
 - Convergence becomes easier compared to planar CNN

HEALPix Sampling Scheme to pixelise the detector

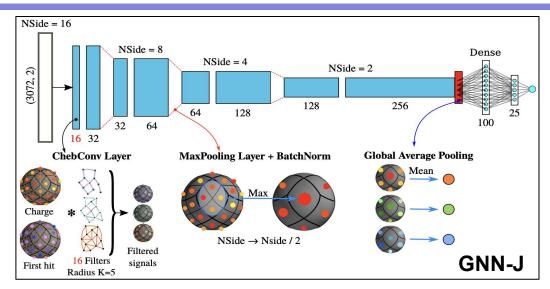
Then build Graph with adjacency matrix

$$\mathrm{W}_{ij} = \exp\left(-rac{\left\|oldsymbol{v_i} - oldsymbol{v_j}
ight\|_2^2}{2\overline{d^2}}
ight)$$

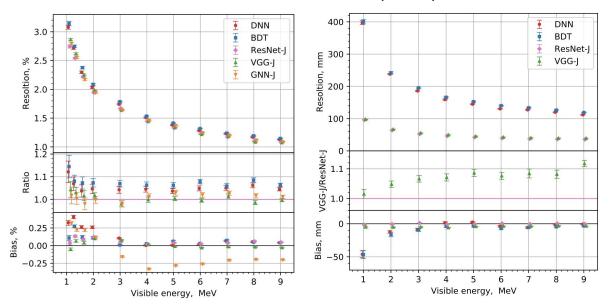
$$\overline{d^2} = rac{1}{|\mathcal{E}|} \sum_{(oldsymbol{v_i}, oldsymbol{v_j}) \in \mathcal{E}} \!\! \| oldsymbol{v_i} - oldsymbol{v_j} \|_2^2$$



 Both methods gives similar resolution as classical methods



Nucl.Instrum.Meth.A 1010 (2021) 165527



Particle reconstruction in GeV region

Atm. ν directionality, PID, energy and muon track

Methodology

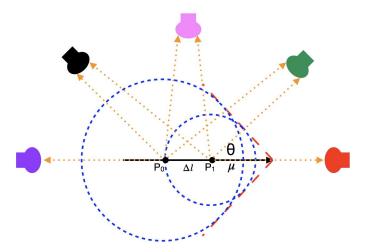
- Light received by a PMT is the superposition of light from many points on tracks in the detector
- The number of photo-electrons (PEs) seen by a PMT as a function of time is determined by the event topology
- Features related to event topology can be extracted from deconvoluted PMT waveform to get:

Directionality

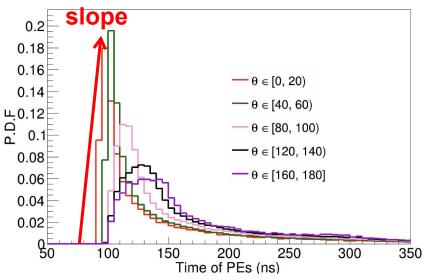
Energy

PID

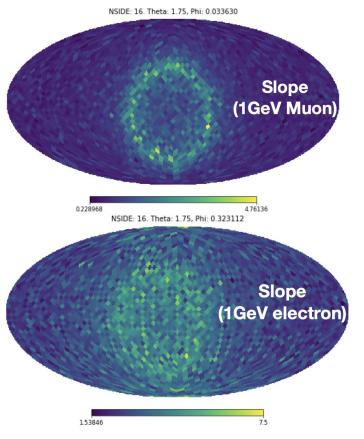
- Track direction
- Track starting and stopping points
- Track dE/dx



PMTs at different angles wrt the track see distinct shapes of nPE(t)



