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Motivation: 
1, Quarks and gluons carry color charge and can not travel freely. Once 
generated in high-energy collisions, quarks, and gluon would fragment into 
numerous particles called jets. 
2, Exploring the application of quantum technologies to jet clustering is key to 
fostering innovation for both sides. 

Contents: 
1, MaxCut problem and mapping jet clustering to maxCut 
2, Adiabatic Quantum Computing (AQC) and from AQC to Quantum 
Approximate Optimization Algorithm (QAOA)  
3, the performance of QAOA on jet clustering 
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MaxCut problem

undirected graph 

: set of vertices

: set of edges


: the weight of the edge 


goal: partition the graph vertices into two complementary subsets to 
maximize the total weight of edges with two vertices belong to two 

subsets 

G = (V, E)
V
E
wij > 0 (ij) ∈ E

C(x) =
|V|

∑
i,j=1

wijxi(1 − xj)
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A collision event can be represented as a graph

particles as vertices 
the angle of two particles as the edge weight 
only the k leading large edges are retained (k-regular graph)

 with 30 particlese+e− → ZH → vν̄ss̄
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Adiabatic Quantum Computing (AQC)  

• the driver Hamiltonian ( ) encodes some quantum state that is 

easy to prepare its ground state    


• the problem Hamiltonian ( ) encodes a quantum state we are 

interested in as its ground state


• the idea underlines the AQC: start with a ground state that is easy 
to prepare and wish to end up with the quantum state we are 
interested in. 


• This transition is accomplished via the adiabatic theorem, which 
states that a system in the ground state of some Hamiltonian will 
remain in the ground state if the Hamiltonian is changed slowly 
enough.

HD

HC
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the process of AQC :  

1, define the Hamiltonian:  and let our quantum system 

evolve under it, .

2, We discretize  into intervals  small enough that the Hamiltonian is 
approximately constant over each interval.

3, Let  represent time evolution from time a to time b





      

Thus we can approximate AQC by repeatedly letting the system evolve under  for 
some time  and then  for some time .

H(t) = (1 − s(t))HD + s(t)HC

U(t) = τe
−i
h ∫t

o H(T)dT

U(T ) Δt

U(b, a)

U(T,0) = U(T, T − Δt)U(T − Δt, T − 2Δt) . . . U(Δt,0) =
P

∏
j=1

U( jΔt, ( j − 1)Δt) ≈
P

∏
j=1

e−iH( jΔt)Δt

U(T,0) ≈
P

∏
j=1

e−i(1−s( jΔt))HDΔte−is( jΔt)HCΔt =
P

∏
j=1

e−iβPHDe−iγPHC =
P

∏
j=1

̂UD(βj)ÛC(γj)

HC

γj HD βj
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1. 


2.  :           


3.  : 


4. Initialize the system in the state 


5. Construct the circuit (ansatz) by applying the unitaries  and  repeatedly P times


6. The final state output by the circuit is 


7. The expectation value  with respect to the state  is calculated through repeated measurements (1024 

times in this analysis) of the final state on the computational basis, 


8. A classical optimization algorithm is employed to iteratively update the parameters  and  to find the optimal set of 

parameters  such that the expectation value  is maximized.

U(T,0) ≈
P

∏
j=1

e−iβPHDe−iγPHC =
P

∏
j=1

̂UD(βj)ÛC(γj)

HD B =
n

∑
j=1

σ x
j

HC C =
1
2 ∑

(i, j)∈E

Wij(I − σz
i σz

j )

|s⟩ = | + ⟩⊗n = 1

2n
∑x∈(0,1)n |x⟩

ÛC(γj) ÛD(βj)

|ψP(γ, β)⟩ = ÛD(βP)ÛC(γP) . . . ÛD(β1)ÛC(γ1) |s⟩

ĤC |ψP(γ, β)⟩

FP(γ, β) = ⟨ψP(γ, β) | ĤC |ψP(γ, β)⟩

γ β

(γ*, β*) FP(γ, β)

QAOA for MaxCut problem



8

samples and the criteria of jet clustering performance

4000  with 30 particlese+e− → ZH → vν̄ss̄

criterion is α = α1 + α2

α1 α2

quark 1

quark 2jet 1

jet 2
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jet clustering performace v.s. QAOA depth (P)

arXiv:1811.08419

Phys. Rev. X 10, 021067

approximation ratio (r) : the probability of finding the ground state 

With more layers, QAOA better approximates the continuous adiabatic process, where 
the system evolves slowly enough to stay in the ground state of the Hamiltonian, 
leading to higher probabilities of finding the optimal solution.

