Soft - Collinear Effective Theory (SCET) & Power Corrections.

- 2025/02 @ Fudan. O. Motivation 1) EFT - modern tool to study scale - seperation in QFT m> reduce multi-scale problems to a sequence of single-scale problems my systematically resum large logs of scale ratios via renormalization -group equations (RGE). Even for some very complicated cases ; NGLS, SUS, ivep logs, etc. remark (rmh) = scale seperation is not only important for reducing multi-scale complexity, but also a necessity in reality with strongly interacting theories, e.g., QCD. (Leading to factorization) Gev Mtop ~ 175 75, t... λ = E/Λ << 1 Mu ~ 100 $= \lambda^{\circ} \cdot H^{\prime \rho} J_{1}^{\prime \rho} \otimes \cdots J_{n}^{\prime \rho} \otimes S^{\prime \rho}$ N6~4 + X · [H, MP J, MP @ -- @ J MP @ SMP + ...] : mj... 4 Hi, Ji, Si : a, expansion +naco (Why Soft-Collinear Effective Theory (SCET) ?) useful: **I)** SCET = EFT for high-energy processes involving light particles. @ LHC like collidors, full of energetic (almost) massless particles (jets) as a systemmatic tool to study x, r, jets ... B - physics : a lot factorization formulae collider physics : i) cutting - edge precision preditions renormalization e.J., Dhull - Yan (Like) Becher, Neubert, Youg ... (anomalous dimensions) ttbar Li, Shao, Young, Zhu ... event-shapes pecaj, Scott, Wang, Yang ... EEC Zhu etc, ... *Hesummation* Gao, Li, 2hn ... (solve RGEs) ii) very complicated logarithms ; iii) power corrections ... e.g. non-global log (NGL) Mome, Stewart, Zhy, etc. super-leading 125 (SLL) ... Benefe ... Wang, etc. ... Lin Neubert, XW, etc ... Becher, Neubert, Shao, etc... iv) a lot of other fields : nuclear physics, DM physics ...

2)	SCET is the collinear and soft version of QLD.
	SCET is the collinear and soft version of QCD. where the investigate IR structure of QCD.
	e-g., Becher, Neubert + (Yang and etc.) 109 - 112
3)	SCET formalism is not restricted to QCD, but also for gravity for example.
	Benebe, Hager, Szafrin '20-'22
4)	SCET is (kind of) Minkowski generalization of Operator product expansion (OPE) which provides rigorous framework for an expansion in powers and logarithms
	for Euclidean processes.
	It is closely related to method of regions (Benete, Smirnow).
	(for Feynman integrals)
	conventional EFTs : based on (Enclidean) OPE
	integrate out heavy particles $(\Delta x \sim \frac{1}{M})$
	SCET : bused on method of regions
	Sintegrate out "virtuality" ligorously
	truk: Method of region for Feynman integrals has not been proven so four as I understand, but it always work!
	A Similar tochaigue extransion by enderman which we the
	A similar technique, expansion by Subgraph, which works for Enclidean FIS, can be proven rigorously.
	see e.g., " Applied asymptotic expansions in momenta and masses" by V.A. Smirhov.
	Method of region has received a 10t attention recently, and has a lot of physess bused on Newton polytope. Smirnov's Gardi, Ma and etc
	Due to the Minkowski nature, SCET, as an EFT, is complicated and "subtle". In particular, SCET involves particles with process of the physical arge components. May leads to mo-locality on right-comes, even at leading power!
	a lot of good references on SCET: position { 1) Introduction to soft-collinear Effective Theory, ca book by Becher, Broggio and Ferroglia, 1410. [392 2) 1802 04310 Becher
	12) 1803.04310, Becher mom. space 3) Lectures on Soft-Collinear Effective Theory, by Stewart.
	This lecture will only briefly review some busics of SCET and then use some concrete examples to have a look on some aspects of frontier of power corrections in SCET.

Some important comments :

Integrating out high-frequey (virtuality...) modes results in Wilson coefficients C:(A).

