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Motivation: Particle identification

= PID is essential for high energy physics experiments

® Suppressing combinatorics

= Distinguishing between same topology final-states

® Adding valuable additional information for flavor tagging of jets

Benchmark channel:
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Drift chamber for next-gen experiments

CEPC 4t Concept

Scint Glass
PFAHCAL

Advantage: Cost efficient, high density

Challenges: Light yield, transparency,
radiation hardness, massive production

HTS Solenoid Magnet (3T / 2T )
Between HCAL & ECAL, or inside HCAL

Advantage: the HCAL absorbers act as part

Muon+Yoke Si Tracker

of the magnet return yoke.

Challenges: thin enough not to affect the jet
resolution (e.g. BMR); stability.

— Transverse Crystal bar ECAL

Advantage: better 1%y reconstruction

Challenges: minimum number of readout
channels; compatible with PFA calorimeter;
maintain good jet resolution.

IDEA for FCC-ee

a silicon pixel vertex detector

a large-volume extremely-
light drift chamber

I~ A Drift chamber
that is optimized for PID

Advantage: Work at high luminosity Z runs

Challenges: sufficient PID power; thin enough
not to affect the moment resolution. Need a

Si Vertex supplementary ToF detector

surrounded by a layer of
silicon micro-strip detectors

etector heightrTooen

a thin low-mass
superconducting solenoid coil—

D

a preshower detector based
on u-WELL technology

a dual read-out calorimeter

muon chambers inside the

magnet return yoke, based
on p-WELL technology

Yoke 100 cm

Preshower

DCH Rout = 200 cm

DCHRin = 35cm

CalRin = 250 cm

Cal Rout = 450 cm

Magnet z =+ 300 cm

- Flavor physics studies in high luminosity Z-pole run requires high performance PID up
to tens of GeV/c. Traditional technique, i.e., dE/dx, cannot meet such requirement.

- Cluster counting (dN/dx) in drift chamber is a breaking through PID technique, which is
proposed in both CEPC and FCC-ee
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lonization measurement in drift chamber
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beam s ~15 clusters/cm for
90% He + 10% iC,H,,

—— Primary electrons (MC truth)

—— Secondary electrons (MC truth)

Kolanoski, Wermes 2015

Primary ionization Total ionization = primary + secondary ionization | 200 0 400
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dE/dx and dN/dx measurements

dE/dx (traditional method):

+ Method: Total energy loss measurement by
iIntegrating the waveform

* Characteristics:
* Landau distributed =» Loss ~30% statistics
JEEEE A SR due to truncation

SO e e o * Large fluctuation from many sources




dE/dx and dN/dx measurements

dE/dx (traditional method):
* Method: Total energy loss measurement by
integrating the waveform
A VO  Characteristics:
SO0 UL OO O T « Landau distributed = Loss ~30% statistics
due to truncation
* Large fluctuation from many sources

@ Soomy T d00ms | A Chi o 406mV]
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High bandwidth & sampling rate electronics

" e dN/dx (“ideal” method):
53 * Method: Number of ionization cluster
5 measurement (require fast electronics)
: \‘J\{»\{\ * Characteristics:
1 * Poisson distributed
% 2o * Small fluctuation (resolution potentially

Improved by a factor of 2)



Particle separation power

* Important for physics: [ dN/dx truth
: 8 dE/dx truth
separation _ |ug—upg| _

e separation power = =
p p resolution (opq+0R)/2

* Typical K/mt separation power:
* dE/dx: > 20 up to 2...20 GeV/c
* dN/dx: > 30 up to 2...20 GeV/c

K/m separation power

011111[ 1 1 IR SR T S N |
1 10

Momentum (GeV/c)

dN/dx has much better PID power than dE/dx
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What Is dN/dx reconstruction?

Orange lines: Primary electrons (MC truth)
Green lines: Secondary electrons (MC truth)

GOAL: Determine the number of

w primary electrons in the waveform




dN/dx reconstruction (ll)

al Primary electrons (MC truth)
Step 1 T :zz:?eadn;;aletctmns (MC truth)
2-step algorithm
* Peak finding:
. | | | |  Detect peaks from both primary
and secondary electrons
al Primary electrons (MC truth)
Step 2 o Detacton mractrame e . i
s P Removed e * Clusterization:
;. * Remove secondary electrons from
E the detected peaks in step 1
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dN/dx reconstruction iIs challenging

pileup

Color code: cluster ID

are overlapped

Cluster 11 & 12 |

* Highly piled-up = Difficult
to efficiently detect pile-ups

* Noisy = Filtering could
(significantly) lose efficiency

* Overlapping between clusters
= Difficult to set a simple
“cut” for clusterization

Solution: Deep learning
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Software package and data samples

= Simulation package

m Garfield++-based simulation + data-driven digitization

= Data samples
® Simulated samples
m 0-20 GeV/c pions and kaons
® Experimental samples
m 180 GeV/c muons from CERN/H8 beam

