Machine Learning Accelerated CALYPSO Structure

Prediction Method

Pengyue Gao, Jian Lv, Yanchao Wang, and Yanming Ma

Jilin University, China

Quantum Computing & Machine Learning Workshop, Jilin, August 6 - 8, 2024

Crystal Structure

The crystal structure determines the macroscopic properties of the matter and is the basis for the study of material science.

Experimental method for determining crystal structures

Five scientists win Nobel Prizes for contributions to resolving crystal structures

Computational Material Discovery

Born-Oppenheimer potential energy surface (PES)

Structure prediction target: finding the lowest energy point of the PES

 $E[R_0] = min E[R], R \in \mathbb{R}^{3N+3}$ (N is atom number)

Scientific challenge: because of the high dimension and multi-valley properties of the PES, the determination of its lowest energy state is a typical NP-hard problem, which can not be solved by analytic methods.

CALYPSO crystal structure prediction

CALYPSO Package, a swarm-intelligence based computational method that is able to predict crystal structures of materials at given information of chemical compositions.

Numerical Solution of Potential Energy Surface Based on Swarm Intelligence

Physical constraints are used to simplify the potential energy surface. **II. Decompose**

Develop quantitative characterization methods for structures, decompose potential energy surfaces. Heuristic swarm intelligence algorithm is introduced to solve the potential energy surface.

III. Solve

Key Techniques of CALYPSO Method

CALYPSO is widely used by international peers

CALYPSO is used by more than 4,700 scholars in 77 countries under copyright agreements, allowing users to solve a range of scientific problems in multidisciplinary fields such as physics, chemistry, and materials.

■ >3,340 domestic users in >400 institutes

■ >1,360 foreign users in >600 institutes

6 Ivy League universities

- **Cornell University**
- Yale University

45 TOP50 universities

- MIT
- Stanford University

17 internationally research institutes

- National Laboratory for Renewable Energy
- Max Planck Institute

Users published 1,963 papers using CALYPSO in Nature subjournals, PRL, etc.

IF<3.0: <u>631 papers</u>; 3.0≤IF≤7.0: <u>944 papers</u>; IF>7.0: <u>388 papers</u>

CALYPSO won the second prize of National Natural Science Award in 2019

Project name : CALYPSO Crystal Structure Prediction Method and Its Application

Persons: Yanming Ma, Yanchao Wang, Jian Lv, Hanyu Liu, and Hui Wang

Crystal Structure Database

Data-driven science

Research methods centered on big data, which involves collecting, processing, analyzing, and mining data to reveal underlying patterns, drive scientific discoveries, and promote theoretical innovation.

Gabriel et al., J. Phys. Mat. 2, 032001 (2019)

Machine Learning Accelerated Key Techniques

Data-driven method for material discovery

Database

• Structures

- Energies
- Forces
- Electronic properties

Machine Learning Potential

Reconstructing the PES to accelerate quantum mechanical calculations.

Generative model

Efficiently sampling the configuration space to propose stable and novel compounds.

Machine learning potentials (MLPs)

MLPs learn from ab initio data to reconstruct PES, enabling efficient and accurate prediction of material energies and atomic forces for large-scale, high-throughput simulations.

Structure	Local env.	Descriptor	ML model to predict atomic energy	Sum	Energy
	$n_i = \left\{ \boldsymbol{r}_j, Z_j r_{ij} \le r_c \right\}$	$\mathbf{d}_i = \mathcal{D}(n_i)$	$\varepsilon_i = \mathcal{ML}(\mathbf{d}_i)$	$E=\sum \varepsilon_i$	
		$\rho(r)$ d_1	$ \xrightarrow{\sim} \varepsilon_1 $	i	
•	• • •	Smooth Overlap of •••			
		Atomic Positions	Neural	Ţ	
	e e e e e e e e e e e e e e e e e e e	\mathbf{d}_i	Network		
		\rightarrow \rightarrow \square \square \square	\rightarrow ε_i	$\rightarrow \Sigma$	$\rightarrow E$
		•••			
		Atom-Centered d _N → Symmetry → ☐ ☐ ☐ - Functions	$\longrightarrow \qquad \qquad$]	

Machine learning potentials (MLPs)

A variety of MLPs have been developed, evolving from descriptor-based approaches to graph neural network architectures that eliminate the need for handcrafted descriptors.

