Machine Learning Accelerated CALYPSO Structure Prediction Method

Pengyue Gao, Jian Lv, Yanchao Wang, and Yanming Ma

Jilin University, China

Quantum Computing & Machine Learning Workshop, Jilin, August 6 - 8, 2024

Crystal Structure

The crystal structure determines the macroscopic properties of the matter and is the basis for the study of material science.

Experimental method for determining crystal structures

Five scientists win Nobel Prizes for contributions to resolving crystal structures

Computational Material Discovery

Born−Oppenheimer potential energy surface(PES)

Structure prediction target: finding the lowest energy point of the PES

 $E[R_0] = min E[R], R \in \mathbb{R}^{3N+3}$ (N is atom number)

Scientific challenge: because of the high dimension and multi-valley properties of the PES, the determination of its lowest energy state is a typical NP-hard problem, which can not be solved by analytic methods.

CALYPSO crystal structure prediction

CALYPSO Package, a swarm-intelligence based computational method that is able to predict crystal structures of materials at given information of chemical compositions.

Numerical Solution of Potential Energy Surface Based on Swarm Intelligence

Physical constraints are used to simplify the potential energy surface. **II. Decompose III. Solve**

Develop quantitative characterization methods for structures, decompose potential energy surfaces.

Heuristic swarm intelligence algorithm is introduced to solve the potential energy surface.

Key Techniques of CALYPSO Method

CALYPSO is widely used by international peers

CALYPSO is used by more than 4,700 scholars in 77 countries under copyright agreements, allowing users to solve a range of scientific problems in multidisciplinary fields such as physics, chemistry, and materials.

n **>3,340 domestic users in >400 institutes**

 \blacksquare >1,360 foreign users in >600 institutes

6 Ivy League universities

- **Cornell University**
- **Yale University**

n **……**

n **MIT**

n **……**

Stanford University

⁴⁵ TOP50 universities ¹⁷ internationally research institutes

- National Laboratory for **Renewable Energy**
- **Max Planck Institute**

n **……**

Users published 1,963 papers using CALYPSO in Nature subjournals, PRL, etc.

IF<3.0: 631 papers; 3.0≤IF≤7.0: 944 papers; IF>7.0: 388 papers

CALYPSO won the second prize of National Natural Science Award in 2019

Project name: CALYPSO Crystal Structure Prediction Method and Its Application

Persons:Yanming Ma, Yanchao Wang, Jian Lv, Hanyu Liu, and Hui Wang

Crystal Structure Database

Data-driven science

Research methods centered on big data, which involves collecting, processing, analyzing, and mining data to reveal underlying patterns, drive scientific discoveries, and promote theoretical innovation.

Gabriel *et al***., J. Phys. Mat. 2, 032001 (2019)**

Machine Learning Accelerated Key Techniques

Data-driven method for material discovery

Database

• **Structures**

- **Energies**
- **Forces**
- **Electronic properties ……**

Machine Learning Potential

Reconstructing the PES to accelerate quantum mechanical calculations.

Generative model

Efficiently sampling the configuration space to propose stable and novel compounds.

Machine learning potentials (MLPs)

MLPs learn from ab initio data to reconstruct PES, enabling efficient and accurate prediction of material energies and atomic forces for large-scale, high-throughput simulations.

Machine learning potentials (MLPs)

A variety of MLPs have been developed, evolving from descriptor-based approaches to graph neural network architectures that eliminate the need for handcrafted descriptors.

- n **High-Dimensional Neural Network Behler, Parrinello, PRL 98, 146401(2007)**
- n **Gaussion Approximation Potential Bartók et al., PRL104, 136403 (2010)**
- n **Spectral Neighbor Analysis Potential Thompson et al., JCP. 285, 316 (2015)**
- **Moment Tensor Potential Shapeev, Multiscale Model. Simul. 14, 1153 (2016)**
- n **Deep Potential Zhang et al., PRL 120, 143001 (2018)**

Descriptor-based approaches Graph neural network-based approaches

SchNet Schütt et al., JCP 148, 241722 (2018)

- **PhysNet Unke and Meuwly, J. Chem. Theory Comput. (2019)**
- **DimeNet Gasteiger et al., NeurIPS (2021)**
- **NequIP Simon et al., Nat. Commun. 13, 2453 (2022)**
- NewtonNet **Haghighatlari et al., Digit. Discov. 1, 333 (2022)**

Universal interatomic potentials (UIPs)

UIPs aim to be broadly applicable, providing accurate predictions of energies, atomic forces across the periodic table.