Ref. Duyang's talk @TIPP2023

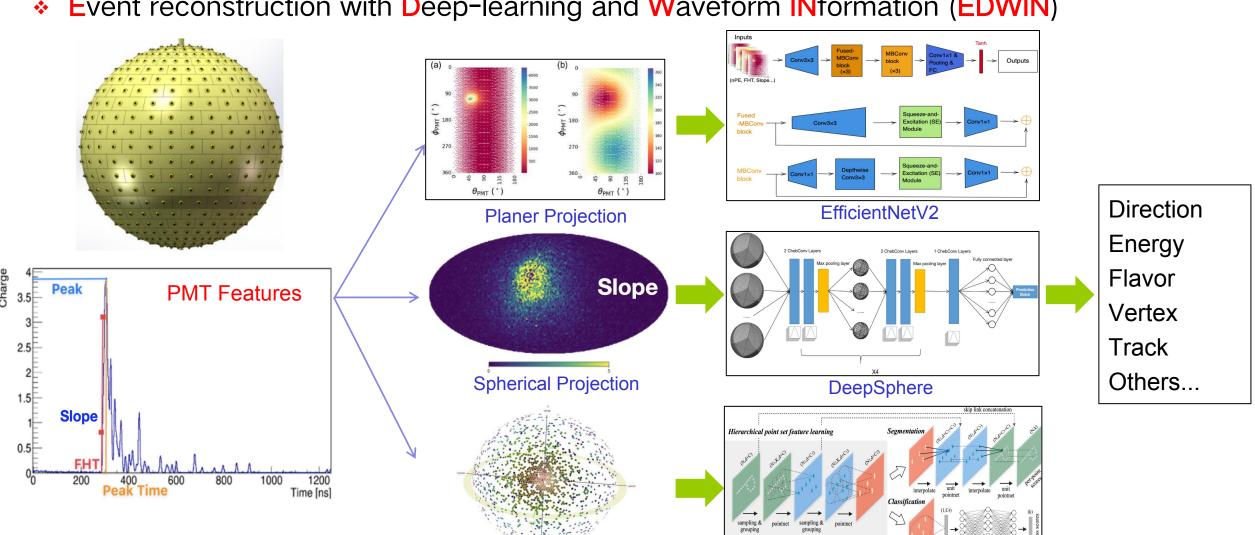


Methodology

Event reconstruction with Deep-learning and Waveform INformation (EDWIN)

Point Clouds

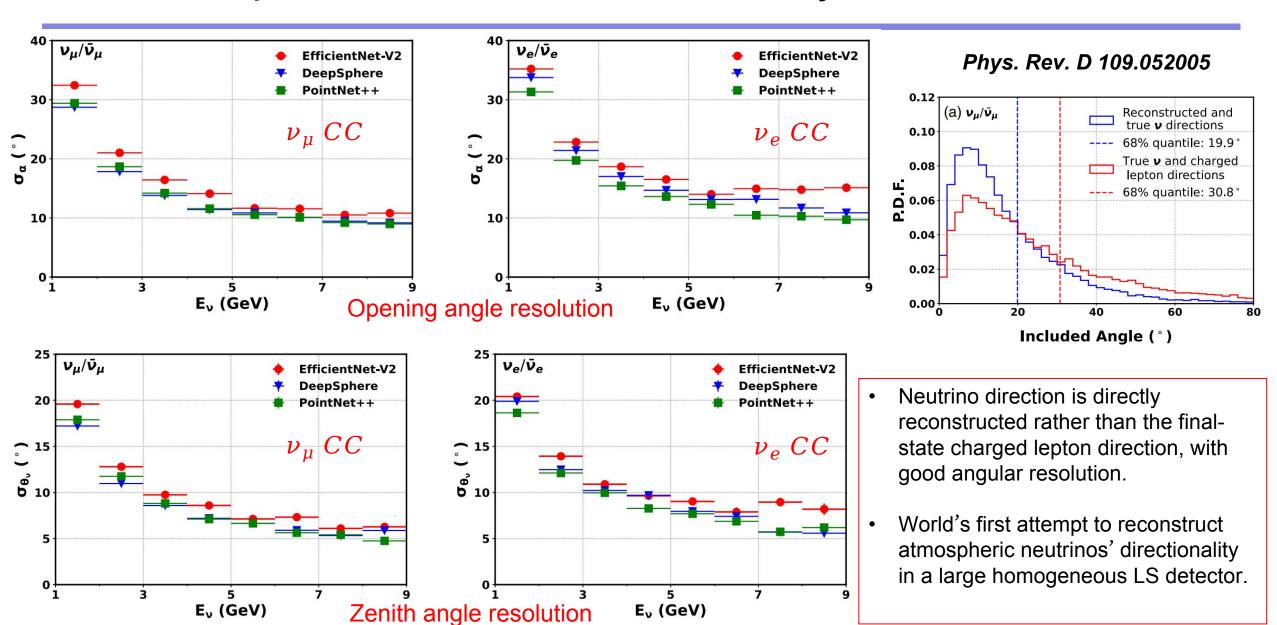
Deconvoluted PMT Waveform



Output

PointNet++

Atmospheric Neutrino Directionality Reconstruction



Atmospheric Neutrino Flavor Identification

Strategy 1:

- Hybrid model: PointNet++ and DGCNN
- PMT features from primary trigger fed into PointNet++
- Scalar neutron capture features fed into DGCNN

Strategy 2:

- Spherical image-based model: DeepSphere
- Multiple neutron-candidate triggers are fed together with the primary trigger
- All features are at the PMT-level

3-label classification:

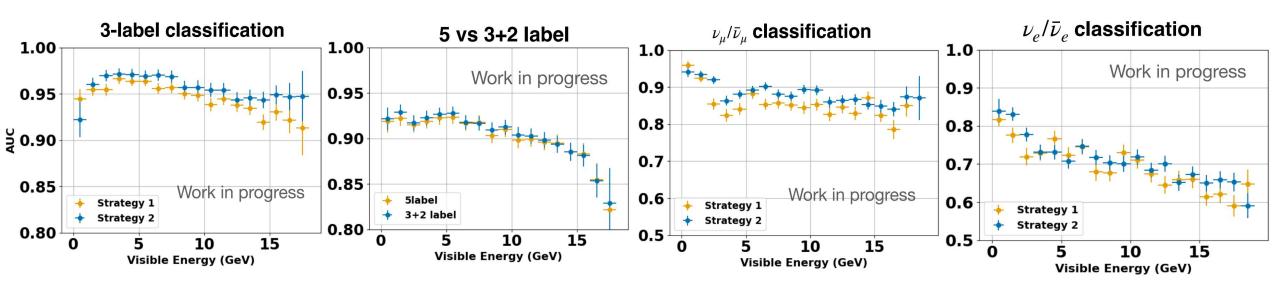
• Discriminate ν_e CC, ν_u CC and NC

2-label classification:

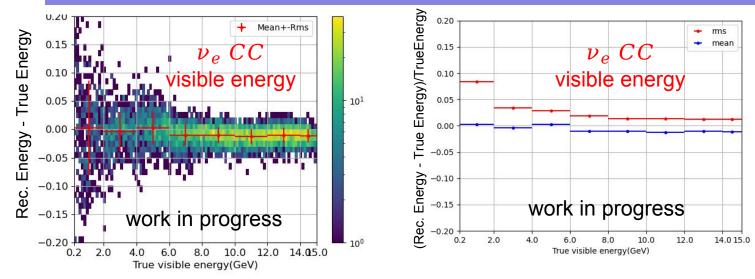
• Discriminate $\bar{\nu}/\nu$

3+2 label classification:

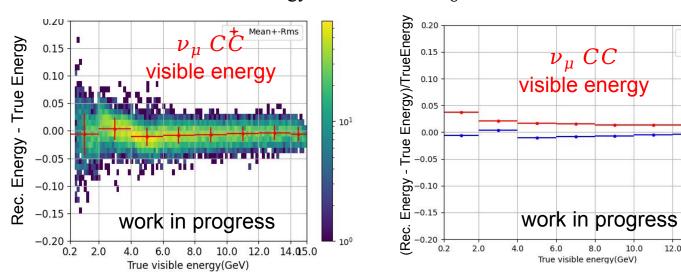
 Combine the 3-label and 2-label models to achieve 5-label classification (roughly consistent)



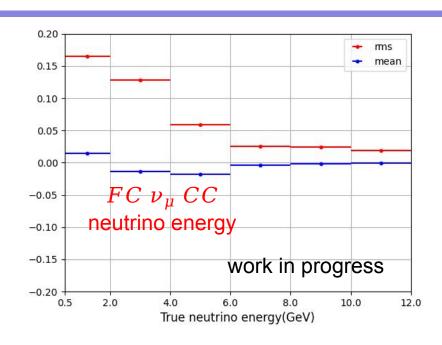
Atmospheric Neutrino Energy Reconstruction



1% - 8% visible energy resolution for ν_e CC from 0.2-15GeV



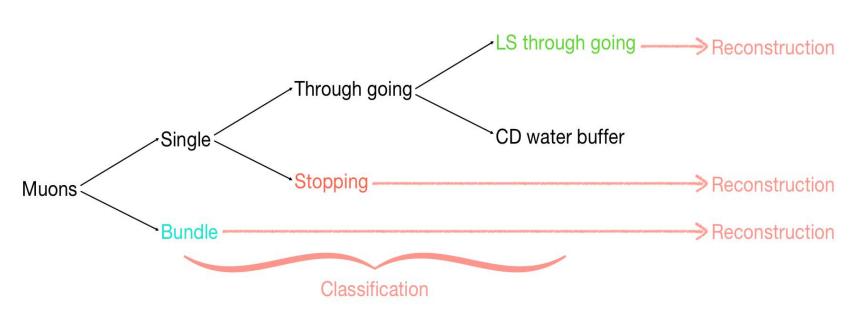
1% - 5% visible energy resolution for ν_{μ} CC from 0.2-15GeV

