

Based on <u>arXiv:2405.12972</u> [Github] [Google Colab]

Sophon meets LHC: Accelerating resonance discovery via signatureoriented pre-training

Congqiao Li (李聪乔), Peking University

based on the work with our colleagues in the CMS Collaboration:

Antonios Agapitos¹, Jovin Drews², Javier Duarte³, Dawei Fu¹, Leyun Gao¹, Raghav Kansal³, Gregor Kasieczka², Louis Moureaux², Huilin Qu⁴, Cristina Mantilla Suarez⁵, Qiang Li¹

1) Peking U. 2) Hamburg U. 3) UC San Diego 4) CERN 5) FNAL

also thanks Yuzhe Zhao¹ for his contribution

Quantum Computing and Machine Learning Workshop 2024, Changchun

6 August, 2024

Congqiao Li (Peking University)

QCML Workshop 2024

LHC physics × the era of deep learning

- → The LHC: current world's largest particle collider
- → Physics programs on LHC: reveal the fundamental theory of matters
- → ATLAS and CMS: general-purpose detectors for precise SM measurement and searching of BSM

LHC physics × the era of deep learning

- Deep learning (AI) is brining a technological leap in analyzing LHC data
- It is intriguing to think where the future possibility lies

- → The LHC: current world's largest particle collider
- → Physics programs on LHC: reveal the fundamental theory of matters
- → ATLAS and CMS: general-purpose detectors for precise SM measurement and searching of BSM

Boosted topology – a booster to sensitivity for LHC physics

→ Large-R jets: an important handle to analyze boosted topologies at the LHC

- Applications to Higgs/di-Higgs/BSM searches in boosted H(X)→bb/cc final states have been a success
- → Suitable for deploying cutting-edge deep learning techniques
 - most complex object to handle at the LHC (up to ~100 constituent particles)
 - advanced DNNs greatly boost analysis sensitivity

Inspiring progress on H→bb/cc̄ tagging

Inspiring progress on H→bb/cc̄ tagging

Propose "Large model for large-scale classification"

View from jet tagging

- → Instead of training dedicated jet taggers, we consider multiclass classification with N(class) reaches o(100)
 - statistical insights: an ideal multi-class classifier is a stack of ideal binary classifiers (next slide)
- → The model should be **large** → carry enough capacity
- → The classes should be comprehensive → tagging ability can be further generalized by fine-tuning

View from a pre-training solution

- → We own a comprehensive jet dataset, and we hope to pre-train a foundational model to facilitate all LHC analyses exploring the large-*R* jet
- → Set the training task: let the model learn to connect
 "what a jet is like" to "which truth signature the jet reveals"
 (= jet label in our case)
 - ◆ "jet labels" are simple signatures to explore
 → pre-training it as a classifier is just a starting point in this sense!

Statistical property of multi-class classifier

→ Statistical theory shows that:

A <u>multi-class</u> classifier with minimum <u>cross-</u> <u>entropy loss</u> <u>estimates the probability ratios</u> on the input classes:

$$g_i(\mathbf{x}) = \frac{p(\text{class} = i | \mathbf{x})}{\sum_{j=1}^{N_{\text{out}}} p(\text{class} = j | \mathbf{x})}$$

hence it contains all the information the ideal N(N-1) binary classifiers can do Quantum Computing and Machine Learning Workshop 2024

Statistical property of multi-class classifier

Quantum Computing and Machine Learning Workshop 2024

Statistical property of multi-class classifier

Introducing Sophon

arXiv:2405.12972

https://github.com/jet-universe/sophon

- → We explore this possibility in the CMS experiment first, and also in a recent pheno work:
 - Signature-Oriented Pre-training for Heavy-resonant ObservatioN
 - the model is based on Particle Transformer (ParT) architecture
 - a pre-trained model on a comprehensive dataset: JetClass-II

[H.Qu, CL, S.Qian. ICML 2022] The current "state-of-the-art"

on large-scale dataset (o(100M), close to experimental setup)

finely categorized labels:

contributed final states:

bb/cc/ss/qq/gg/ee/µµ/тт bc/bq/cs/cq

all combination of Y decays, resulting to 4-prong or 3-prong

Key property: we do not focus on any specific *X* and *Y* masses Their masses are variables: ranges from 20-500 GeV

Introducing Sophon

arXiv:2405.12972

https://github.com/jet-universe/sophon

- → We explore this possibility in the CMS experiment first, and also in a recent pheno work:
 - Signature-Oriented Pre-training for Heavy-resonant ObservatioN $\mathbf{\mathbf{x}}$
 - the model is based on Particle Transformer (ParT) architecture \mathbf{x}
 - a pre-trained model on a comprehensive dataset: JetClass-II $\boldsymbol{\diamond}$