- 1) If the theory above A is perturbative, Ci(A) can be derived from a perturbative "matching procedure" by requiring a finite set of matrix elements in the full theory & in the EFT to agree up to certain higher-order power corrections, which are neglected in the EFT.
 - e-g. SCET \longleftrightarrow QCD.
- 2) If the full theory is unknown, eite SMEFT, then one theats (i(A) as unknown parameters, which must be extracted from experiments!

Outline

- I. A brief Intro. of SCET - Method of Region
 - Basic Ingredients in SCET
 - Construct LP LSCET
 - Matching of 2-jet operator
 - Soft Decoupling
- I. NLP Factorization of gg -> h (h -> rr) by b-quark
 - Region Analysis
 - Henristic pictures of Involved Operators
 - Endpoint Divergence & the Way Out

II. Renormalization at NLP and Anomalous Dimensions

- Soft-quark function in h-> m
 - in gg-sh
 - in Drell-Yan

Consider etc.
$$\rightarrow 2$$
 jets:
Image every class jet axis,
with small invertant:
 $P_{J_{1}}^{*} := m_{J_{2}}^{*} << 5$.
 $P_{J_{1}}^{*} := (E_{1}, 0, 0, 0, E_{1}^{*} - m_{J_{1}}^{*}), P_{J_{1}}^{*} = (E_{2}, 0, 0, \sqrt{E_{1}^{*} - m_{J_{1}}^{*}}); E_{2} \times \frac{E_{2}}{2} A m_{J_{1}}^{*} << 5$.
 R_{1}^{*} where to integrate sut for such a Minkoloski process?
Introduce small parameter: ($m_{J_{1}} \sim m_{J_{2}}^{*} := m_{J}$)
 $\lambda := \frac{m_{J}}{45} << 1$
Define two reference dignet-like vectors along the jet directions:
 $j m_{1}^{*} = (1, 0, 0, 1) = \bar{n}_{1}^{m}$ $n_{1}^{*} = 0$ $n_{1}^{*} n_{2} = 3$
 $j m_{1}^{*} = (1, 0, 0, -1) = \bar{n}_{1}^{m}$
Decompose a vector in the diglet-line basis:
 $ph = n_{1}p \frac{m_{1}}{2} + n_{2}p \frac{m_{1}}{2} + p_{1}^{m}$
 $P_{1} = n_{1}p \frac{m_{1}}{2} + n_{2}p \frac{m_{1}}{2} + p_{1}^{m}$
 $P_{2} = n_{1}p \frac{m_{1}}{2} + n_{2}p \frac{m_{1}}{2} + p_{1}^{m}$
For bring, we use $n = n_{1}$, $\bar{n} = n_{1}$ for the $n_{1} = 0$
 $n_{1}p \frac{\pi}{2} + \bar{n} p \frac{\pi}{2} + p_{1}^{m}$
 $m_{1}p \frac{\pi}{2} + \bar{n} p \frac{\pi}{2} + p_{2}^{m}$
 $m_{1}p \frac{\pi}{2} = 0$.
Similarly, $n \cdot p_{1} \sim N^{*} A^{*} A^{$

These active partitles have much less virtuality trans hard modes:

$$P_{n} \sim (N, N', N) \text{ If } is (N', N', N) \text{ If hard?}$$
Answer to Q: integrate out those hard function times in virtual exchange !
and the EFT 11.0.115 model for control for any a control extension.
But this is NOT the labor start for the start a control complete the start of the normal form.
But this is NOT the labor start is control for the labor form function.
But this is NOT the labor start of the normal form function.
But this plant, we consider the classical example the start to the normal process of one loop : (off-shall) maximum Suddew form function.
Proceeds are loop : (off-shall) maximum Suddew form function.
Proceeds are loop : (off-shall) maximum Suddew form function.
Proceeds are loop : (off-shall) maximum Suddew form function.
Proceeds are loop : (off-shall) maximum Suddew form function.
Proceeds are loop : (off-shall) maximum Suddew form function.
Proceeds are loop : (off-shall) maximum Suddew form function.
Proceeds are loop : (off-shall) maximum Suddew form function.
Proceeds are loop : (off-shall) maximum Suddew form function.
Proceeds are loop : (off-shall) maximum Suddew form function.
Proceeds are loop : (off-shall) maximum Suddew form function.
Proceeds are loop : (off-shall) is SR finite. If is obviously use finite: 1
Proceeds off-shall new, the function (function) (

1. Region Analysis

reproduce F by method of region : decompose the integral into a sum of simpler integrals depending on one single scale!