A B

k = 6
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jet clustering performance v.s. k (k-regular graph)

A higher k-value signifies that a 
node is linked to more nodes within 
the graph, indicating

a more complex complied quantum 
circuit. 

Conversely, a smaller k-value may 
result in suboptimal performance 
due to inadequate linkage between 
particles belonging to distinct jets, 
thus failing to accurately cluster 
particles from separate jet.

depth = 3
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compare jet clustering performance obtained by QAOA, 
 and k-Meanse+e−kt

This comparison highlights the potential of the QAOA in the jet clustering problem.

depth=3

k=7
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the Baihua quantum processor in BAQIS

• 123 operational qubits

• relaxation time  of 73.994 

• dephasing time  of 29.02 

• fidelity of single-qubit gate 99.9%

• fidelity of two-qubit gates (CZ) 98.9%

T1 us
T*2 us
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 with 6 particles 
compiled QAOA circuit on Baihua processor reaches a depth of 26 with 
34 CNOT gates and 27 single-qubit gates. 

e+e− → ZH → vν̄ss̄

Conduct on the Baihua processor
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For this small-sized problem, the quantum hardware can achieve similar 
performance to a noiseless quantum computer simulator.

180  with 6 particlese+e− → ZH → vν̄ss̄



Summary 
• The rapid development of quantum algorithms and hardware devices 

enables the execution of small-scale but representative applications on 
quantum computers. 

• We apply a quantum combinatorial optimization algorithm, QAOA, on jet 
clustering. With small-sized Higgs->ss samples, QAOA running on 
quantum simulator and quantum hardware can reach the similar 
performance to classical jet clustering algorithm, ee_kt. 

• The current generation of quantum processors faces several bottlenecks,  
including qubit coherence times, error rates, and connectivity, that must 
be overcome to realize their full potential.

15



Many thanks !
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Backup



Electron

Positron

Electron

Positron

The layout of the Circular Electron  
Positron Collider. The accelerated   

and  would collision at the  
Interaction Point (IP).

e+

e−

The collision of  and  can generate  
quarks, gluons, and leptons.

e+ e−

(a)

(b) (c)
With jet clustering and other  
techniques, the related physics 
analyses can be performed.

(f)

The quarks and gluons would  
immediately transform into 
collimated particle sprays known 
as jets.

(d)

See the event as a graph, 
where particles as nodes and  
angle of two particles as edge.

jet clustering with QAOA (e)

compiled 
quantum 

circuit

(g)



Introduction of adiabatic quantum computation and the evolution from 

AQC to QAOA 

AQC : a theoretical framework 

components : 1, the driver Hamiltonian ( ) encodes some quantum state that is easy to 
prepares its ground state    2, the problem Hamiltonian ( ) encodes a quantum state we are interested in 
as its ground state 
the idea underline the AQC : we start with a ground state that is easy to prepare and wish to end up with the quantum state we are interested in.  
This transition is accomplished via the adiabatic theorem, which states that a system in the ground state of some Hamiltonian will remain in the 
ground state if the Hamiltonian is changed slowly enough. 

the process of AQC : 1, define the Hamiltonian:  and let our 

quantum system evolve under it. Unfortunately, time evolution under this time-dependent 

Hamiltonian involves very messy integral that is hard to evaluate :  

                                                 2, We discretize  into intervals of  small enough that the 
Hamiltonian is approximately constant over each interval. 
                                                 3, Let  represent time evolution from time a to time b 

 

since   we get       

Thus we can approximate AQC by repeatedly letting the system evolve under  for some 

 and then  for some small    

HD

HP

H(t) = (1 − s(t))HD + s(t)HP

U(t) = τe
−i
h ∫t

o H(T )dT

U(T ) Δt

U(b, a)

U(T,0) = U(T, T − Δt)U(T − Δt, T − 2Δt) . . . U(Δt,0) =
P

∏
j=1

U( jΔt, ( j − 1)Δt) ≈
P

∏
j=1

e−iH( jΔt)Δt

H( jΔt) = (1 − s( jΔt))HD + s( jΔt)HP U(T,0) ≈
P

∏
j=1

e−i(1−s( jΔt))HDΔte−is( jΔt)HPΔt

HP

s( jΔt)Δt HD (1 − s( jΔt))Δt
19



(a) (c)(b)

(d)

(e)



initial state

model prediction

cost functioninput outputconstruct

     features of samples                           

quantum circuit final state

classification 
or 

regression 

y’

|ψ(0)⟩ |ψ(θ)⟩

f(y, y’)

E(θ) = ⟨ψ(θ) |H |ψ(θ)⟩

ML

VQA

VQA  v.s.  ML
parameters update
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