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Introduction

= Jets are collimated sprays of particles initiated by quarks or gluons

» Ubiquitous at hadron colliders, carry rich information

= Jet tagging: identifying the hard scattering particle that initiates the jet

* examples:
heavy flavor tagging (bottom/charm)
heavy resonance tagging (top/W/Z/Higgs)
quark/gluon discrimination
exotic jet tagging (displaced, 4-prong, ...)

» powerful tools for many new physics searches and standard model measurements
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https://link.springer.com/article/10.1140/epjc/s10052-020-7608-4
https://www.hep.ph.ic.ac.uk/seminars/slides/2018/181115_Chisholm_ATLAS_Hcc.pdf

Introduction

Various ML-based jet tagging algorithms have shown powerful performances

Supervised Learning: strong performance while limited by labeled dataset

We propose: learn jet representations through self-supervision using unlabeled dataset

Applications on jet tagging and anomaly detection

Outlook on future developments
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https://medium.com/@raosrinivas2580/supervised-versus-unsupervised-learning-8ef2b9411b81

Prevailing intuition: train with truth label

Supervised learning on simulated dataset



Supervised ML for Jet Tagging

= Leverage information in a jet to identify it

= Incredible development over the past few years

= All trained on simulated labeled dataset

Physics modelling, data-MC discrepancy
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https://arxiv.org/abs/2202.03772

Model Dependence of Jet Tagging

= What ML algorithms are learning: Physics or Generators?
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https://cds.cern.ch/record/2905758?ln=en

Model Dependence of Jet Tagging

= Can we always calibrate it back to data?

Larger uncertainty
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Learn from data directly?

The self-supervised paradigm



Self-supervised Learning

Training with no label required

* Could learn from data directly!

= Extract physics behind jets

Parton shower, hadronization, detector effects

Encourage algorithms to learn physics, rather than obsessed with
minor details

» Learn comprehensive jet representations suitable for
various applications

» Jet tagging, generation, reconstruction, anomaly detection
Self-supervised learning on jets

JetCLR, MPM, Omnilet-a
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https://arxiv.org/abs/2108.04253
https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2403.05618
https://arxiv.org/abs/2108.04253
https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2403.05618

Architectures of Self-supervised Learning

= Joint-Embedding Architecture (Contrastive) e mmm e NI
= Minimize/maximize distances between representations of E suf
similar/dissimilar jets -encoder y-encoder
= JetCLR é é
= Generative Architecture @—> decoder  =--+| D(79)
» Directly generate partial or full jets T !

x-encoder

= MPM, Omnilet-a

= Joint-Embedding Predictive Architecture

. . di - §. g
= Complete the representation of jets ®_’ precidior s | PGy

1 %

x-encoder y-encoder
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= Qur approach, P-JEPA, inspired by I-JEPA
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https://arxiv.org/abs/2108.04253
https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2403.05618
https://arxiv.org/abs/2301.08243
https://arxiv.org/abs/2301.08243

Bringing the Concept to Life

Implementation of the P-JEPA network



Particle Joint-Embedding Predictive Architecture
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Particle Masking

= Jets are consist of particles
= Own features: kinematics, charge, PID, track info

» Correlation between each other: angular distance, invariant mass...

= Masking sets the task for training
= Randomly masking ~30% of particlesin a jet

* Remaining particles provide “context” information for prediction

= Learning jet representations through predicting masked
particles’ representations



Encoders and Predictor

= Particle Attention Block™* as fundamental building block

» Self-Attention & Pair-wise features
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» Accept all kinds of particle features predictor
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https://arxiv.org/abs/2202.03772

Particle Representation Predicting

predictor C]_

= Predictor: solve the task set by masking ¢

* Predict masked particles’ representations using contextand
auxiliary info (mask token)

-0

= Smooth L1 loss

predictor D_

9o

= Measure how close the predicted particles are to the truthin
the representation space

= Encoder and predictor are trained simultaneously Smooth L1 Loss

= Aim to learn meaningful jet representation

Q0



Does it work?

Experiments and Preliminary Results



Pre-training and Transfer Learning

= Performance evaluated with pre-training + transfer learning pipeline

= Foundation P-JEPA model pre-trained on “data”
= From JetClass-Il: anti-k;(R=0.8), DELPHES simulation and realistic pileup effect (mu=50)

* Composition emulated the real data (QCD >70% of training data, others follow cross-section)
= Transfer learning to specific task
» Different downstream models share the same encoder (jet representation)
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https://arxiv.org/abs/2405.12972

Application: Jet Tagging

» Few-shot transfer learning for jet tagging

» 10-class* jet classification on JetClass-|

0.9 : S : X-axis:
—4— Fixed Training dataset size
Fine-tuned .
081 —4— From scratch Y-axis:
Fraction of correctly labeled jet in all 10
classes
> 07 Fixed:
° Encoder fixed when jet tagging task is trained
o
< 061 Fine-tuned:
Encoder allowed slightly updating when
o | tagging task is trained
From scratch:
Identical network architecture but training
041 | | | | started with randomly initialized weights.
103 104 10° 108 10/

Total labelled training samples

* H(bb), H(cc), H(gg), H(4q), H(lvqq'), t(bqq'), t(blv), W(qq'), Z(qq"), QCD
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Application: Jet Tagging

» Few-shot transfer learning for jet tagging

» 10-class jet classification on JetClass-|

0.9 - ——
—— Fixed
Fine-tuned *From scratch training takes over when the
0.81 —$— From scratch labeled dataset is large enough
» Converge to fully-supervised jet
tagging
> 0.7
g *Pre-training + transfer learning gives a significant
< 0.6 performance boost with very limited number of
labeled samples (as low as 100 jet/class)!
» Benefit from jet representation learned via
037 self-supervised learning
0.4 -

103 104 10° 10° 107
Total labelled training samples
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Application: Jet Tagging

» Few-shot transfer learning for jet tagging

» 10-class jet classification on JetClass-|

0.9 . ’ — ’ How good the result is?
+ :zl)(edt g ———— The SOTA Of supervised mOdeI |S 0.861
ine-tune . .
1
05 —— From scratch (trained on 100M jets)
This is current SOTA of self-supervised jet tagging
.07
O Working on further reducing the gap
5
o)
< 0.6-
0.5 -
0.4 -
‘106 104 105 108 107

Total labelled training samples
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Application: Anomaly Detection

» Test the effectiveness of pre-trained jet representations on anomaly detection

= Share same framework of AD study in Sophon, originated from CWola

= Using the output of P-JEPA encoder as input to train the AD classifier
» AD Significance enhanced using P-JEPA
* More visible after transfer learning on labeled jets

Initial significance Zl,, =

20,0 ~—s 0}5 . ,]}0 2;0 | | 5;0 o Working on further reducing the gap

| —¢— IAD: high-level input between supervised way (e.g. Sophon)
N 17.5 1 —4— IAD: p-jepa fine-tune
—&¢— IAD: p-jepa few-shot
15.0 4 —¢— IAD: p-jepa

[ 56 limit

P-JEPA + finetune (10M)

P-JEPA + few-shot (1k)
P-JEPA

Cut on high level input
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Summary & Outlook

Proposed the P-JEPA network for self-supervised learning on jets

Performance tested on jet tagging and anomaly detection

Effective jet representations can be learned from unlabeled dataset

Outlook of further development and application: stay tuned!
= Uncertainty-free or calibration-free jet tagging (ultimate goal though still long way to go)
= Jet tagging at front-end: training on (unlimited) data stream; in-situ tagging on trigger level

= MC-free anomaly detection (no MC used in full workflow, learn and inference all on data)