Method of Region : DR is necessary !

$$\int d^{q} \mathcal{L} \longrightarrow \int d^{p} \mathcal{L} \qquad D = D_{ine} - 2\mathcal{E}$$

D Linearity

$$\int \frac{d^{p}r}{ix^{p}i\epsilon} \left(\alpha f(\epsilon) + b f(\epsilon) \right) = \alpha \int \frac{d^{p}r}{ix^{p}i\epsilon} f(\epsilon) + b \int \frac{d^{p}r}{ix^{p}i\epsilon} f(\epsilon)$$

$$\int \frac{d^{p}\ell}{i\pi^{p}l^{2}} \int (\ell^{p} + p) = \int \frac{d^{p}\ell}{i\pi^{p}l^{2}} \int (\ell^{p} + p)$$

$$\int \frac{d^{0}\ell}{i\mathcal{R}^{0|k}} f(\lambda \ell) = \lambda^{-0} \int \frac{d^{0}\ell}{i\mathcal{R}^{0|k}} f(\ell)$$

() normalization

$$\int \frac{d^{2}\ell}{i\pi^{2}l^{4}} \exp(-\ell^{2}) = 1.$$

Very important consequence:

$$\int \frac{d^{p}\ell}{i\pi^{p}l^{2}} (-\ell^{3})^{\alpha} = \begin{cases} (-1)^{\frac{p}{2}} \Gamma(1-\frac{p}{2}), & \text{if } \frac{p}{2} + \alpha = 0, \\ 0, & \text{otherwise}. \end{cases}$$
exercise 1: prove the above from axioms of DR. Scaless integral

$$useric-hauged -ceptionenty: $\ell \sim (1, \lambda, N), \ell \sim N$
hand $\ell \in \mathcal{C}(1, 1), \ell \sim N$
if) becoming, idensify germeetrically ...
 Θ in each region, Taylor expanded propagators.
 Θ perform the expanded investorial in each region in
the field space of loop momenter !
This is ensured by DR : overlap parts are Scaless !
 $Ou the Sudabou Example$
 $P H M$
 $\ell + p_1 r = \ell + n \cdot p_1 \pi \cdot q + 0(n)$
 $\ell + p_1 r = \ell + n \cdot p_1 \pi \cdot q + 0(n)$
 $\ell + p_1 r = \ell + n \cdot p_1 \pi \cdot q + 0(n)$
 $\ell + p_1 r = \ell^{-1} + n \cdot p_1 \pi \cdot q + 0(n)$
 $\ell = \ell^{-1} h^{12} G^{1} \int_{12}^{12} \frac{d}{(q + i + i)(d + \pi p_1 n + i)(d + n p_1 n + i)} + 0(n)$
 $= \ell^{-1} f_1 + \ell f_1 \frac{d}{(q + 1)} \int_{12}^{12} \frac{d}{(q + i + i)(d + \pi p_1 n + i)(d + n p_1 n + i)} + 0(n)$
 $= \ell^{-1} f_1 + \ell f_1 \frac{d}{(q + 1)} \int_{12}^{12} \frac{d}{(q + i + 1)(q + 1)} + \frac{d}{(q + 1)(q + 1)(q + 1)} + \frac{d}{(q + 1)(q + 1)} + \frac{d}{(q + 1)(q + 1)(q + 1)} + \frac{d}{(q + 1)(q + 1)(q + 1)(q + 1)} + \frac{d}{(q + 1)(q +$$$

