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Why Fast Shower Simulation?
HL-LHC        huge computing resources

MC simulation account for ～50%（dominated by shower simulation）

Fast shower simulation: help overcome the computational challenge

ATLAS Software and Computing HL-LHC Roadmap ATLAS 2017 number
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https://cds.cern.ch/record/2802918/files/LHCC-G-182.pdf
https://cds.cern.ch/record/2644515/files/ATL-SOFT-PROC-2018-009.pdf


Fast Simulation
Geant4: incoming particle  physics process in the detector  energy 
deposition 


accurate results, but time-consuming

complex geometry

number of secondary particles grows quickly


Fast simulation: incoming particle  energy deposition) 

parameterization 

GAN (ATLAS) 
VAE

……


→ →

→

                                 
Geant4

fast simulation

QC is an alternative to classical computing 
QC + GAN: the potential to outperform classical GAN
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Quantum GAN

image source

 Two versions of quantum GAN

quantum generator + classical discriminator (choose the hybrid version for our study)

quantum generator + quantum discriminator


 NISQ (noisy intermediate-scale quantum era)

noisy and unstable qubit

number of qubits: [~10, ~ ]102
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https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f


CLIC Calorimeter images: energy deposits from electrons

3D ( ): too large for the current quantum device


downsampled to 8 pixels 

downsampled to 64 pixels ( )

51 × 51 × 25

8 × 8

e

Data Sample

51 × 51 × 25

8 × 8
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https://zenodo.org/records/3603122


Average Shower Image (PDF)
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Research Status
DESY & CERN started the project about 4 years ago 

Successfully generated the average shower shape


1D image with 8 pixels:  good performance

2D image with 64 pixels: training is unstable
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Generator Architecture
Input states: 

Variational quantum circuits:    

Amplitude decoding: n qubits   amplitudes   PDF values


8 pixels: 3 qubits

64 pixels: 6 qubits

|0⟩⨂

G(θ) |0⟩⨂ → |ψ⟩
→ 2n → 2n

n

input
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P2n

VQC decoding

n
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Training: Cross Entropy vs Wasserstein Loss
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8 pixels 64 pixels

Training with Wasserstein distance is more stable than cross-entropy loss

Hyper-parameter optimization could help when using cross-entropy loss


time-consuming …

training fluctuates for the data with 64 pixels



Performance (Ideal Simulator)
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Generated data are consistent with Geant4.




Impact of Noise: Training (8 pixels)
Consider the impact of readout error and double qubit gate (CZ) error


line: mean value

band: fluctuation due to the initialization

noise (<2%) could improve the training


readout error CZ error
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Noise level at the inference stage may change

stable performance when the change is small


Impact of Noise: Inference (8 pixels)
no noise
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CZ error：2%

change of noise level



Results on the Hardware (8 pixels)
Test the model on the hardware (Xiaohong: 骁鸿)


CZ error: 2%

readout error: 2%


training process performance

13



Actual Shower Image
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Research Status

15

CERN openlab: dual-PQC GAN

hard to train

poor results for images with more than 4 pixels


CERN & DESY: Quantum Angle Generator (QAG)

use Maximum Mean Discrepancy (MMD) as a simple discriminator (non-trainable), easy to train 

relatively good results for images with 8 pixels 

dual-PQC GAN

(CERN openlab)
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QAG

(CERN & DESY)

Fake Data

Real Data

MMD loss  
Corr loss

Classical Optimization

https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012062
https://iopscience.iop.org/article/10.1088/2058-9565/ad0389


Generator Architecture
input decoding

|0⟩

|0⟩

…
…G(θ)

…
…

VQC

…
…RY(z)

RY(z)

|0⟩ RY(z)
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input decoding

|0⟩

|0⟩

…
…G(θ)

VQC
…

…

|0⟩

Input states:    , 

    


VQC:    

: trainable parameters


Decoding: convert  to energy 


RY(z) |0⟩⨂

z ∼ N(0, 1)
G(θ)RY(z) |0⟩⨂ → |ψ⟩

θ
|ψ⟩

n

n

Input states:     

VQC:  , 




: trainable parameters


Decoding: convert  to energy 


|0⟩⨂

G(θ) |0⟩⨂ → |ψ⟩ θ = Wz + b
z ∼ N(0, 1)
W, b

|ψ⟩

Similar to the classical generator, but limited expressibility 
n

n

Embed the latent vectors multiple times to enhance the expressibility 



Training Strategy: Warm-up Initialization
Warm-up initialization:


Step 1: use MMD loss to pre-train the generator

Step 2: use the pre-trained generator to pre-train the discriminator (fix the 
parameters of the generator during the training)

Step 3: adversarial training with parameters obtained from previous steps


Benefits:

use the non-trainable discriminator, i.e. MMD loss, to pre-train the model  
reduce the training time

use the trainable discriminator to improve the performance of the generator 


→
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Overall Performance (Ideal Simulator)

pixel-wise distributiontotal energy

Consistent distribution between the generated data and Geant4
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Correlation Matrix (Ideal Simulator)

Geant4
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embed the latent  
vectors one time

embed the latent  
vectors multiple times



Average shower image: 
Quantum GAN could generate images consistent with Geant4

Training with noise (<2%) improves the performance

The model inference is stable against noise (<2%) 

Successfully running the model on the hardware (Xiaohong) 


Actual shower image: 
Reduce the training time via warm-up initialization

Enhance the expressibility of the generator by embedding the latent vectors 
into the rotation gates multiple times


Summary
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Thank you for your listening!



backup
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ideal simulator hardware
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