Quantum GAN for Fast Shower Simulation

Xiaozhong Huang, Weidong Li

Quantum Computing and Machine Learning Workshop 2024/8/7

IHEP

Why Fast Shower Simulation?

HL-LHC huge computing resources Fast shower simulation: help overcome the computational challenge

 \odot MC simulation account for \sim 50% (dominated by shower simulation)

Wall Clock consumption per workflow

Fast Simulation

Solution \cong Geant4: incoming particle \rightarrow physics process in the detector \rightarrow energy deposition Geant4

accurate results, but time-consuming

- complex geometry
- number of secondary particles grows quickly
- $^{\odot}$ Fast simulation: incoming particle \rightarrow energy deposition) parameterization GAN (ATLAS) <u>___</u>

QC is an alternative to classical computing QC + GAN: the potential to outperform classical GAN

fast simulation

Quantum GAN

- Two versions of quantum GAN

 - quantum generator + quantum discriminator
- Solution NISQ (noisy intermediate-scale quantum era) noisy and unstable qubit
 - \sim number of qubits: [~10, ~10²]

<u>quantum generator + classical discriminator</u> (choose the hybrid version for our study)

image source

I: Input for Generator

Data Sample

Second CLIC Calorimeter images: energy deposits from electrons \odot 3D (51 \times 51 \times 25): too large for the current quantum device Gownsampled to 8 pixels

 $^{\odot}$ downsampled to 64 pixels (8 \times 8)

Average Shower Image (PDF)

Research Status

DESY & CERN started the project about 4 years ago Successfully generated the average shower shape Sector Secto Section 2D image with 64 pixels: training is unstable

Generator Architecture

- Solution Variational quantum circuits: $G(\theta) | 0 \rangle^{\bigotimes n} \rightarrow | \psi \rangle$
- Solution \mathbb{S} Amplitude decoding: n qubits $\rightarrow 2^n$ amplitudes $\rightarrow 2^n$ PDF values
 - Spixels: 3 qubits

Training: Cross Entropy vs Wasserstein Loss

- - Image: Second secon

Training with Wasserstein distance is more stable than cross-entropy loss

Generated data are consistent with Geant4.

Performance (Ideal Simulator)

Impact of Noise: Training (8 pixels) Consider the impact of readout error and double qubit gate (CZ) error

- See line: mean value
- band: fluctuation due to the initialization
- noise (<2%) could improve the training</p>

11

Impact of Noise: Inference (8 pixels)

Results on the Hardware (8 pixels)

Section 10 Test the model on the hardware (Xiaohong: 强沟)

- Second CZ error: 2%
- Seadout error: 2%

training process

Actual Shower Image

Research Status

CERN openlab: dual-PQC GAN

- See and to train
- poor results for images with more than 4 pixels

CERN & DESY: Quantum Angle Generator (QAG)

- relatively good results for images with 8 pixels

use Maximum Mean Discrepancy (MMD) as a simple discriminator (non-trainable), easy to train

Generator Architecture

- \subseteq Input states: $R_{V}(z) | 0 \rangle \otimes^{n}$, $\subseteq z \sim N(0, 1)$ $\bigcirc \mathsf{VQC:} \ G(\theta) R_V(z) \, | \, 0 \rangle ^{\bigotimes n} \to | \, \psi \rangle$ Θ : trainable parameters Solution \mathbb{O} Decoding: convert $|\psi\rangle$ to energy \subseteq Input states: $|0\rangle^{\bigotimes n}$ \mathbb{Q} VQC: $G(\theta) | 0 \rangle \otimes n \rightarrow | \psi \rangle, \theta = Wz + b$
 - \subseteq $z \sim N(0, 1)$
 - W, b: trainable parameters
- \subseteq Decoding: convert $|\psi\rangle$ to energy

Embed the latent vectors multiple times to enhance the expressibility

Similar to the classical generator, but limited expressibility

Training Strategy: Warm-up Initialization

Warm-up initialization:

- Step 1: use MMD loss to pre-train the generator
- Step 2: use the pre-trained generator to pre-train the discriminator (fix the parameters of the generator during the training)
- Step 3: adversarial training with parameters obtained from previous steps
- Benefits:
 - $^{\mbox{\tiny \ensuremath{\wp}}}$ use the non-trainable discriminator, i.e. MMD loss, to pre-train the model \rightarrow reduce the training time
 - use the trainable discriminator to improve the performance of the generator

Overall Performance (Ideal Simulator)

Consistent distribution between the generated data and Geant4

Correlation Matrix (Ideal Simulator)

correlation matrix

Average shower image:

- Quantum GAN could generate images consistent with Geant4 \subseteq Training with noise (<2%) improves the performance \bigcirc The model inference is stable against noise (<2%) Successfully running the model on the hardware (Xiaohong)

Actual shower image:

- Reduce the training time via warm-up initialization
- Second into the rotation gates multiple times

Thank you for your listening!

Summary

backup