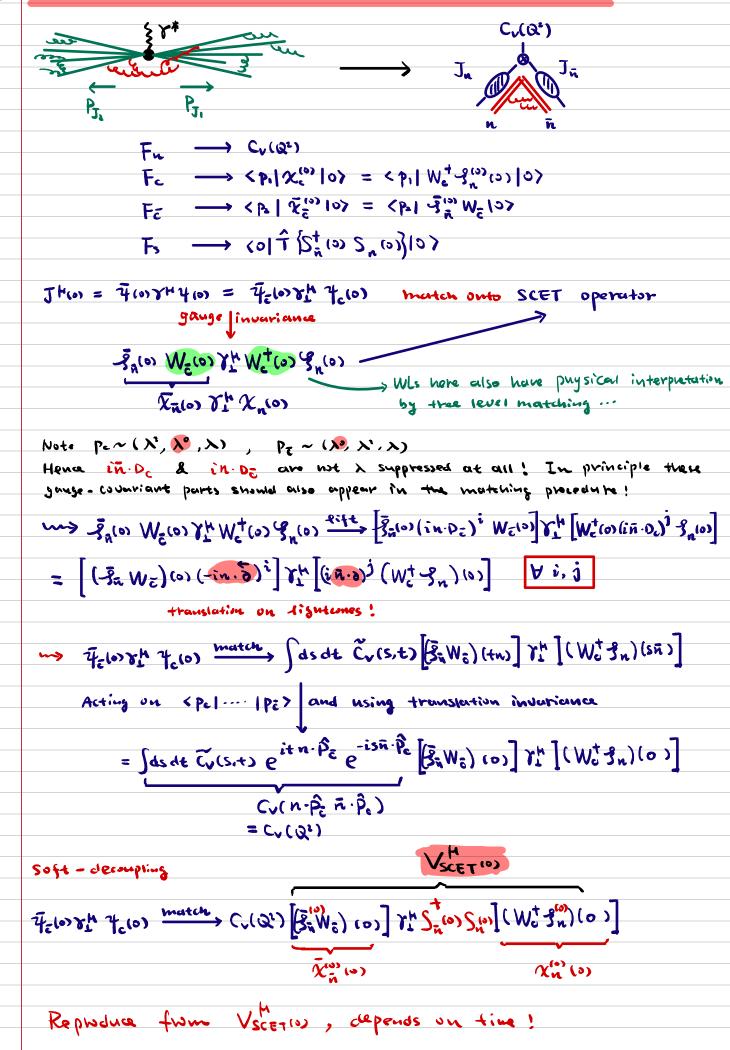
$$\begin{split} & 0 \text{ ansi-collinear region : } \mathcal{X} \sim (\lambda^{*}, \lambda^{*}, \lambda) \in \mathbb{Z} \ \\ & \text{Similar } F_{c} = e^{\text{Sig}} \text{Tars} \left[-\frac{1}{c^{*}} - \frac{1}{c} \ln \frac{1}{p^{*}} - \frac{1}{c} \ln \frac{1}{p^{*}} - \frac{\pi}{c^{*}} + o(c_{1}) \right] + O(\lambda^{*}) \\ & \text{clearly } F_{u} + F_{c} + F_{c} = e^{\text{Sig}} \text{Tars} \left[-\frac{1}{b^{*}} - \frac{1}{c} \ln \frac{1}{p^{*}} + \frac{1}{c} \ln \frac{1}{p^{*}} - \frac{1}{c} \ln \frac{1}{p^{*}} - \frac{1}{c} \ln \frac{1}{p^{*}} + \frac{1}{c} \ln \frac{1}{c} \ln \frac{1}{c} + \frac{1}{c} \ln \frac{1}{c}$$