MLP Accelerated CALYPSO Structure Prediction Scheme

Accelerated CALYPSO method by Gaussian Approximation Potential (GAP)

Atomic environment descriptor **Regression** model

Q Radial Symmetry Function Responds to Atomic Distance Information

$$
W_i^{\text{rad}} = \sum_{j \neq i}^{N} g(Z_j) e^{-\eta (r_{ij} - \mu)^2} f_{ij}
$$

 \Box **Angular Symmetry Function Responds to Bonding Direction Information**

$$
W_i^{\text{ang}} = 2^{1-\zeta} \sum_{j \neq i}^{N} \sum_{k \neq i,j}^{N} h(Z_j, Z_k) \left(1 + \lambda \cos \theta_{ijk} \right)^{\zeta}
$$

$$
\times e^{-\eta (r_{ij} - \mu)^2} e^{-\eta (r_{ik} - \mu)^2} e^{-\eta (r_{jk} - \mu)^2} f_{ij} f_{ik} f_{jk}
$$

J. Behler et al., JCP 134, 074106 (2011)

M. Gastegger et al., JCP 148, 241709 (2018)

q **Bayes Rule:** $P(t_{N+1}|\mathbf{t}) = \frac{P(\mathbf{t}|t_{N+1})P(t_{N+1})}{P(\mathbf{t})}$ q **Atomic Energy :** $\boldsymbol{\mathcal{E}_{*}} = \boldsymbol{k}_{*}^{\ T} \boldsymbol{\mathcal{Q}}_{MM}^{-1} \boldsymbol{C}_{MN} \boldsymbol{L}^T \left(\boldsymbol{\Lambda} + \boldsymbol{\sigma}^2 \boldsymbol{I} \right)^{-1} \boldsymbol{E}$ q **Variance of the predicted atomic energy:** $\bm{h}^2_{\bm{\gamma}} = \bm{C}(\bm{\mathrm{X}}_*, \bm{\mathrm{X}}_*) - \bm{k}^T_*\,(\bm{C}_{MM}^{-1} - \bm{Q}_{MM}^{-1})\bm{k}_* + \bm{\sigma}^2$ $\sigma_{\scriptscriptstyle{\wedge}}^2 = C(\textrm{X}_*,\textrm{X}_*) - \pmb{k}_*^T (\pmb{C}_{MM}^{-1} - \pmb{Q}_{MM}^{-1}) \pmb{k}_* + \pmb{\sigma}_*^2$ *t* **□ Variance of the predicted total energy:** $\sigma_{u} = \frac{1}{N} \sum \sigma_{i} \left(\bm{d}_{i} \right)$ $\sum \sigma_{_{i}}\bigl(\boldsymbol{d}% _{_{j}}\bigr)\sigma_{_{j}}\left(\boldsymbol{d}\right)$ $\sum_{u} = \frac{1}{N} \sum_{i \in u} \sigma_i$ Î

Bartok et al., PRL 104, 136403 (2010)

Application 1 : the prediction of Boron clusters with GAP

Boron clusters are rich in bonding environments and are ideal test systems for building machine learning potentials and structure predictions.

Double-Ring Tube

Planar structure Nat. Commun. 5, 3113 (2014)

Three-Ring Tube

Nat. Chem. 6, 727 (2014) PNAS 102, 961 (2005) JCP 129, 024903 (2008)

Bilayer structure Nanoscale 9, 13905 (2017) JPCA 114, 9969 (2010)

Fullerene-like structure

Core-shell structure

What's the **structure** of B_{84} ?

Cage structure PRL 100, 165504 (2008)

Core-shell structure JPCA 2245 (2010)

Quasi-planar structure Nanoscale 7, 5055 (2015)

Accelerated structure prediction of B_{84} with GAP

The color of data points represents the variance of predicted total energy. Energy evolution in structure prediction Evolution of RMS error of energy

and force

The prediction results of B₈₄ cluster

n Proposed a core-shell structure of B_{84} cluster with the lowest energy so far ■ The computational cost is substantially reduced by 1–2 orders of magnitude if **compared with full DFT-based structure searches**

Tong, Lv*, Wang and Ma* et al., Fara. Discuss. 211, 31 (2018)

Interfacing CALYPSO and other machine learning potentials

Application 2 : the prediction of Li high-pressure phases

It is found that a new phase may exist in the range of 40-60 GPa and 200-300 K, and the structure is difficult to be determined for a long time.

