

中國科學院為能物昭納完備 Institute of High Energy Physics Chinese Academy of Sciences

Deep Learning-Based¹⁴C **Pile-Up Identification in the JUNO Experiment**

<u>Wenxing Fang</u>, Miao He, Weidong Li, Wuming Luo, Zhaoxiang Wu

Quantum Computing and Machine Learning Workshop 2024 Aug 3-8, Jilin University, Changchun

Motivation

- The neutrino mass ordering (NMO) measurement is one of the most important topics in neutrino physics
- Jiangmen Underground Neutrino Observatory (JUNO)
 - Large liquid scintillator detector (20kt)
 - NMO sensitivity: 3σ (reactors only) with ~6 years using inverse beta decay (IBD)
 - The energy resolution of e⁺ is vital
- The ¹⁴C (β decay) from the LS could pile up with e⁺ which will deteriorate the energy resolution, need to be studied carefully

→ γ (511 keV)

y (511 keV)

¹⁴C pile-up effects

- The default β decay rate from ¹⁴C is 40k Hz for the JUNO liquid scintillator
- ✤ There is ~7% that a e⁺ could pile up with ¹⁴C decay

- To mitigate the effect
 - The first step is efficiently identifying the pile-up events (this study)
 - Then multi-site reconstruction should be developed to reconstruct the energy of e^+ for the pile-up event correctly

Dataset

- Produced using JUNO offline software (J22.1.0-rc0)
- Including Geant4 detector simulation, electronics simulation, waveform reconstruction, and event reconstruction
- Samples:
 - Pure e^+ and $e^+ + {}^{14}C$ pile-up events
 - kinetic energy of e⁺: 0~5MeV, 0MeV, 1MeV, 2MeV, 3MeV, 4MeV, 5MeV

Methodology (2D CNN)

- Similar to the computer vision problem:
 - Data are presented as images with 2 channels:
 - Each PMT is mapped to a pixel
 - Channel 1: total reconstructed charge
 - Channel 2: reconstructed first hit time
 - Exploit a convolutional neural network-based model to distinguish the pile-up

First hit time by PMTs

Rotation of the data

 To help ML training, rotating the reconstructed position to the X axis

Model

- Convolutional neural network-based
- Input data:
 - 124*231 2D array with 2 channels:
 - Total charge channel is scaled by 5
 - First hit time channel is scaled by 100
- Output:
 - 2 values (imply the probability of 2 categories)
- Categories of data:
 - Category 0: pure $0 \sim 5$ MeV e^+ , $\sim 160k$ training data
 - Category 1: 0~5 MeV e⁺ with nHit_{C14} > 50, ~90k training data
- Loss: nn.CrossEntropyLoss()
- Optimizer: Adam
- LR Scheduler: OneCycleLR

Input (2×124×231) Conv2d(2, 4, 3) BatchNorm2d(4) ReLU()+MaxPool2d(2,2) Conv2d(4, 16, 3) BatchNorm2d(16) ReLU()+MaxPool2d(2,2) Conv2d(16, 32, 3) BatchNorm2d(32) ReLU()+MaxPool2d(2,2) Conv2d(32, 64, 3) BatchNorm2d(64)+ReLU() Conv2d(64, 64, 3) BatchNorm2d(64)+ReLU() MaxPool2d(2,2) FC-1024 **FC-128**

FC-2

Training and testing: 0~5 MeV e⁺ samples

Testing : 0, 1, 2, 3, 4, 5 MeV e⁺ samples

Performance for 0 MeV e^+

 Check the pile-up identificantion efficiency when 99% of e⁺ is kept

- High identification efficiency for late mixed ¹⁴C
- For some crucial regions, the efficiency need to be improved

Using the distribution of hit time

- The 2D projection dispersed the ¹⁴C information
- The ¹⁴C information will be more concentrated using 1D distribution
- Try the ML method with hit time distributions as input:
 - Original hit time
 - The time-of-fly corrected hit time

Model (1D)

- Convolutional neural network-based
- Input data:
 - 1500 1D array with 2 channels:
 - Original hit time channel: from -250 ns to 1250 ns, scaled by 10
 - Tof corrected hit time channel: from -500 ns to 1000 ns, scaled by 50
- Output:
 - 2 values (imply the probability of 2 categories)
- Categories of data:
 - Category 0: pure 0~5 MeV e⁺, ~160k training data
 - Category 1: 0~5 MeV e⁺ with nHit_{C14} > 50, ~90k training data
- Loss: nn.CrossEntropyLoss()
- Optimizer: Adam
- LR Scheduler: OneCycleLR

Input	(2×1500)	
-------	----------	--

Conv1d(2, 4, 3)

BatchNorm1d(4)

ReLU()+MaxPool1d(2)

Conv1d(4, 16, 3)

BatchNorm1d(16)

ReLU()+MaxPool1d(2)

Conv1d(16, 32, 3)

BatchNorm1d(32)

ReLU()+MaxPool1d(2)

Conv1d(32, 64, 3)

BatchNorm1d(64)+ReLU()

Conv1d(64, 64, 3)

BatchNorm1d(64)+ReLU()

MaxPool1d(2)

