

Learning powerful jet representations via self-supervision

Qibin Liu, Shudong Wang, Congqiao Li, Huilin Qu

Quantum Computing & Machine Learning Workshop 2024, Changchun, China

7 August, 2024

Introduction

- Jets are collimated sprays of particles initiated by quarks or gluons
 - Ubiquitous at hadron colliders, carry rich information
- Jet tagging: identifying the hard scattering particle that initiates the jet
 - examples:
 - heavy flavor tagging (bottom/charm) •
 - heavy resonance tagging (top/W/Z/Higgs) •
 - quark/gluon discrimination •
 - exotic jet tagging (displaced, 4-prong, ...) •
 - powerful tools for many new physics searches and standard model measurements

2

Introduction

- Various ML-based jet tagging algorithms have shown powerful performances
- Supervised Learning: strong performance while limited by labeled dataset
- We propose: learn jet representations through self-supervision using unlabeled dataset
- Applications on jet tagging and anomaly detection
- Outlook on future developments

Plot modified from @Srinivas Rao

Prevailing intuition: train with truth label

Supervised learning on simulated dataset

Supervised ML for Jet Tagging

- Leverage information in a jet to identify it
- Incredible development over the past few years
 - EFN/PFN, ParticleNet, ParticleTransformer, PELICAN, OmniLearn, Sophon ...
- All trained on simulated labeled dataset
 - Physics modelling, data-MC discrepancy

Plot credit: 2202.03772

Model Dependence of Jet Tagging

• What ML algorithms are learning: Physics or Generators?

Larger uncertainty

Model Dependence of Jet Tagging

Can we always calibrate it back to data?

Larger uncertainty

Learn from data directly?

The self-supervised paradigm

Self-supervised Learning

- Training with no label required
 - Could learn from data directly!
- Extract physics behind jets
 - Parton shower, hadronization, detector effects,...
 - Encourage algorithms to learn physics, rather than obsessed with minor details
- Learn comprehensive jet representations suitable for various applications
 - Jet tagging, generation, reconstruction, anomaly detection...
- Self-supervised learning on jets
 - <u>JetCLR</u>, <u>MPM</u>, <u>OmniJet-α</u> ...

Architectures of Self-supervised Learning

- Joint-Embedding Architecture (Contrastive)
 - Minimize/maximize distances between representations of similar/dissimilar jets
 - JetCLR
- Generative Architecture
 - Directly generate partial or full jets
 - <u>MPM</u>, <u>OmniJet-α</u>
- Joint-Embedding Predictive Architecture
 - Complete the representation of jets
 - Our approach, P-JEPA, inspired by I-JEPA

Plot credit: 2301.08243

Bringing the Concept to Life

Implementation of the P-JEPA network

Particle Joint-Embedding Predictive Architecture

Particle Masking

- Jets are consist of particles
 - Own features: kinematics, charge, PID, track info
 - Correlation between each other: angular distance, invariant mass...
- Masking sets the task for training
 - Randomly masking ~30% of particles in a jet
 - Remaining particles provide "context" information for prediction
- Learning jet representations through predicting masked particles' representations

Encoders and Predictor

- Particle Attention Block* as fundamental building block
 - Self-Attention & Pair-wise features
 - Accept all kinds of particle features
- Context encoder and target encoder share the same architecture
 - Weights of target encoder are updated via an exponential moving average (EMA) of the context encoder weights
- Predictor is narrower and shallower than encoders

* From: Particle Transformer

context

encoder

fθ

EMA of weights

...

predictor $g_{oldsymbol{\phi}}$

Particle Representation Predicting

- Predictor: solve the task set by masking
 - Predict masked particles' representations using context and auxiliary info (mask token)
- Smooth L1 loss
 - Measure how close the predicted particles are to the truth in the representation space
- Encoder and predictor are trained simultaneously
 - Aim to learn meaningful jet representation

Does it work?

Experiments and Preliminary Results

Pre-training and Transfer Learning

- Performance evaluated with pre-training + transfer learning pipeline
- Foundation P-JEPA model pre-trained on "data"
 - From <u>JetClass-II</u>: anti-k_t(R=0.8), DELPHES simulation and realistic pileup effect (mu=50)
 - Composition emulated the real data (QCD >70% of training data, others follow cross-section)
- Transfer learning to specific task
 - Different downstream models share the same encoder (jet representation)

Pre-train on "data"

Transfer learning on MC

Application: Jet Tagging

- Few-shot transfer learning for jet tagging
 - 10-class* jet classification on <u>JetClass-I</u>

X-axis:

Training dataset size

Y-axis:

Fraction of correctly labeled jet in all 10 classes

Fixed:

Encoder fixed when jet tagging task is trained

Fine-tuned:

Encoder allowed slightly updating when tagging task is trained

From scratch:

Identical network architecture but training started with randomly initialized weights.

Application: Jet Tagging

- Few-shot transfer learning for jet tagging
 - 10-class jet classification on JetClass-I

Application: Jet Tagging

- Few-shot transfer learning for jet tagging
 - 10-class jet classification on JetClass-I

How good the result is?

The SOTA of **supervised** model is 0.861 (trained on 100M jets)

This is current SOTA of **self-supervised** jet tagging

Working on further reducing the gap

Application: Anomaly Detection

- Test the effectiveness of pre-trained jet representations on anomaly detection
 - Share same framework of AD study in <u>Sophon</u>, originated from <u>CWoLa</u>
- Using the output of P-JEPA encoder as input to train the AD classifier
 - AD Significance enhanced using P-JEPA

2024/8/7

More visible after transfer learning on labeled jets

Summary & Outlook

- Proposed the P-JEPA network for self-supervised learning on jets
- Performance tested on jet tagging and anomaly detection
- Effective jet representations can be learned from unlabeled dataset

- Outlook of further development and application: stay tuned!
 - Uncertainty-free or calibration-free jet tagging (ultimate goal though still long way to go)
 - Jet tagging at front-end: training on (unlimited) data stream; in-situ tagging on trigger level
 - MC-free anomaly detection (no MC used in full workflow, learn and inference all on data)