Anne et al., PRL 109, 185702 (2012) Mungo et al., PRL 123, 065701 (2019)

Several Li high-pressure phases are discovered

n **Traning set:experimental structures of Li and perturbed configurations**

n **Structure search:CALYPSO+Deep Potential,1-200 atoms/cell,600,000 structures** n **DFT optimization:VASP,5000 structures**

Wang *et al.***, Nat. Commun. 14, 2924 (2023)**

Application 3 : the prediction of hydrogen-rich Li-La-H compounds

The Li2LaH17 compound has been predicted at high pressure using the DFT method in our previous work.

Phase diagram of Li-La-H system at 300 GPa

The **crystal structure** of $Li₂LaH₁₇$ $(T_c = -150K \omega/160GPa)$

Sun *et al.***, Phys. Rev. B 106, 024519 (2022)**

A concurrent learning scheme

For Li-La-H system, the initial ensemble of DP models was constructed based on 2036 random structures, and 10 iterations of CALYPSO structure searches (2100 structures for Li-La-H compounds) were carried out to construct Deep Potential.

Workflow of a concurrent learning scheme

Wang *et al.,* **Phys. Rev. B 109, 094117 (2024)**

 $(%)$

Accurate Rate

A new compound $Li₄La₄H₄₆$ is discovered

A new stable structure $\text{Li}_2\text{La}_2\text{H}_{23}$ was discovered after searching 300,000 configurations **with CALYPSO and Deep Potential.**

Wang *et al.,* **Phys. Rev. B 109, 094117 (2024)**

Data-driven method for material discovery

Database

• **Structures**

- **Energies**
- **Forces**
- **Electronic properties ……**

Machine Learning Potential

Reconstructing the PES to accelerate quantum mechanical calculations.

Generative model

Efficiently sampling the configuration space to propose stable and novel compounds.

Generative model

Generative models are optimized by minimizing the difference between the generated distribution and true data distribution through techniques like maximum likelihood estimation or adversarial training.

- **n Real data distribution:** $p(x)$, which is unknown and needs to be learned from the dataset.
- **Estimated distribution:** $q_{\theta}(x)$, which is described by a neural network with a set of parameters θ .

Generative modeling frames learning as an optimization problem where the loss corresponds to the KL divergence between $q_{\theta}(x)$ and $p(x)$:

$$
\mathcal{L}(\theta) = D_{KL}[p(x) \parallel q_{\theta}(x)] = \mathbb{E}_{x \sim p} \left[\log \frac{p(x)}{q_{\theta}(x)} \right]
$$

Generative model for crystal structures

Crystal structure prediction performance of various generative model using different architectures on Materials Project dataset

The CALYPSO high-pressure structure database

A database for high-pressure structures collected from the CALYPSO community.

Structure counts of each element

 2^{\sim}

Luo *et al.***, arXiv 2403.10846 (2024)**

Generative model for dense matters

We developed a universal generative model for crystal structure prediction through a conditional crystal diffusion variational autoencoder approach, tailored to accommodate user-defined material and physical parameters such as composition and pressure.

Cond-CDVAE architecture final energy difference of 500 structures at 0GPa

Luo *et al.***, arXiv 2403.10846 (2024)**

The performance of generative model for structure search

Search high-pressure phases of Li, B and $SiO₂$ by generative model and CSP **with generating 1000 samples for each run.**

the crystal structure of $γ$ **-B**₂₈

N_{model} and N_{CSP} denote the average number of structural samplings required to locate the global minimum

The manifold learning of silica

Two-dimensional projection of silica structures generated by generated model and random sampling.

Luo *et al.***, arXiv 2403.10846 (2024)**

Summary

n **CALYPSO is able to predict crystal structures of materials at given information of chemical compositions.**

- n **We have developed machine learning potential accelerated CALYPSO structure prediction method and predicted the structures** of B_{84} , Li and $Li₂La₂H₂₃$.
- n **We built a database for high-pressure structures and developed a universal generative model for generating crystal structures.**

Acknowledgements

Prof. Yanming Ma Prof. Yanchao Wang Jilin University

Jilin University

Prof. Jian Lv Jilin University q **Prof. Changfeng Chen Nevada University** q **Prof. Quan Li Jilin University** q **Prof. Hanyu Liu Jilin University** q **Prof. Yu Xie Jilin University** q **Dr. Qunchao Tong**

National University of Defense Technology

Han Wang Researcher IAPCM

Assistant Researcher IAPCM

Doctoral candidate Jilin University

Zhenyu Wang Doctoral candidate Jilin University

Thanks very much for you attention!