Descriptor-based approaches

- High-Dimensional Neural Network Behler, Parrinello, PRL 98, 146401(2007)
- Gaussion Approximation Potential Bartók et al., PRL104, 136403 (2010)
- Spectral Neighbor Analysis Potential Thompson et al., JCP. 285, 316 (2015)
- Moment Tensor Potential Shapeev, Multiscale Model. Simul. 14, 1153 (2016)
- Deep Potential
 Zhang et al., PRL 120, 143001 (2018)

Graph neural network-based approaches

SchNet Schütt et al., JCP 148, 241722 (2018)

- PhysNet Unke and Meuwly, J. Chem. Theory Comput. (2019)
- DimeNet Gasteiger et al., NeurIPS (2021)
- NequIP Simon et al., Nat. Commun. 13, 2453 (2022)
 - NewtonNet Haghighatlari et al., Digit. Discov. 1, 333 (2022)

Universal interatomic potentials (UIPs)

UIPs aim to be broadly applicable, providing accurate predictions of energies, atomic forces across the periodic table.

MLP Accelerated CALYPSO Structure Prediction Scheme

Accelerated CALYPSO method by Gaussian Approximation Potential (GAP)

Atomic environment descriptor

Radial Symmetry Function Responds to Atomic Distance Information

$$W_i^{\text{rad}} = \sum_{j \neq i}^N g(Z_j) e^{-\eta (r_{ij} - \mu)^2} f_{ij}$$

Angular Symmetry Function Responds to Bonding Direction Information

$$W_{i}^{\text{ang}} = 2^{1-\zeta} \sum_{j\neq i}^{N} \sum_{k\neq i,j}^{N} h(Z_{j}, Z_{k}) \left(1 + \lambda \cos \theta_{ijk}\right)^{\zeta} \\ \times e^{-\eta(r_{ij}-\mu)^{2}} e^{-\eta(r_{ik}-\mu)^{2}} e^{-\eta(r_{jk}-\mu)^{2}} f_{ij} f_{ik} f_{jk}$$

J. Behler et al., JCP 134, 074106 (2011)

M. Gastegger et al., JCP 148, 241709 (2018)

Regression model Bayes Rule: $P(t_{N+1}|\mathbf{t}) = \frac{P(\mathbf{t}|t_{N+1})P(t_{N+1})}{P(\mathbf{t})}$ **Atomic Energy** : $\varepsilon_* = k_*^T Q_{MM}^{-1} C_{MN} L^T (\Lambda + \sigma^2 I)^{-1} E$ □ Variance of the predicted atomic energy: $\sigma_{A}^{2} = C(X_{*}, X_{*}) - k_{*}^{T} (C_{MM}^{-1} - Q_{MM}^{-1})k_{*} + \sigma^{2}$ □ Variance of the predicted total energy: $\Sigma_u = \frac{1}{N} \sum_{i} \sigma_i(\boldsymbol{d}_i)$

Bartok et al., PRL 104, 136403 (2010)

Application 1 : the prediction of Boron clusters with GAP

Boron clusters are rich in bonding environments and are ideal test systems for building machine learning potentials and structure predictions.

Double-Ring Tube PNAS 102, 961 (2005)

Planar structure Nat. Commun. 5, 3113 (2014)

Three-Ring Tube JCP 129, 024903 (2008)

Fullerene-like structure

Nat. Chem. 6, 727 (2014)

Bilayer structure Nanoscale 9, 13905 (2017)

Core-shell structure JPCA 114, 9969 (2010)

What's the structure of **B**₈₄?

Cage structure PRL 100, 165504 (2008)

Core-shell structure JPCA 2245 (2010)

Quasi-planar structure Nanoscale 7, 5055 (2015)

Accelerated structure prediction of B₈₄ with GAP

Energy evolution in structure prediction The color of data points represents the variance of predicted total energy. **Evolution of RMS error of energy and force**

The prediction results of B₈₄ cluster

Proposed a core-shell structure of B₈₄ cluster with the lowest energy so far
 The computational cost is substantially reduced by 1–2 orders of magnitude if compared with full DFT-based structure searches

Tong, Lv*, Wang and Ma* et al., Fara. Discuss. 211, 31 (2018)

Interfacing CALYPSO and other machine learning potentials

Application 2 : the prediction of Li high-pressure phases

It is found that a new phase may exist in the range of 40-60 GPa and 200-300 K, and the structure is difficult to be determined for a long time.

Anne et al., PRL 109, 185702 (2012)

Phase diagram of lithium (resistivity measurement)

Mungo et al., PRL 123, 065701 (2019)

Several Li high-pressure phases are discovered

■ **Traning set :** experimental structures of Li and perturbed configurations

Structure search : CALYPSO+Deep Potential , 1-200 atoms/cell , 600,000 structures
 DFT optimization : VASP , 5000 structures

Wang et al., Nat. Commun. 14, 2924 (2023)

Application 3 : the prediction of hydrogen-rich Li-La-H compounds

The Li₂LaH₁₇ compound has been predicted at high pressure using the DFT method in our previous work.