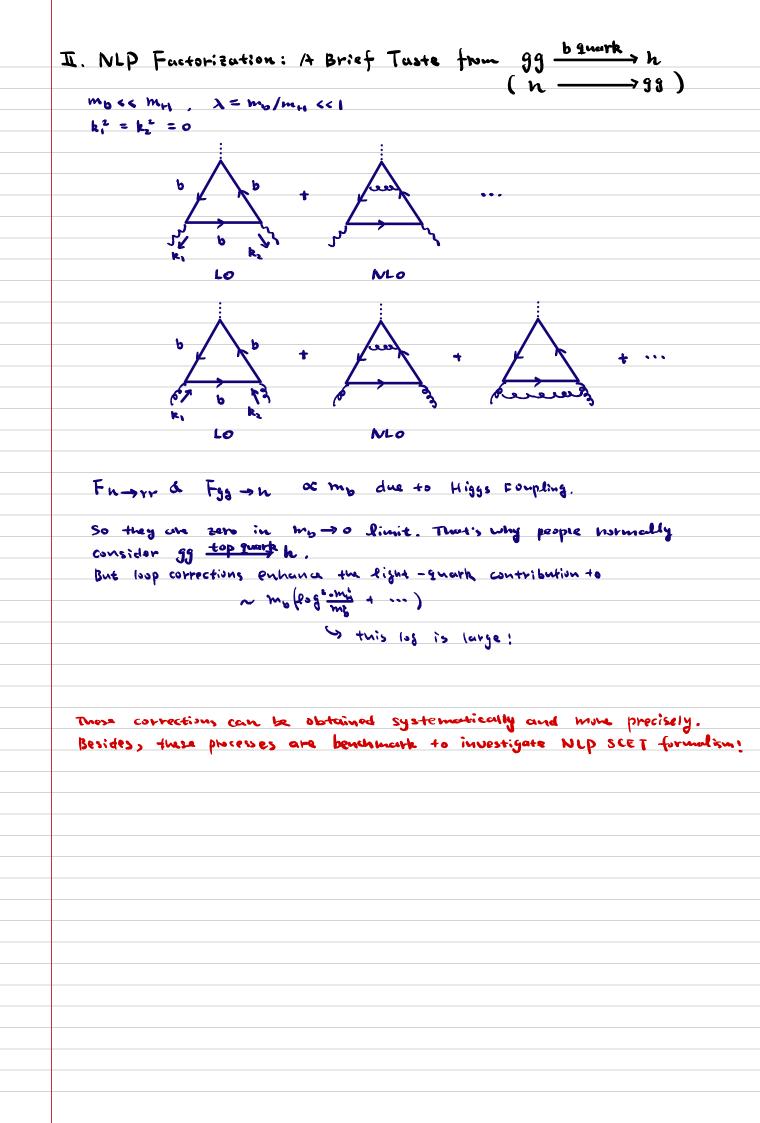
(20) field
$$\rightarrow \phi = \phi_{ns} + \phi_{s} + \phi_{c} + \phi_{c} + \cdots$$
 (if exist)
based on the scaling behavior of Fautier (momentum) modes)
For boning, consider d.o.f's = 10, c, z , i.e., $\phi = \phi_{ns} + \phi_{c} + \phi_{c}$.
(2: where is ϕ_{n} ?
momentum conservation allows these interactions:
 $\phi_{c} \cdots \phi_{c} \phi_{n} \cdots \phi_{n} \phi_{c} \cdots \phi_{c} \phi_{n} \cdots \phi_{n}$
 $h_{n,22}$ $h_{n,23}$, h_{n

We can assign power counting for fields as well.

$$\langle olf | P_{L}(x) \overline{P_{L}(x)} | o \rangle = \int \frac{dP_{L}}{dxy} e^{-ip_{L} \cdot x} \frac{iK}{P_{L} \cdot x \cdot o}$$

 $X = X^{2} + (X \cdot X \cdot X)$
 P_{L} is not homogeneous in $X + a > p_{L} = (X \cdot X \cdot X)$
 P_{L} is not homogeneous in $X + a > p_{L} = (X \cdot X \cdot X)$
 P_{L} is not homogeneous in $X + a > p_{L} = (X \cdot X \cdot X \cdot X)$
 P_{L} is not homogeneous in $X + a > p_{L} = (X \cdot X \cdot X \cdot X)$
 P_{L} is not homogeneous in $X + a > p_{L} = (X \cdot X \cdot X \cdot X)$
 P_{L} is not homogeneous in $X + a > p_{L} = (X \cdot X \cdot X \cdot X)$
 P_{L} is not homogeneous in $X + a > p_{L} = (X \cdot X \cdot X \cdot X)$
 P_{L} is not homogeneous in $X + a > p_{L} = (X \cdot X \cdot X \cdot X)$
 P_{L} is not the approximated formall component in P_{L} is
 P_{L} is a not P_{L} is express P_{L} win EOM (or by doing the functional
interpretation in action)
Collinear Gauge Field
The constant distribution physical way to see the counting trates of A_{L}^{H}
is to note that the Lowerte index matures when $i = P_{L}^{H} + P_{L}^{H}$
 P_{L}^{H} is note that the Lowerte index matures P_{L}^{H} is to note that P_{L}^{H} is P_{L}^{H} is P_{L}^{H} is P_{L}^{H} is P_{L}^{H} in P_{L}^{H} is P_{L}^{H} in P_{L}^{H} is P_{L}^{H} is P_{L}^{H} is P_{L}^{H} is P_{L}^{H} is P_{L}^{H} is P_{L}^{H} in P_{L}^{H} is P_{L}^{H} is P_{L}^{H} is P_{L}^{H} is P_{L}^{H} in P_{L}^{H} is P_{L}^{H} in P_{L}^{H} is P_{L}^{H}


