GNN for tracking at BESIII and STCF

Xiaoqian Jia¹, Xiaoshuai Qin¹, Teng Li¹, Xingtao Huang¹, Xueyao Zhang¹

Yao Zhang², Ye Yuan²

¹Shandong University

²IHEP

Quantum Computing and Machine Learning Workshop 2024, Changchun 2024-08-08

Outline

BESIII and STCF

- Methodology
- Preliminary Results
- Summary

MDC at **BESIII** and **STCF**

Beijing electron-positron collider (BEPCII)

- Peak luminosity : 10³³ cm⁻² s⁻¹
- CMS: 2.0 4.95 GeV, τ -charm region
- World's largest J/ψ dataset : 10 billion
- Main Drift Chamber (MDC) at BESIII
 - 43 sense wire layers
 - 5 axial wire super-layers,6 stereo wire super-layers
 - dE/dx resolution : 6%
 - Momentum resolution : 0.5%@1GeV/c

Super Tau-Charm Facility (STCF)

- High Luminosity: > 0.5 × 10³⁵ cm⁻² s⁻¹@4GeV
- CMS: 2.0 7 GeV
- Main Drift Chamber (MDC) at STCF
 - 48 sense wire layers
 - 4 axial wire super-layers,4 stereo wire super-layers
 - dE/dx resolution : ~6%
 - Momentum resolution : 0.5%@1GeV/c

BESIII detector

BESIII MDC

Traditional tracking of drift chamber

Methodology: GNN based tracking pipeline

Graph and Graph Neural Network

- A type of neural network that are specifically designed to operate on graph-structured data
- Graph: nodes, edges
- ♦ Graph → Track
 - Nodes → Hits
 - edges → track segments
- The storage structure of graphs
 - Adjacency matrix 🖌
 - Adjacency table
 - Orthogonal list
 - Adjacency multiple table
 - Edge set array

node G = (N, E)3 0 0 0 1 0 **GNN** 0 2 0 3 0 0 0

-
- GNN key idea: propagate information across the graph using a set of learnable functions that operate on node and edge features
- Graph Neural Network edge classifier
 - High classification score
 - \rightarrow the edge belongs to a true particle track
 - Low classification score
 - \rightarrow it is a spurious or noise edge

Graph construction at BESIII

To reduce the number of fake edges during graph construction

Pattern Map based on MC simulation at BESIII

- Definition of valid neighbors
 - Hits on the same layer
 - Two adjacent sense wires on the left and right
 - Hits on the next layer

The collection of sense wires that could potentially represent two successive hits on a track

- MC sample used to build pattern map
 - Two million single tracks produced with BESIII offline software (BOSS)
 - 5 types of charged particles (e^{\pm} , K^{\pm} , μ^{\pm} , p^{\pm} , π^{\pm})
 - 0.05 GeV/c < P < 3 GeV/c
- Edge assignment based on Pattern Map
 - Hit with its neighbors on the same layer and next layer
 - Hit with its neighbors' neighbors on one layer apart
- To reduce the size of the graphs, the Pattern Map is further reduced based on a probability cut
- Graph representation
 - Node features (raw time, position coordinates r, φ of the sense wires), adjacency matrices, edge labels

A wire on layer13 and its neighbors on layer14

Graph construction at STCF

Geometric cut at STCF

- Edge assignment
 - Hit and two adjacent hits on the left and right sides (same layer)
 - Within a certain opening angle (the next layer and one layer apart)
- Angle range
 - No sense wire efficiency
 - The junction of U-V superlayers (layers 11 and 29) appropriately amplify the threshold
- Graph representation
 - Node features (raw time, position coordinates r, φ of the sense wires), adjacency matrices, edge labels

GNN edge classifier based on PyTorch

- Input network
 - Node features embedded in latent space
- Graph model
 - Edge network computes weights for edges using the features of the start and end nodes
 - Node network computes new node features using the edge weight aggregated features s of the connected nodes and the nodes' current features
 - MLPs
 - 8 graph iterations
- Strengthen important connections and weaken useless or spurious ones

Clustering based on DBSCAN

- Original MC data sample a)
 - $J/\Psi \rightarrow \rho^0 \pi^0 \rightarrow \gamma \gamma \pi^+ \pi^-$
 - π⁺, π⁻ : Pt (0.2GeV 1.4GeV)
- Remove noise via GNN b)
- Transform to Conformal plane C)
 - $X = \frac{2x}{x^2 + y^2} Y = \frac{2y}{x^2 + y^2}$
 - Circle passing the origin
 - transform into a straight line