Phase diagram of Li-La-H system at 300 GPa

The crystal structure of Li_2LaH_{17} ($T_c = \sim 150K$ @ 160GPa)

Sun et al., Phys. Rev. B 106, 024519 (2022)

A concurrent learning scheme

For Li-La-H system, the initial ensemble of DP models was constructed based on 2036 random structures, and 10 iterations of CALYPSO structure searches (2100 structures for Li-La-H compounds) were carried out to construct Deep Potential.

The model deviation distribution during the iterations

Workflow of a concurrent learning scheme

Wang et al., Phys. Rev. B 109, 094117 (2024)

A new compound Li₄La₄H₄₆ is discovered

A new stable structure Li₂La₂H₂₃ was discovered after searching 300,000 configurations with CALYPSO and Deep Potential.

Wang et al., Phys. Rev. B 109, 094117 (2024)

Data-driven method for material discovery

Database

• Structures

- Energies
- Forces
- Electronic properties

Machine Learning Potential

Reconstructing the PES to accelerate quantum mechanical calculations.

Generative model

Efficiently sampling the configuration space to propose stable and novel compounds.

Generative model

Generative models are optimized by minimizing the difference between the generated distribution and true data distribution through techniques like maximum likelihood estimation or adversarial training.

- **Real data distribution:** p(x), which is unknown and needs to be learned from the dataset.
- **Estimated distribution:** $q_{\theta}(x)$, which is described by a neural network with a set of parameters θ .

Generative modeling frames learning as an optimization problem where the loss corresponds to the KL divergence between $q_{\theta}(x)$ and p(x):

$$\mathcal{L}(\theta) = D_{KL}[p(x) \parallel q_{\theta}(x)] = \mathbb{E}_{x \sim p}\left[\log \frac{p(x)}{q_{\theta}(x)}\right]$$

Generative model for crystal structures

Crystal structure prediction performance of various generative model using different architectures on Materials Project dataset

Anabitaatunas	Mathada	CSP performances on MP20			
Architectures	Methods	Match Rate (%)	RMSE		
VAE	iMatGen Noh, <i>et al</i> ., Matter, 1, 1370 (2019)	/	/		
$\mathbf{x} \xrightarrow{\mathbf{Encoder}} \mathbf{z} \xrightarrow{\mathbf{Decoder}} \mathbf{x}'$	CDVAE Xie, <i>et al</i> ., arXiv 2110.06197 (2022)	33.90	0.1045		
	Cond-CDVAE Luo, <i>et al.</i> , arXiv 2403.10846 (2024)	/	/		
Diffusion model	DiffCSP Jiao, <i>et al</i> ., arXiv 2309.04475 (2023)	51.49	0.0631		
$\mathbf{x}_0 \xrightarrow{\mathbf{x}_1} \mathbf{x}_1 \xrightarrow{\mathbf{x}_2} \mathbf{x}_2 \xrightarrow{\mathbf{x}_3} \cdots \cdots \xrightarrow{\mathbf{x}_n} \mathbf{z}$	MatterGen Zeni, <i>et al</i> ., arXiv 2312.03687 (2023)	/	/		
	UniMat Yang, <i>et al</i> ., arXiv 2311.0923 (2023)	/	/		
Flow model	GM4CSP Luo, <i>et al.</i> , in progress	58.43	0.1425		
\mathbf{x} $f(\mathbf{x})$ \mathbf{z} $f^{-1}(\mathbf{z})$ \mathbf{x}'	FlowMM Miller, <i>et al</i> ., arXiv 2406.04713 (2024)	61.39	0.0566		

The CALYPSO high-pressure structure database

A database for high-pressure structures collected from the CALYPSO community.