As meanimed before,
$$\mathcal{F}_{n}$$
 is the large component in \mathcal{V}_{n} , instead of \mathcal{V}_{n} .
Beider, \mathcal{V}_{n} is Gaussian. Here are can perform the functional integral
over \mathcal{V}_{n} constants:


$$\int D\mathcal{V}_{n} O\mathcal{V}_{n} e^{-i\tilde{S}} Subscr [\mathcal{F}_{n} + \mathcal{V}_{n} \cdots] = \int D\mathcal{V}_{n} e^{-i\tilde{S}} Subscr [\mathcal{F}_{n} + \mathcal{V}_{n} \cdots]$$
Since it is Gaussian, it is equivalent to use the EoM of \mathcal{V}_{n} given by
 $O = \partial_{n} \frac{\delta \delta}{\delta \mathcal{V}_{n}} - \frac{\delta \delta}{\delta t_{n}} = \frac{\delta \delta}{\delta t_{n}} = \frac{\delta \delta}{\delta t_{n}} = \frac{\delta}{\delta} \frac{\delta}{\delta t_{n}} + i\mathcal{V}_{n}^{-1}$

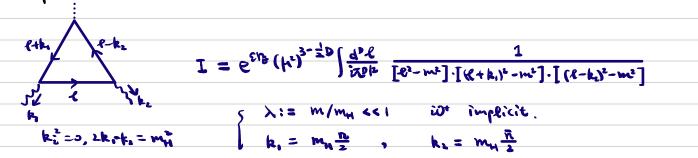
 $O = \partial_{n} \frac{\delta \delta}{\delta \mathcal{V}_{n}} - \frac{\delta \delta}{\delta t_{n}} = \frac{\delta \delta}{\delta t_{n}} = \frac{\delta}{\delta} \frac{\delta}{\delta t_{n}} + \frac{\delta}{\delta} \frac{\delta}{\delta t_{n}} + i\mathcal{V}_{n}^{-1}$

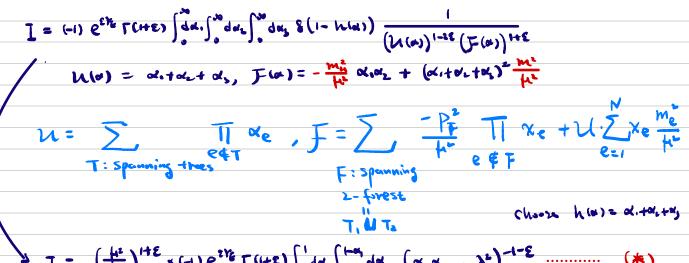
 $O = \partial_{n} \frac{\delta \delta}{\delta \mathcal{V}_{n}} + \frac{\delta}{\delta t_{n}} + \frac{\delta \delta}{\delta t_{n}} = \frac{\delta \delta}{\delta t_{n}} + \frac{\delta}{\delta t_{n}} + \frac{\delta}$