- d) Transform to ' α ' parameter plane
 - Hits connected in the X-Y plane in a straight line •
 - α as the angle between the straight line and X axis ullet
 - The parameter space as $\cos \alpha$ and $\sin \alpha$
- DBSCAN clustering in ' α ' parameter plane e)
 - **Density-Based Spatial Clustering** of Application with Noise
 - Hits in a cluster are considered to be • in the same track

Clustering salvage algorithm RANSAC

- Random sample consensus (RANCAS)
 - Estimate a mathematical model from the data that contains outliers
 - Its good robustness to noise and outliers
 - Model can be specified
- RANCAS is triggered by the events that DBSCAN processing fails
 - Polar coordinate space
 - linear model
 - Inliers \rightarrow a track , outliers \rightarrow other tracks
 - Stop condition: outliers < threshold

Track fitting

Genfit2

- A Generic Track-Fitting Toolkit
- Experiment-independent framework
- PANDA, Belle II, FOPI and other experiments
- Deterministic annealing filter (DAF) to resolving the left-right ambiguities of wire measurements
- Configuration: Detector geometry and materials; TGeoManager
- Input : Signal wire position, initial values of position and momentum, particle hypothesis for
 e, μ, π, k, p
- Fitting procedure:
 - Start 1st try: drift distance roughly estimated from TDC、 ADC of sense wires
 - Iteration to update information of drift distance, left-right assignment, hit position on z direction and entrancing angle in the cell et al. $t_{
 m drift} = t_{
 m TDC} t_{
 m EST} t_{
 m flight} t_{
 m wp} t_{
 m elec}$

Performance of filtering noise at BESIII

Dataset

- Single-particle (e[±], K[±], μ^{\pm} , p^{\pm} , π^{\pm}) MC sample
- 0.2 GeV/c < P < 3.0 GeV/c
- Mixed with BESIII random trigger data as background (~45% hits)
- Train: Validation: Test = 4: 1: 1
- Hit selection performance
 - The preliminary results show that GNN provides high efficiency and purity of hits selection

Efficiency and purity can be balanced by adjusting the model parameter

Preliminary tracking performance at BESIII

- Particle reconstructed performance
 - $J/\Psi \rightarrow \rho^0 \pi^0 \rightarrow \gamma \gamma \pi^+ \pi^-$ from MC simulation
 - track eff = $\frac{N_{\text{rec tracks}}}{N_{\text{total tracks}}}$
 - Efficiency loss mainly due to track finding(clustering):
 - multi-circular, decays, interaction with detector boundary/material, MC Event: 87

Performance of filtering noise at STCF

Dataset

- $J/\Psi \rightarrow \rho^0 \pi^0 \rightarrow \gamma \gamma \pi^+ \pi^-$ from MC simulation
- Mixing background (Luminosity-related, Beam-gas effect, Touschek effect) within the framework

800

700

600

500

≩ 400

300

200

100

3000

2500

2000

ه 1500 گ

1000

500

- Hit selection performance
 - The background includes 'track' background, after removal, the noise level is 348

• *Hit selection Efficiency* :
$$\frac{N_{signal}^{\text{predicted}}}{N_{signal}^{real}}$$
 91.7%

• *Hit selection Purity* :
$$\frac{N_{signal}^{predicted}}{N_{all}^{predicted}} 97.0\%$$

• Remove noises rate:
$$\frac{N_{noise}^{\text{predicted}}}{N_{noise}^{real}}$$
 99.0%

Performance of filtering noise at STCF

Dataset

- $J/\Psi \rightarrow \rho^0 \pi^0 \rightarrow \gamma \gamma \pi^+ \pi^-$ from MC simulation
- Mixing background (Luminosity-related, Beam-gas effect, Touschek effect) within the framework
- The reconstruction efficiency after GNN filtering noise is significantly improved
- \blacklozenge At large \mid cos $\theta\mid$, the tracking efficiency decreases due to fewer signal and more noise

Performance of filtering noise at STCF

Dataset

- $J/\Psi \rightarrow \rho^0 \pi^0 \rightarrow \gamma \gamma \pi^+ \pi^-$ from MC simulation
- Mixed with 600 random trigger noises
- Hit selection performance
 - Preliminary results shows promising performance

Summary

A novel tracking algorithm prototype based on machine learning method at BESIII and STCF is under development

- GNN to distinguish the hit-on-track from noise hits.
- Clustering method based on DBSCAN and RANSAC to cluster hits from multiple tracks
- Preliminary results on MC data shows promising performance

Outlook

- Further optimization of the cluster model is needed
- Performance verification concerning events with more tracks and long lived particle
- Check the reconstruction time

Training process