Structure counts of each element

2

H 146245																	He 3272
3 Li 63487	4 Be 11007											5 B 217263	6 C 20903	7 N 25624	8 68550	9 F 36625	10 Ne 0
11 Na 21556	12 Mg 35238			10 ³		10 ⁴		10 ⁵		10	6	13 AI 22731	14 Si 69878	15 P 128800	16 S 49414	17 CI 21254	18 Ar 0
19 K 15368	20 Ca 22999	21 Sc 3453	22 Ti 8529	²³ V 8581	24 Cr 6726	25 Mn 73292	26 Fe 21147	27 Co 8681	28 Ni 6433	29 Cu 7335	30 Zn 6424	³¹ Ga 17130	³² Ge 39017	³³ As 6226	34 Se 8536	35 Br 6456	36 Kr 0
³⁷ Rb 9747	³⁸ Sr 22667	³⁹ Y 23160	40 Zr 5675	41 Nb 4912	42 Mo 8216	43 TC 430	44 Ru 2257	45 Rh 2354	46 Pd 2756	47 Ag 19838	48 Cd 3053	49 In 4428	50 Sn 6266	51 Sb 4012	⁵² Te 6399	53 1974	54 Xe 5061
Cs 7924	56 Ba 10414	LA	72 Hf 63095	73 Ta 39169	74 W 8319	75 Re 1206	76 Os 1261	77 Ir 2519	78 Pt 6602	79 Au 29111	80 Hg 1567	81 TI 4144	82 Pb 5482	83 Bi 4967	84 Po 0	85 At 0	86 Rn 0
87 Fr 0	88 Ra 0	AC	104 Rf 0	105 Db 0	106 Sg 0	107 Bh 0	108 Hs 0	109 Mt 0	110 Ds 0	111 Rg 0	112 Cn 0	113 Nh 0	114 FI 0	115 Mc 0	116 Lv 0	¹¹⁷ Ts 0	¹¹⁸ Og 0
	LA	57 La	⁵⁸ Ce	⁵⁹ Pr	⁶⁰ Nd	61 Pm	⁶² Sm	63 Eu	⁶⁴ Gd	65 Tb	66 Dy	67 Ho	68 Er	⁶⁹ Tm	⁷⁰ Yb	71 Lu	
		78430 89	8147 90	2278 91	2434 92	<u>394</u> 93	2127 94	2024 95	1389	1810	1903	1763	1805 100	1455 101	1534 102	22281 103	
	AC	Ac 397	Th 777	Pa 202	U 1633	Np 226	Pu 688	Am 0	Cm	97 Bk 0		99 Es 0	Fm 0	Md 0		Lr 0	

Luo et al., arXiv 2403.10846 (2024)

Generative model for dense matters

We developed a universal generative model for crystal structure prediction through a conditional crystal diffusion variational autoencoder approach, tailored to accommodate user-defined material and physical parameters such as composition and pressure.

final energy difference of 500 structures at 0GPa

Luo *et al.*, arXiv 2403.10846 (2024)

The performance of generative model for structure search

Search high-pressure phases of Li, B and SiO₂ by generative model and CSP with generating 1000 samples for each run.

Structures	N_{atoms}	P (GPa)	N_{model}	Runs	$N_{\rm CSP}$	Runs
Li						
<i>cI</i> 16	16	50	566.0	2/5	50.0	3/3
В						
α-B ₁₂	36	0	74.0	1/5	392.3	3/3
γ -B ₂₈	28	50	341.0	5/5	-	0/3
$lpha ext{-Ga-type}$	8	100	58.0	5/5	78.0	3/3
SiO_2						
α -quartz	9	0	62.8	5/5	189.0	3/3
coesite	24	5	328.0	3/5	-	0/3
rutile-type	6	50	5.0	5/5	90.0	3/3
$CaCl_2$ -type	6	80	10.2	5/5	61.0	3/3
α -PbO ₂ -type	12	100	21.6	5/5	74.7	3/3
pyrite-type	12	300	28.8	5/5	66.0	3/3

the crystal structure of γ -B₂₈

N_{model} and N_{CSP} denote the average number of structural samplings required to locate the global minimum

The manifold learning of silica

Two-dimensional projection of silica structures generated by generated model and random sampling.

Luo et al., arXiv 2403.10846 (2024)

Summary

CALYPSO is able to predict crystal structures of materials at given information of chemical compositions.

- We have developed machine learning potential accelerated CALYPSO structure prediction method and predicted the structures of B₈₄, Li and Li₂La₂H_{23.}
- We built a database for high-pressure structures and developed a universal generative model for generating crystal structures.

Acknowledgements

Prof. Yanming Ma Pro Jilin University

Prof. Yanchao Wang Jilin University

Prof. Jian Lv Jilin University Prof. Changfeng Chen No
 Prof. Quan Li Jil
 Prof. Hanyu Liu Jil
 Prof. Yu Xie Jil

Dr. Qunchao Tong

Nevada University Jilin University Jilin University Jilin University

National University of Defense Technology

Han Wang Researcher IAPCM

Assistant Researcher IAPCM

Doctoral candidate Jilin University

Zhenyu Wang Doctoral candidate Jilin University

Thanks very much for you attention!