3. Multipole Expansion

If nitrassift and collinour fields appear together, P.g., Letus, one needs to multiple expand to be consistent with power counting.
$\int d^4x \ \Phi_{us}(x) \ \Phi_c^{1}(x) = \int d^4x \int \frac{d^4p_{c,t}}{e^{\pi y^4}} \int \frac{d^4p_{c,t}}{u^{2}} \int \frac{d^4p_{c,t}}{u^{2}} \ \Phi_c(p_{c,t}) \ \Phi_c(p_{c,t}) \ \Phi_{u_s}(p_{u_s}) $
$P_{c_{11}} + P_{c_{12}} = P_c \sim (\lambda^{L}, 1, \lambda)$
$P_{us} \sim (\lambda^{2}, \lambda^{1}, \lambda^{1})$
$\hookrightarrow \qquad \qquad$
i.e. $\chi h = h \times \frac{h}{2} + \bar{h} \times \frac{h}{2} + \chi_{\perp}^{h}$
ب ب xt ^a Xt ^d
1 λ^{-2} λ^{-1}
$p_{c} \propto = n \cdot p_{c} \overline{n} \cdot x + \overline{n} \cdot p_{c} n \cdot x + p_{c}^{\perp} \cdot x^{\perp}$ $\lambda^{\perp} \lambda^{\perp} \lambda^{\circ} \lambda^{\bullet} \lambda^{\star}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
But $p_{x} = n \cdot p_{x} \cdot \overline{n} \cdot \overline{n} \cdot p_{y} \cdot \overline{n} \cdot \overline{x} + p_{y}^{\perp} \cdot \overline{x}^{\perp}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$= n \cdot p_{5} \hat{n} \cdot x + o(x)$
$= P_s \cdot \chi_{-}$
(tence $\phi_{us}(x) \longrightarrow \phi_{us}(x-)$
4. Gange Invariance
Gauge transformations involve gluon fields. For (auti-) collinear and ultrasoft
fields, QCD gauge transformations should also split into (anti-) collinear
and ultrasoft ones to not spoil power counting!
D collinear trans.
$-S_n \xrightarrow{U_c} U_c(x) -S_n(x)$
$\overline{\mathbf{u}} \cdot \mathbf{A}$ $\mathcal{U}_{\mathbf{c}}$ $\mathcal{U}_{\mathbf{c}} \times \mathcal{U}_{\mathbf{c}} \times \mathcal{U}_{\mathbf{c}}$

 $\bar{n} \cdot A_{c} \xrightarrow{U_{c}} U_{c}(x) \bar{n} \cdot A_{c} U_{c}^{\dagger}(x) + \frac{i}{g_{s}} U_{c}(x) \left(\bar{n} \cdot \partial U_{c}^{\dagger}(x) \right)$ $A_{c}^{\pm} \xrightarrow{U_{c}} U_{c}(x) A_{c}^{\pm} U_{c}^{\dagger}(x) + \frac{i}{g_{s}} U_{c}(x) \left(\partial_{\pm} U_{c}^{\dagger}(x) \right)$




This part devotes to region analysis of light-quark induced h > rr form factor to initiate the factorization pattern.

The LO starts at one loop already. For brevity, we neglect the numerators. Two-loop extension and some details here can be found in 1812.08818. See 2501.11824 for a recent calculation.

0. Setup

direct calculation

$$I = \left(-\frac{1}{m_{H}^{2}}\right)^{-1} \times \left(-1\right)e^{-\alpha} \left[1\left(1+\epsilon\right)\right]_{0} dd_{1}\right)^{-1} dd_{2} \left(\alpha_{1}\alpha_{2} - \lambda^{2}\right)^{-1} \cdots \left(\lambda^{n}\right)^{-1}$$

$$= \frac{\mu^{2}}{m_{H}^{2}} \times \frac{1}{2} \log^{2} \frac{-m_{H}^{2}}{m_{U}^{2}} + O(\lambda, \epsilon)^{-1} \qquad (1 \text{ has chosen h (a) = d_{1}d_{2}}{-1\alpha_{3}}$$

$$= \frac{1}{2} \log^{2} \frac{-m_{H}^{2}}{m_{U}^{2}} + O(\lambda, \epsilon).$$

$$= \frac{1}{2} \log^{2} \frac{-m_{H}^{2}}{m_{U}^{2}} + O(\lambda, \epsilon).$$

1. hard region : - l ~ (1, 1, 1)

