Integration of quantum computing into transformer architectures for High Energy Physics

Abdualazem Fadol Mohammed IHEP Quantum Computing Group

Quantum Computing and Machine Learning Workshop 2024

August 8, 2024

Overview

Introduction

- **Transformer Architecture**
- **Hybrid-Quantum Transformer**
- **Quantum Transformer**
- Remarks
- Summary

Credited to Thomas Prior for TIME

Introduction

Background & Motivation:

- O HEP: Understanding fundamental particles and forces. O Large datasets, complex computations, advanced simulations.
- O Transformers in HEP: event classification and pattern recognition.

Why Integrate Quantum Computing with Transformers in HEP?

- O Massive amounts of data require substantial computational power.
- O Quantum-enhanced transformers may offer better performance in processing and analysing HEP data.
- O Integrating cutting-edge quantum technologies.

Goals and Objectives:

- O Leveraging quantum computing for improved models.
- Combining classical and quantum computations.
- O Design and evaluate hybrid models & develop quantum algorithms.

Transformer Architecture

☐ It consists of the encoder only.

Hybrid-Quantum Transformer

- □ We add a quantum layer to the attention block.
- It encodes the data and then passes them to a linear layer to produce the attention components.

Quantum embedding layer

Use a variational quantum circuit:

O Qubit numbers depend on the variables (\vec{x})

O Randomly initiated weights of $\vec{\theta}$

- O Weighted average of measurement results
-] Assume that we have a quantum circuit with three qubits:
 - O(N=100, C=6) (N=100, 2^{n-qubits}=8)
 - O Use PCA to reduce the dimension to (N=100, C=6)
 - O Normalise the outcomes by the measurements
- The quantum circuit is computed *N* times.

□ The signal $(e^+e^- \rightarrow ZH \rightarrow \gamma\gamma jj)$ & background $(e^+e^- \rightarrow (Z/\gamma^*)\gamma\gamma)$ with 50k events

Comparison: ROC curve

- The hybrid-quantum transformer vs the transformer.
- ☐ The hybrid-quantum transformer is not fully optimised.
- □ Possible optimisation would be:
 - O Quantum circuit: SPSA and COBYLA
 - **O** Transformer parameters: h, N, d_{model} ...
- A quick scan of the hyperparameters of the transformer model was used.

Comparison: Accuracy vs Epochs

The hybrid-quantum Transformer (left) and the Transformer (right).

Comparison: Loss vs Epochs

The hybrid-quantum Transformer (left) and the Transformer (right).

Testing the transformer architecture using LHC data

- Twenty-one low-level kinematic properties were measured by the particle detectors.
- Seven high-level features were derived from the twentyone features.
- ☐ The train, validation and testing: 2.6M, 100k and 500k.
- A quick scan of the hyperparameters of the transformer model was used.

Testing the transformer architecture using LHC data

The accuracy (left) and the loss (right) against the number of epochs.

Quantum Transformer

This is still experimental work towards building a pure-quantum transformer inspired by ArXiv: 2205.05625.

Quantum Transformer

"keys" and "query".

 \Box Measuring the expectation value for Pauli operators: {X, Y, Z} for each qubit. This is taken as "values". \Box In addition, we measure the expectation for the Z Pauli operator for two of the Ansatz to represent the

Remarks

- Qiskit has implemented parallel simulation using <u>cuQuantum</u> (Nvidia's GPU quantum circuit simulator):
 - O <u>cuTensorNet</u> based on the <u>tensor network</u> approach
 - O <u>cuStateVec</u> based on the state vector approach
- However, one should not rely only on GPUS to seek speed-up.
- Currently, the hybrid-quantum transformer runs for about two days for 50k events with the CEPC data.
- Optimising the hyperparameters of the transformer is tricky.
- ☐ Most of the applications of quantum machine learning do not show superiority to conventional learning.
- However, in some quantum generative models, it appears to perform better in data generation.

Discussed the role of transformers in HEP event classification and pattern recognition.] Highlighted the challenges in HEP and the potential benefits of integrating quantum computing. Explained the integration of a quantum layer into the transformer architecture. Described the use of variational quantum circuits for enhancing attention mechanisms. Presented the performance comparison between hybrid-quantum and classical transformers. Outlined the steps towards developing a pure-quantum transformer.

- 100

