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MDC at BESIIl and STCF

Beijing electron-positron collider (BEPCII)
* Peak luminosity : 1033cm=2s -1
e CMS: 2.0-4.95 GeV, Tt -charm region
*  World’s largest J/{ dataset : 10 billion
€ Main Drift Chamber (MDC) at BESIII
e 43 sense wire layers

e 5 axial wire super-layers,6 stereo wire super-layers .. ; =— e
« dE/dx resolution : 6% BESIII detector BESIII MDC

* Momentum resolution : 0.5%@1GeV/c

291 cm >

Super Tau-Charm Facility (STCF)
e High Luminosity: > 0.5 x 103> cm™ s™1@4GeV
* CMS:2.0-7GeV
€ Main Drift Chamber (MDC) at STCF
e 48 sense wire layers
e 4 axial wire super-layers,4 stereo wire super-layers
e dE/dx resolution : 6%
*  Momentum resolution : 0.5%@1GeV/c

STCF MDC



Traditional tracking of drift chamber

MDC hits produced
by charged particles

Track finding

Track fitting

Vertex and physics
object reconstruction

@ Build candidate tracks and perform hits assignment

@ Estimate the track parameters

Global approach : Hough Transform (HOUGH)
Local approach : Template Matching (PAT) Track Segment Finding (TSF)

Combinatorial Kalman Filter (CKF)

Global fit : Least Square Method, Runge-Kutta Method

Recursive fit : Kalman filter




Methodology: GNN based tracking pipeline

MDC Hit
(nodes)

Stage 1: EC- GNN

—— Graph construction — Edge classification —Space transformation —> Clusters collectionr—
(nodes, edges) |

Track finding
Stage 2: DBSCAN+RANSAC

Track fitting
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Two stages have their own hyperparameters, can be trained/optimized separately
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Graph and Graph Neural Network

€ A type of neural network that are specifically designed to operate on graph-structured data

@ Graph: nodes, edges o .
® Graph 2 Track nod Ve \\ /
* Nodes = Hits :
 edges = track segments _ N
@ The storage structure of graphs G=(NE
« Adjacency matrix v/ o 1 2 3
e Adjacency table . o0 1 1 1
* Orthogonal list 1] 0] 1] o0
* Adjacency multiple table e 2l 1 | 1|00 - sl -
* Edge set array s 110l ol o

€ GNN key idea: propagate information across the graph using a set of learnable functions that operate on node
and edge features

@ Graph Neural Network edge classifier D%E D%ZI:
* High classification score —— 'I-. """" EEE—./
> the edge belongs to a true particle track .\ = \ — \
* Low classification score ‘ Y Y-
= it is a spurious or noise edge e 0O e 0 T 0

Message-passing



Graph construction at BESIII

To reduce the number of fake edges during graph construction

Pattern Map based on MC simulation at BESIII

@ Definition of valid neighbors
* Hits on the same layer
Two adjacent sense wires on the left and right
* Hits on the next layer
The collection of sense wires that could potentially represent two successive hits on a track
¥ MC sample used to build pattern map
*  Two million single tracks produced with BESIII offline software (BOSS)
* 5 types of charged particles (e*, K*, p*, p*, nt¥)
* 0.05GeV/c<P<3GeV/c
@ Edge assignment based on Pattern Map
* Hit with its neighbors on the same layer and next layer
* Hit with its neighbors' neighbors on one layer apart
@ To reduce the size of the graphs, the Pattern Map is further reduced based on a probability cut A wire on layer13 and./zé
@ Graph representation neighbors on layerl4
* Node features (raw time, position coordinates r, ¢ of the sense wires), adjacency matrices, edge labels




Graph construction at STCF

Geometric cut at STCF

@ Edge assighment

* Hit and two adjacent hits on the left and right sides (same layer)

* Within a certain opening angle (the next layer and one layer apart)
€ Angle range

* No sense wire efficiency

* The junction of U-V superlayers (layers 11 and 29) appropriately amplify the threshold
@ Graph representation

* Node features (raw time, position coordinates r, ¢ of the sense wires), adjacency matrices, edge labels

e
o layer29 —— threshold:atan(3/1.) 10? g layer29 —— threshold:atan(3/1.) : @
14 S ok
© 1.5 _(_5 ’ et
‘ o (;\' v
I - v \/ o
cIC) - qc’ 10! . ___,:., % 15 S
1.0 e
e ¥ = AR
= L -
(@)} 8‘0 X
= =.
© 0.5 © 0.5 U T
[ qc) i ks *'E‘ 0@» — s
) A2 N
o o i 2 S
o e i ® i
0.0 10° 0.0 , : 100 °
1 2 A o
Pt(GeV/c) Ty



GNN edge classifier based on PyTorch

@ Input network
* Node features embedded in latent space
€ Graph model
* Edge network computes weights for edges using the features of the start and end nodes
* Node network computes new node features using the edge weight aggregated features s of the connected
nodes and the nodes’ current features
* MLPs
e 8 graph iterations