Simulation package

Experimental measurement |
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LSTM @f) © @ LSTM-based peak finding:

n D * Can efficiently handle time-sequence
£ & o | _+ Waveform slices as the LSTM input
A %[g LT A * Binary classification of signals and
| o> noises
© ® ®
DGCNN DGCNN-based clusterization:

* Incorporate local information to learn
global properties
* Detected timings from the peak-
| finding as the DGCNN input
Dynamically connected o Binary node classification of primary
Graph by kNN
and secondary electrons
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Peak finding results

More efficient

——— pileup recovery
Primary electrons (MC truth)
H —— Secondary electrons (MC truth)
e Detected electrons

Table 2. The purity and efficiency comparison between LSTM-based
ML algorithm and traditional D2 algorithm for peak-finding.

Purity Efficiency
LSTM algorithm 0.8986 0.8820
D2 algorithm 0.8986 0.6827

Amplitude (a.u.)

100 200 300 400 500 600
Index
Primary electrons (MC truth)
H —— Secondary electrons (MC truth)
e Detected electrons

33 JA’I‘HILL Trad = The LSTM-based model is more powerful
N —— . than the traditional derivative-based
s W algorithm, especially for the pileup recovery
< 1

0,

100 200 300 400 500 600

Index 14
Traditional peak-finding: second derivative



Clusterization results

More accurate
secondary e-

r‘emoval Primary electrons (MC truth)
H —— Secondary electrons (MC truth) ROC Curve
e Detected primary electrons 104 — mL

~ 31 —— Trad
s ! [Jb ML
§ 5] 0.8 |
2 "
<14 E 0.6

01 a:; 0.4

100 200 300 400 500 600 a

Index
0.2
Primary electrons (MC truth)
H —— Secondary electrons (MC truth) 0.0
e Detected primary electrons 0_'0 0_'2 0_'4 0:6 O.IB l.lli}
3 False positive rate
3 Trad.
B2l » .
%2 \J m The DGCNN-based model is more powerful than
£ \J\{“\{\ the traditional peak-merge algorithm, as it can
H‘ remove the secondary electrons more accurate
0,
100 200 300 ndex 400 500 600 15

Traditional clusterization: adjacent-peak merge



PID performances with supervised models

dN/dx resolution

0.029 A

Reconstructed # of clusters distributions

—— Pion
o 7| | -
o] o] o] _ 0026 ] \\_’\,\
) - . * oo 1.2m track length
A A - A
S s ) S C 0.022 - \
T Dvemetmeeva
The reconstructed n distributions dN/dx resolutions for high momenta
are very well Gaussian-like pions/kaons are < 3%, which are

much better than typical dE/dx ~5°/36



PID performances with supervised models (ll)

K/mt separation power vs. momentum K/mt separation power @ 20 GeV/c

4.2 4| =—— ML
1m track length -—=- Trad = -
4.0 1
""""" Y I A Sanll I
=z 3.8 g
Ay
5 Scaled by VL
3.4 _g 2
«
$3.21 —e— ML (thr=0.26) 2,

3.4 e ML (thr=0.10) _ .
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(on +0x)/2

07 --e-- Trad : 04
50 7.5 10.0 125 15.0 17.5 20.0 0.0 0.5 1.0 1.5 2.0
Momentum (GeV/c) Track Length (m)
~10% improvement for ML (equivalent to Could achieve 30 for 1m track length. For
a detector with 20% larger radius) 1.2m track length (current CEPC baseline),

the separation is 3.2¢ 17



Domain adaptation for test beam data

= Challenges for real data
® Imperfect simulation
® Incomplete labels in real data

= Solution: Domain adaptation

= Transfer knowledge between
simulation and real data

Dataset Optimal transport Classification on transported samples
+ + t _Oo o [y}
7 Eue Q. 208 oof%g@
., F o+ ve0 dse
+ * T
e 14 Class1 'YO( )
0 % OO Class2
o o Y &0 Samples x , \ +_O Samples T., (x}) +0 Samples T, (x§)
D O ) Samples x¢ b i+ O Samplesx! -0 Samplesx!
;".' I Classifier onx} - : — Classifier on T, (x§)

Align data/MC samples with Optimal Transport

Loss for labeled samples
in source domain

\

i Dot (20 0) > 1 (551 () iy D v (loen ~ oI + e 32 (g(x:))))‘
i=1 i=1 ij

7 \

Cost of feature Cost of ‘label’
Loss for labeled differences between differences between

samples in target source and target source and target
domain (THIS WORK) ' Y :

Cost of joint feature-label
distribution for OT

Semi-supervised domain adaptation
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Model validation by pseudo data
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o
o

0.2 0.4 0.6 0.8
False positive rate (fake rate)

1.0

Numeric experiment with pseudo data in 2 domains

(simulation domain & data domain)

Model AUC | pAUC (FPR<0.1)

Ideal 0.926 0.812

Baseline 0.878 0.749 )

Unsupervised DA 0.895 0.769

Semi-supervised DA 0.912 0.793 )
" Note:

m |deal = Supervised model in data domain

m  Baseline = Supervised model in sim. domain

m  Unsupervised DA = Baseline + OT

m  Semi-supervised DA = Baseline + OT + semi-

supervised setup
® The OT and the semi-supervised loss improve the

results, and the performance of the semi-supervised
DA model is very close to the ideal model 19

Improve

Improve



Peak finding for test beam data

Single-waveform results between I
derivative alg. and DL alg.