 $\ell^2 - m^2 = \ell^2 + O(\lambda^2);$ $\frac{1}{1 - m^{2}} = \frac{1}{1 - m^{2}} + \frac{1}{1 - m^{2}} = \frac{1}{1 - 2k_{2}} + \frac{1}{1 - m^{2}} + \frac{1}{1 - m^{2}} = \frac{1}{1 - 2k_{2}} + \frac{1}{1 - m^{2}} + \frac{1}{$ $I_{n} = (\mu^{t})^{t+\epsilon} e^{\epsilon t \epsilon} \int \frac{d^{3} e}{i \pi^{9} k} \frac{1}{[\ell^{2}] \cdot [\ell^{2} + 2k_{1} \cdot \ell] \cdot [\ell^{2} - 2k_{2} \cdot \ell]}$ $= - \left(\frac{\mu^{\iota}}{-m_{H}^{2}} \right)^{HE} \frac{e^{Ete} \Gamma(HE) \Gamma^{\iota}(-E)}{\Gamma(I-2E)} .$ E=EIR = Ô,

Dr we can start diverge from [s]
who
$$I_{n} = \left(\frac{1}{160}\right)^{1/4} e_{-}(x) e^{1/6} \Gamma(x+1) \int_{x}^{1/6} d_{x} \int_{x}^{1/6} d_{x} (x,x_{0})^{-1-\Sigma} \\
= -\left(\frac{1}{160}\right)^{1/4} e^{\frac{1}{2}} e^{\frac{1}{2}} \Gamma(x+1) \int_{x}^{1/6} d_{x} \int_{x}^{1/6} d_{x} (x,x_{0})^{-1-\Sigma} \\
= -\left(\frac{1}{160}\right)^{1/4} e^{\frac{1}{2}} e^{\frac{1}{2}} \frac{1}{\Gamma(x+1)} \\
\frac{1}{160} e^{\frac{1}{2}} e^$$

$$I_{5} = \frac{1}{2} \frac{\mu_{1}}{\mu_{2}} (\mu_{1})^{L} e^{ext} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} (\mu_{1}^{1} e^{ix} [(c) + \frac{1}{m^{1}} [-e \cdot e \cdot e^{h(x)} + ic)^{-2}]$$

$$= \frac{\mu_{1}}{\mu_{2}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} (\mu_{1}^{1} e^{ix} [(c) + \frac{1}{m^{1}} [-e \cdot e \cdot e^{h(x)} + ic)^{-2}]$$

$$I^{2}$$

$$S(1,h) for e_{h}$$

$$S(1,h) for e_{h}$$

$$C_{h} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} (\mu_{1}^{1} e^{ix} [(c) + \frac{1}{m^{1}} [(-e \cdot e \cdot e^{h(x)} + ic)^{-2}]$$

$$= \frac{\mu_{1}}{\mu_{2}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} (\mu_{1}^{1} e^{ix} [(-e \cdot e^{h(x)} + ic)^{-2}]$$

$$= \frac{\mu_{1}}{\mu_{2}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} (\mu_{1}^{1} e^{ix} [(-e \cdot e^{h(x)} + ic)^{-2}]$$

$$= \frac{\mu_{1}}{\mu_{2}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} (\mu_{1}^{1} e^{ix} [(-e \cdot e^{h(x)} + ic)^{-2}]$$

$$= \frac{\mu_{1}}{\mu_{2}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} (\mu_{1}^{1} e^{ix} [(-e \cdot e^{h(x)} + ic)^{-2}]$$

$$= \frac{\mu_{1}}{\mu_{2}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} (\mu_{1}^{1} e^{ix} [(-e \cdot e^{h(x)} + ic)^{-2}]$$

$$= \frac{\mu_{1}}{\mu_{2}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} (\mu_{1}^{1} e^{ix} [(-e \cdot e^{h(x)} + ic)^{-2}]$$

$$= \frac{\mu_{1}}{\mu_{2}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} \int_{-\infty}^{\infty} \frac{dx}{e^{h(x)}} (e^{h(x)} e^{h(x)} + e^{h(x)} e^{h(x$$

We can skip to analyze the analysis structure by using between unitarity :

$$I_{n} = \frac{\mu_{n}}{\mu_{n}} \int_{-\infty}^{\infty} \frac{dt}{t} \int_{-\infty}^{\infty} \frac{dt}{dt} \int_{0}^{0} \frac{dt}{t} \frac{dt}{t} \int_{0}^{0} \frac{dt}{t} \frac{f(t-uni) f(t+uni) f(t+uni)}{t^{2-uni} t} \int_{0}^{0} \frac{dt}{t} \int_{0}^{0$$