FC-1024

FC-128

FC-2

✤ Training and testing: 0~5 MeV e⁺ (or nHit_{C14} > 50)samples

Training and testing: 0~5 MeV e⁺ with nHit_{C14} > 50

Testing : 0, 1, 2, 3, 4, 5 MeV e⁺ samples

Performance for 0 MeV e⁺

Check the pile-up identificantion efficiency when 99% of e⁺ is kept

- High identification efficiency
- Much better for crucial regions

0.9

0.8

0.6

0.5

0.4

0.3

0.2

0.1

Transformer model

- The Transformer has gained significant attention and popularity, particularly in NLP tasks (e.g. ChatGPT)
- To apply the transformer for this study, one can treat the 1D distribution as a sequence of words
- Same input as 1D CNN model
- Using the encoder part of the Transformer model

Performance for 0 MeV e^+

 Check the pile-up identificantion efficiency when 99% of e⁺ is kept

- High identification efficiency
- A bit improved for crucial regions

Summary

- The energy resolution of e⁺ is key for the JUNO experiment
- The pile up from ¹⁴C will deteriorate the energy resolution
- To mitigate this effect, the identification of pile-up events is the first step
- Different ML-based methods are used for the ¹⁴C pile-up identification. Including the 2D CNN, 1D CNN, and Transformer model
- The 1D distribution seems to have a better concentration of ¹⁴C hits and it outperforms the 2D model
- The results from the 1D CNN and Transformer model are similar.
 Slightly better performance is achieved by the Transformer model

Some checks

Energy resolution

Some checks

Check some distributions

Consistent check

mean=1.024267+-0.000049,res=3.1
mean=2.166115+-0.000068,res=2.0
mean=3.344596+-0.000086,res=1.6
mean=4.526019+-0.000104,res=1.4
mean=5.709060+-0.000120,res=1.3
mean=6.892424+-0.000135,res=1.2

	\$cat kR	es.txt	
	1.022	1.0237 4.73756e-05	3.12226 0.00332645
14042 0 0024208	1.272	1.29543 5.19471e-05	2.70515 0.00287844
	1.522	1.58186 5.6613e-05	2.41311 0.00258356
	1.772	1.87269 6.10666e-05	2.20053 0.00233683
	2.022	2.16547 6.5629e-05	2.04571 0.00218312
39844+-0.002248%	2.522	2.75394 7.4585e-05	1.82824 0.00196065
/6845+-0.001869%	> 3.022	3.34385 8.35146e-05	1.68182 0.00181166
79079+-0.001663%	3.522	3.93441 9.18545e-05	1.56753 0.00169285
48178+-0.001523%	4.022	4.52529 0.000100289	1.4837 0.0016076
49835+-0.001399%	4.522	5.11651 0.000109387	1.41126 0.00154548
	5.022	5.70821 0.000116527	1.35426 0.00147221
	5.522	6.29978 0.000126754	1.30376 0.00145339
	6.022	6.89163 0.000132877	1.2562 0.00139152
	7.522	8.66789 0.000172012	1.15688 0.00141377
	9.022	10.4452 0.000190706	1.07738 0.00129446
	12.022	14.0028 0.000256328	0.966111 0.00126794
	jiangw@	[09:28:30]:/scratchfs/	juno/jiangw/Time Grid/8/e+
			, , , , , , , , , , , , , , , , , , ,

From Jiang Wei

Checked the energy resolutions for 0,1,2,3,4,5 MeV e⁺, they are consistent with Wei results within statistic error

Dataset

detsim, produced by Wei Jiang:

- e⁺:root://junoeos01.ihep.ac.cn//eos/juno/valprod/valprod0/J22.1.0rc0-NEW/e+/e+_Uniform/(0~5MeV, 0MeV, 1MeV, 2MeV, ...)
- C14:root://junoeos01.ihep.ac.cn//eos/juno/valprod/valprod0/J22.1.0rc0-NEW/C14/C14_Uniform

elecsim:

source /cvmfs/juno.ihep.ac.cn/centos7_amd64_gcc830/Pre-Release/J22.1.0-rc0/setup.sh
python \$TUTORIALR00T/share/tut_det2elec.py --evtmax -1 --seed 0 --loglevel Fatal --input IBD:root://junoeos01.ihep.ac.cn//eos/juno/valprod/valp
rod0/J22.1.0-rc0-NEW/e+/e+_Uniform//0MeV/detsim/root/detsim-0.root --input C14:root://junoeos01.ihep.ac.cn//eos/juno/valprod0/J22.1.0-rc
0-NEW/C14/C14_Uniform/detsim/root//detsim-0.root --rate IBD:100 --rate C14:40000 --loop IBD:0 --loop C14:1 --output /cefs/higgs/wxfang/JUN0/C14M
ixing/elec//elec_0.root --user-output /cefs/higgs/wxfang/JUN0/C14Mixing/elec//elecUSER_0.root --nHitsThreshold 500 --Trigger_FiredPmtNum 200

calib:

ource /junofs/users/jiangw/J22.1.0-rc0/bashrc

python stutorials.py angle for the second seco

rec:

source /junofs/users/jiangw/J22.1.0-rc0/bashrc

python \${TUTORIALROOT}/share/tut_calib2rec.py --evtmax -1 --gdml --method energy-point --enableQTimePdf --enableUseEkMap --enableLTSPEs --enable TimeInfo --SignalWindowL 420 --enableSPMTInfo --RecMapPath /scratchfs/juno/jiangw/J22-rc0-PDF-NEW/recMap --input /cefs/higgs/wxfang/JUNO/C14Mixin ng/calib//calib 3709.root --output /cefs/higgs/wxfang/JUNO/C14Mixing/rec//rec_3709.root --user-output /cefs/higgs/wxfang/JUNO/C14Mixing/rec//rec USER 3709.root --elec ves