[H.Qu, CL, S.Qian. ICML 2022]

finely categorized labels:

Major types	Index range	Label names
Resonant jets: $X \to 2$ prong	0–14	$bb,cc,ss,qq,bc,cs,bq,cq,sq,gg,ee,\mu\mu,\tau_{\rm h}\tau_e,\tau_{\rm h}\tau_\mu,\tau_{\rm h}\tau_{\rm h}$
Resonant jets: $X \rightarrow 3 \text{ or } 4 \text{ prong}$	15–160	bbbb, bbcc, bbss, bbqq, bbgg, bbee, bbµµ, bb $\tau_h \tau_e$, bb $\tau_h \tau_\mu$, bb $\tau_h \tau_h$, bbb, bbc, bbs, bbq, bbg, bbe, bbµ, cccc, ccss, ccqq, ccgg, ccee, ccµµ, cc $\tau_h \tau_e$, cc $\tau_h \tau_\mu$, cc $\tau_h \tau_h$, ccb, ccc, ccs, ccq, ccg, cce, ccµ, ssss, ssqq, ssgg, ssee, ssµµ, ss $\tau_h \tau_e$, ss $\tau_h \tau_\mu$, ss $\tau_h \tau_h$, ssb, ssc, sss, ssq, ssg, sse, ssµ, qqqq, qqgg, qqee, qqµµ, qq $\tau_h \tau_e$, qq $\tau_h \tau_h$, qq $t_h \tau_h$, qqb, qqc, qqs, qqq, qqg, qqe, qqµ, gggg, ggee, ggµµ, gg $\tau_h \tau_e$, gg $\tau_h \tau_h$, gg $\tau_h \tau_h$, ggb, ggc, ggs, ggq, ggg, gge, ggµ, bee, cee, see, qee, gee, bµµ, cµµ, sµµ, qµµ, b $\tau_h \tau_e$, c $\tau_h \tau_e$, s $\tau_h \tau_e$, $q\tau_h \tau_e$, $b\tau_h \tau_\mu$, $c\tau_h \tau_\mu$, $s\tau_h \tau_\mu$, $q\tau_h \tau_\mu$, $g\tau_h \tau_h$, $b\tau_h \tau_h$, $c\tau_h \tau_h$, $s\tau_h \tau_h$, qqdb, qqcc, qqss, dqec, qqzs, bcsq, bcs, bcq, bsq, csq, bcev, csev, bqev, cqev, sqev, qqev, bcµv, csµv, bqµv, cqµv, sqµv, gdµv, bc $\tau_e \nu$, cs $\tau_e \nu$, bq $\tau_e \nu$, cq $\tau_e \nu$, sq $\tau_e \nu$, bc $\tau_\mu \nu$, cs $\tau_\mu \nu$, bc $\tau_h \nu$, cs $\tau_h \nu$, bq $\tau_h \nu$, sq $\tau_h \nu$, gd $\tau_\mu \nu$, bc $\tau_h \nu$, cs $\tau_h \nu$, bq $\tau_h \nu$, sq $\tau_h \nu$, de $\tau_\mu \nu$, bc $\tau_\mu \nu$, cs $\tau_h \nu$, bq $\tau_h \nu$, cq $\tau_h \nu$, sq $\tau_\mu \nu$, de $\tau_\mu \nu$, bc $\tau_h \nu$, cs $\tau_h \nu$, bq $\tau_h \nu$, cq $\tau_h \nu$, sc $\tau_h \nu$, bc $\tau_h \nu$, cs $\tau_h \nu$, bq $\tau_h \nu$, qq $\tau_h \nu$
QCD jets	161–187	bbccss, bbccs, bbcs, bbcs, bbcs, bbc, bbss, bbs, bb
		resulting to 4-prong or 3-prong

All final states!

Key property: we do not focus on any specific *X* and *Y* masses

Their masses are variables: ranges from 20-500 GeV

⁽o(100M), close to experimental setup)

Sophon: performance benchmark

- Apply tagger selection
- Check discrimination power of
 - X (200 GeV) → **bb** signal vs. all backgrounds

Sophon (training on 188 classes) has best performance

discr(X
$$\rightarrow bb$$
 vs. QCD) = $\frac{g_{X \rightarrow bb}}{g_{X \rightarrow bb} + \sum_{l=1}^{27} g_{\text{QCD}_l}}$

- Performance gain does come from largescale classification (compared to Sophon* (42 classes))
- ParT and ParticleNet for binary classification: they represent the best performance we can reach in experiment now

arXiv:2405.12972

Sophon: performance benchmark

(adapt it to a brand new task)

- **Sophon** (training on 188 classes) reaches the best performance after fine-tuned (via transfer learning)
- ParT and ParticleNet for binary X→bs vs QCD classification: they reveal the best performance we can reach in the experiment now

arXiv:2405.12972

Sophon: close to real experimental performance?