Multi-waveform
results for samples
in different angles
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The algorithm is stable w.r.t. track length
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Two machine learning algorithms are developed for dN/dx reconstruction. In principle,
the method can be applied to similar feature extraction tasks in signal processing.

The supervised model has 10% improvement on K/pi separation w.r.t. traditional

algorithm. The situation could be similar for the semi-supervised domain adaptation
model.

When studied with the full-simulation samples using a supervised model, the PID
performance achieves < 3% K/pi resolution and > 3.2c0 K/pi separation for 1.2m track
length.

When studied with the test beam samples, the semi-supervised domain adaptation
model successfully transfer information from simulation and achieve stable
performances.
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Drift chamber with PID capability

The CEPC 4t concept

Advantage: Cost efficient, high density

Scint Glass

TV | chatienges: Light yeid, ransparency E— — A drift chamber with cluster counting

radiation hardness, massive production Advantage: the HCAL absorbers act as part .

of the magnet retum yoke, (dN/dx) is one of the gaseous detector

Chall - thi h not to affect the jet .
\ ~ resolltion (e.g. BMR); stabilty. options

— Key parameters:

Advantage: better %y reconstruction .

Challenges: minimum number of readout * FU” |ength 5800 mm

channels; compatible with PFA calorimeter; ° Barre| Coverage- |Cose| < O 85

maintain good jet resolution. . ) '

* Radius: 600 — 1800 mm
A Drift chamber * Support: 8x8 carbon fiber frame

that is optimized for PID
* Endcap: 20 mm Al plate
Advantage: Work at high luminosity Z runs

Challenges: sufficient PID power; thin enough * GaS mIXture: 90/10 He/IC4H10

not to affect the moment resolution. Need a
Muon+Yoke Si Tracker Si Vertex supplementary ToF detector
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Challenges of dN/dx measurement

Orange lines: Primary electrons (MC truth)

Green lines: Secondary electrons (MC truth)

N w
| |

Amplitude (a.u.)

=
.

pileup

noise

~Ns risetime

N

100

200

300

Index

400

500

600

Single pulse risetime ~ns, require fast electronics
* Bandwidth > 1 GHz
* Gain > 10
* Sampling rate > 1.5 GS/s
* Bit resolution > 12 bit

Signals are superimposed with noises and are
heavily piled-up in some regions, require
sophisticated reconstruction algorithm
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Traditional peak finding

pileup signals

Lol | -
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-] . . °
signals is detected
0.5 1
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Primary electrons (MC truth)
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0.8 —— First derivative
— Second derivative

0.6 -

0.4

. Some noises can
- ™1 also pass the

7 threshold

—~

T T T T
300 320 340 360 380 400
Index

Derivative-based peak finding

Take first and secondary derivatives
Require threshold passing

Challenges

Noises can pollute the signal
Signals are highly piled up
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Amplitude (a.u.)

2.0+

Traditional clusterization

14

Color code: cluster ID

T
100

T T T T
200 300 400 500
Index

Cluster 11 & 12
are overlapped

W Intra-cluster At

2000 Inter-cluster At

1750 +
1500 +

1250 4

Difficult to set a cut to

Entries

1000 1 discriminate electrons from
7501 intra and inter clusters
500
250 A
o 4] 2I5 5:2) 7I5 160 12I 5 l_’;O l]lr'5 260

Time [ns]

* Timing-based clusterization
* Merge adjacent peaks

* Challenges
* Electrons from different clusters can overlap
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Additional plots for domain adaptation

3.0
® Signal Candidates
—~ 2.5 A Noise Candidates
=3 [ ] —— MC Truth Times
m 2.0
% 1.51
> |
=
= 10|
a
g 0.5
0.0
0 100 200 300 400 500

Time (index)

Figure 1: An example of simulated waveform. The blue histogram is the wave-
form. The red solid circles are the signal peaks selected by the CWT algorithm.
The blue solid triangles are the noise peaks selected by requiring the 3 RMS
requirement. The orange lines indicate the electron signal times from MC truth

information.

3 (a) Source
2,
-~ 1
S
©
S 0_
)
g}
S
=
E‘ 3 (b) Target
<L
2_
1,
0_
0 200 400 600 800 1000

Time (index)

Figure 4: Waveform examples from the source sample (a) and the target sample
(b). The source waveforms are generated with a noise level of 10% and a pulse
risetime of 2 ns, while the target waveforms with a noise level of 20% and a

pulse risetime of 4 ns.
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