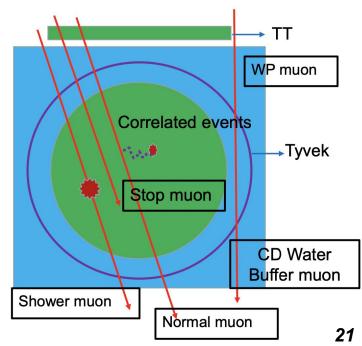


- Results based on the Spherical GNN
- Visible energy resolution is promising
- Neutrino energy resolution for fully contained neutrinos is sub-optimal, but still provides better sensitivity with preliminary NMO analysis

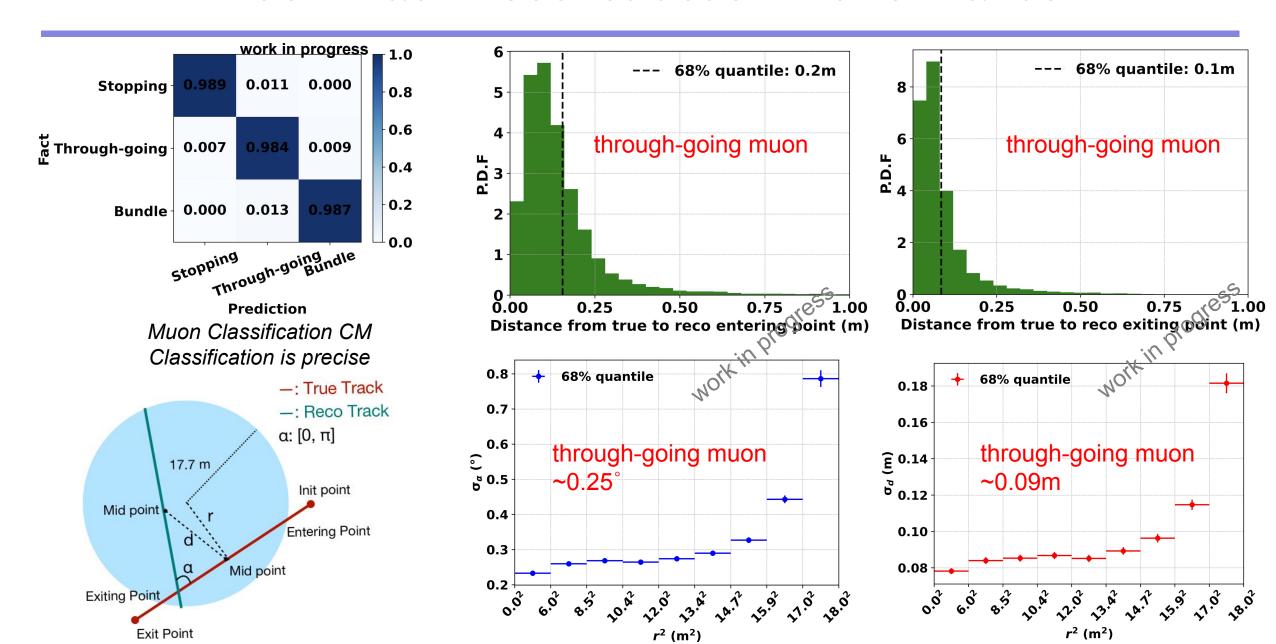
Muon Track Reconstruction: Methodology

- Isotopes produced by cosmic muons are the main backgroud of IBD signals
- Precise reconstruction of muon tracks is critical to veto major backgrounds
- Current ML-based reconstruction strategy for muons:
 - Classify through-going, stop and bundle muons
 - Reconstruct the entry point and exit point of LS through going, stop and bundle muons





Muon Track Reconstruction: Performance



Summary

- Numerous ML models are (being) developed in JUNO (this talk shows only a sub-set)
- Even more exciting work is ongoing
- In general, comparable or superior performance can be achieved using ML, enhancing the NMO sensitivity
- Challenges ahead:
 - JUNO is a big detector, bringing challenges due to large quantities of data, sophisticated geometry and readout (training speed, GPU memory, ...)
 - MC-Data discrepancy is the major challenge damaging the reliability of ML models
 - Studies making use of calibration data have started

Thanks for your attention