Thanks Yuzhe for his input

Take recent **CMS performance plots** as an example

Benchmark performance on SM H→bb/cc̄ jets vs QCD background jets

 Demonstrate that applying "Sophon" on Delphes dataset for pheno study is pretty realistic

Congqiao Li (Peking University)

Highlight: CMS's Global ParT tagger

CMS-PAS-HIG-23-012

A global large-*R* mass-decorrelated tagger for **37-category classification**

- First time identifying the H→WW→4q signature with a jet tagger
- set a strong limit to κ_{2V} in the search of HH→bbVV signal

ത്ത്ത

QCD classes:

bb, cc, b, c, others

Highlight: CMS's Global ParT tagger

and we plan to update the CMS tagger under Sophon's philosophy

please stay tuned!

t→bW classes:

bWcs, bWqq, bWc, bWs, bWq, bWev,

 $bW\mu v$, $bW\tau_e v$, $bW\tau_\mu v$, $bW\tau_h v$,

Wcs, Wqq, Wev, W μ v, W τ_e v, W τ_μ v, W τ_h v

Implications for LHC resonance search

Using Sophon

Using Sophon

Use it out of the box!

Construct a dedicated discr. → perform a bump hunt

Can we rediscover the SM particles?

- → Simulate 40fb⁻¹ LHC collision events, $\sqrt{s} = 13$ TeV, nPU=50
 - focus on the large-R jet trigger (triggered with Σp_T threshold and trimmed mass)
 - abundant QCD backgrounds
 - rediscover Z/W/t particles simply from the large-R jet's mass spectrum

More heavy resonances

15

More heavy resonances

Sophon's transfer learning

- Transfer to uncovered tagging scenarios...
- facilitate anomaly detection (weaklysupervised, autoencoder)...
- more potential to unlock!

Use it out of the box!

Construct a dedicated discr. → perform a bump hunt

Background: anomaly detection in weakly-supervised approach

JHEP 10 (2017) 174

Equivalent effect for training **S** vs **B**

- → Recall the early work: CWoLa (classification without labels) Hunting
 - allow to detect anomalies purely from data
 - train a classifier for mass window vs mass sideband (mixed sample 1 vs 2)
 - ★ many improved approaches in recent years → very active field

Background: anomaly detection in weakly-supervised approach

JHEP 10 (2017) 174

- → Recall the early work: CWoLa (classification without labels) Hunting
 - allow to detect anomalies purely from data
 - train a classifier for mass window vs mass sideband (mixed sample 1 vs 2)
 - ★ many improved approaches in recent years → very active field

Equivalent effect for training **S** vs **B**

can discover $W' \rightarrow W\phi \rightarrow WWW$ signals see $2\sigma \rightarrow 7\sigma$ improvement

Dijet search capabilities

"If signal events reach this point, **with initial Z=5**,

then we have already discovered the signal without needing to make a cut"

Dijet search capabilities

Combining Sophon's transfer learning (using Sophon's "knowledge") with AD marks a success

- More sensitive to low signal (even starting at ~0.6σ)
- Much improved S vs B distinguishability than using high-level input

Dijet search capabilities

Summary and outlook

arXiv:2405.12972

- → Sophon releases a lot of new opportunities for future LHC experiments
 - ★ simply viewed as a "global large-R jet tagger" → should bring benefits of the advanced NN to ~all hadronic final-state searches
 - also viewed as a pre-trained jet model: a foundation model tailored for LHC analyses
- → Proposed the JetClass-II dataset and the Sophon model
 - JetClass-II covers more comprehensive phase spaces and can be a good playground to develop future foundation models
 - the Sophon model can be helpful in delivering future LHC pheno research! [see implementation details on our Github repo]
 - optimizing sensitivity for dedicated searches/anomaly detection/novel paradigms...
 - this work demonstrates that it can be a great booster to LHC's broad resonance search programs
- → Stay tuned to their applications to real LHC experiments!

Backup

Statistical essence of jet tagging problem

→ Question: where is the limit of jet tagging?

→ Answer: the probability density ratio of two classes provides the optimal tagging

How to deploy the model to LHC experiments?

→ Implies how we can do future analysis

- hidden layer neurons values are stored in official sample
- analysis can use them for fine-tuning (equivalently, just think that they are special jet variables)
- easy to implement & integrate into existing workflow

Sophon's transfer learning × anomaly detection

→ Do SALAD (similar to CWOLA Hunt) in each sliding window

- purify those peculiar jets in that mass window
- → Sophon's latent space has encoded fruitful knowledge on "final-state properties"