@ Strengthen important connections and weaken useless or spurious ones
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Clustering based on DBSCAN

y(cm)

b) Remove noise via GNN

c) Transform to Conformal plane

2x
x2+y2

2y

e Circle passing the origin

transform into a straight line

* The parameter space as cosa and sina
e) DBSCAN clustering in ‘a’parameter plane
* Density-Based Spatial Clustering
of Application with Noise
* Hits in a cluster are considered to be

in the same track

x-y plane (raw hits) x-y plane (GNN remove noise) Conformal plane @ space Cluster on a space
" ® “ m o °‘5m R BE ./‘f’ o classl
' . “. vos LI 0.4 . anti-pi 4 e class2
201 ‘_3{_,;3.;‘ RN 201 N, . 021 e hoise 2 e outlier
0 L ;.* P f * T oo * Cl ) " )
—20 ‘: L] p| § ° p' 4 §: ° ° pl % -027 20 @
) « anti-pi B anti-pi el *~ anti-pi 04 N
a0 . +  noise «!| « noise o : ‘ « noise o) N
oo « origin |+ origin ' .. + _ origin 081 i L 5] © —cncne
80 60  —40 ,éox(cn:',) 20 20 60 om0 e _";)(cm_)'zo 0 % P -0.175 -0.150 -0.125 —0).(1(0é)m—_01.())75 —0.050 -0.025 0.000 -1.0 -0.9 _::J;S(a) -0.7 -0.6 10 09 _ggs(a) 0.7 0.6
a) Original MC data sample d) Transform to ‘a’ parameter plane
s JJWS5pMS>yynrte * Hits connected in the X-Y plane in a straight line
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Clustering salvage algorithm RANSAC

€ Random sample consensus (RANCAS)

* Estimate a mathematical model from the data that contains outliers

Signals selected
* Its good robustness to noise and outliers by GNN

* Model can be specified DBSCAN

€ RANCAS is triggered by the events that DBSCAN processing fails

# signals in any
* Polar coordinate space class > threshold

* |linear model

* Inliers > a track, outliers > other tracks RANSAC

e Stop condition: outliers < threshold

# signals in any
class > threshold

~—— RANSAC regressor
-0.3 A U pr

anti-pi

noise
* Inliers

* Outliers
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Track fitting

Genfit2

* A Generic Track-Fitting Toolkit

* Experiment-independent framework \
B | W

* PANDA, Belle Il, FOPI and other experiments

e Deterministic annealing filter (DAF) to resolving the left-right ambiguities of wire

measurements
@ Configuration: Detector geometry and materials; TGeoManager

@ Input : Signal wire position, initial values of position and momentum, particle hypothesis for

e, 1,k p

@ Fitting procedure:
e Start 1st try: drift distance roughly estimated from TDC, ADC of sense wires

* Iteration to update information of drift distance, left-right assignment, hit position on z

direction and entrancing angle in the cell et al. tarife = tTDC — tEST — fight — twp — telec

Ye——

Isochrone

Twist




Performance of filtering noise at BESIII

@ Dataset T
* Single-particle (e*, K*, p*, p*, m* ) MC sample
- 0.2 GeV/c <P <3.0GeV/c .
*  Mixed with BESIIl random trigger data as background (~45% hits)
* Train: Validation: Test =4: 1: 1 .

0-— T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Model Output

@ Hit selection performance

* The preliminary results show that GNN provides high efficiency and purity of hits selection

Ngf‘gefégted 4000 [ 4000
* Hit selection Efficiency Nreal 98.7% —_— —
signal
" 2000 " 2000
Npredicted 1000 1000
. . . signal 0 \//’_,_j .
* Hitselection Purity : ——arcteq 96.5% , — 0 , 0
NP Momerk0152.0, 5 0, 04 06 08 10 mom%51'°1-52.025 04 06 08 10
all ntum (Geyi® 0 °° efficiency Ntum (Geari® 00 °2 “urity

Efficiency and purity can be balanced by adjusting the model parameter
12



Preliminary tracking performance at BESIII

@ Particle reconstructed performance

J/W = pon0 > yynt - from MC simulation

e track Eff — Nrec tracks
total tracks

efficiency

Efficiency loss mainly due to track finding(clustering):
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Performance of filtering noise at STCF

@ Dataset

o J/W > pn0 - yyr'm- from MC simulation

* Mixing background (Luminosity-related, Beam-gas effect, Touschek effect ) within the framework

@ Hit selection performance

e The background includes ‘track’ background,

after removal, the noise level is 348

Np.redicted
* Hit selection Efficiency : j\l’gn—“l 91.7%

real
signal

predicted

* Hit selection Purity : — %5t — 97.0%

all

predicted

* Remove noises rate: —225¢-— 99.0%
Nnoise
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Performance of filtering noise at STCF

@ Dataset

o J/W > pn0 - yyr'm- from MC simulation

* Mixing background (Luminosity-related, Beam-gas effect, Touschek effect ) within the framework
@ The reconstruction efficiency after GNN filtering noise is significantly improved

@ Atlarge | cos 8 |, the tracking efficiency decreases due to fewer signal and more noise
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Performance of filtering noise at STCF

@ Dataset
o J/W > pn0 - yyr'm- from MC simulation
*  Mixed with 600 random trigger noises

@ Hit selection performance

* Preliminary results shows promising performance

Number of residual noise in RhoPi

Signal selection purity
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Summary

@ A novel tracking algorithm prototype based on machine learning method at BESIII and STCF is under development
* GNN to distinguish the hit-on-track from noise hits.
e Clustering method based on DBSCAN and RANSAC to cluster hits from multiple tracks

@ Preliminary results on MC data shows promising performance

Outlook

@ Further optimization of the cluster model is needed
@ Performance verification concerning events with more tracks and long lived particle

@ Check the reconstruction time
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Training process

Learning curve Validation accuracy
0.10 1.000
—— Training loss
—— Validation loss 0.995 = AW*
—— Test loss
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