
Soft--Collinear Effective Theory (SCET) & power Corrections.

2025/02 & Fudan.

0. Motivation

1) EFT modern tool to study scale - separation in QFT

u reduce multi-scale problems to a sequence of single-scale problems
my systematically resum large logs of scale Latios via renormalization-group

equations (RGE) . Even for some very complicated cases : NGLs
,

SLLs,

lLp logs , etc.

remark (rmk) : scale separation is not only important for reducing
multi-scale complexity,but also a necessity in reality with strongly
interacting theories

,
e.g.. QCD. (leading to factorization)
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(Why Soft-Collinear Effective Theory (SCET) ?)

IS Useful :
SCET = EFT for high-energy processes involving light particles.

& LHC like Colliders , full of energetic (almost) massless

particles (jets)

[
as a systematic tool to study -, 5 , jets --

factorization formulae
B - physics : a lot

collider physics :

V
↓ cutting-edge precision preditions

renormalization e .g ., Drell-You (like)

canomalous dimensions) ++bar
Becher, Neubert

, Yang---
event-shapes

Li , Shaw
, Yang, Zhu...

V EEl Pecaj, Scott
,Wang ,Yang ...

: Zhu etc....
resummation Gao

, Li
,
zhn ...

[solve RGEs)

ii) very complicated logarithms : iii) power corrections...

e.g , non-global log (NGH) Moult , Stewart, Zhu ,
etc.

super-leading log (SLL)-- · Beneke ... Wang ,
etc....-

Becher
, Newbert,

Shaw
,

etc... Lin Neubere
,

XW, etc...-

iv) a lot of other fields : nuclear physics , DM physic---



2) SCET is the collinear and soft version of QGD .

-> helpful to investigate IR structure of RCD .

e .g ., Becher, Newbert + /Yang and etc.) 109-112

5) SCET formalism is not restricted to RLD , but also for gravity for example .

Reneke
, Hager , Szafin 20-22

4) SCET is (kind of) Minkowski generalization of operator product expansion (OPE)
,

which provides rigorous framework for an expansion in powers and logarithms
for Euclidean processes.
It is closely related to method of regions (Benake, Smirnov) .

(for Feynman integrals]
conventional EFTs : based on (Encliclean) OPE

-> integrate out heavy particles (oXwi
SCET : based on method of regions

↳ integrate out "virtuality
rigorously
V

rule: Method of region for Feynman integrals has not been proven so

far as I understand
,
but it always work !

A similar technique , expansion by subgraph ,
which works for

Encliclean FIs ,
can be proven rigorously .

see e.g. "Applied asymptotic expansions in momenta and masses"

by V. A . Smirnov .

Method of region has received a lot attention recently , anal has a lot of progress
based on Newton polytope. Smirnov ; Gardi , Ma and etc....

Due to the Minkowski nature, SCET, US anEFT, is complicated and "subtle".

Inparticular, SCET involves particles with peo ,
but ph was large components.

↳ leads to no-locality on light-cones , even at leading power !

a lot of good references on SCET :

1) Introduction to Soft-Collinear Effective Theory,
position
space S & book by Becher, Broggio and Ferroglia , 1410. 1892

2) 1803 . 04310 , Becher

mom,

space 3) Lectures on Soft-Collinear Effective Theory, by Stewart -

This lecture will only briefly review some basics of SCET and then use some

concrete examples to have a look on some aspects of frontier of power
corrections in SCET .



Some important comments :

Integrating out high-frequcy (virtuality ... ) modes results in Wilson

coefficients [i(1) .

1) If the theory above 1 is perturbative, (iv) can be derived from a

perturbative "matching procedure's b requiring a finite set of
matrix elements in the full theory a in the EFT to agree up to

certain higher-order power corrections
, which all neglected in the EFT.

e-g. SCET < < QCD.

2) If the full theory is unknown
,

like SMEFT,
then one treats ((1) as

unknown parameters , which must be extracted from experiments

Outline

= A brief Intro. of SCE-

Method of Region

Basic Ingredients in SCET

Construct LP LSCET
Matching of 2-jet operator
Soft Decoupling

#
. NLp Factorization of gg > h(h >2) by b-quark

Region Analysis
Heuristic pictures of Involved Operators
Endpoint Divergence & the Way Out

# Renormalization at NLP and Anomalous Dimensions

Soft-quark function in h >2)

in gg >h

in Drell-Yan



I
.
A Brief Introduction of SCET Language

Consider ete
-

< 2 jets :

en 38* u large energy alongiet axis,

o
& see with small invariant :

P P P =m S

-

44 = (E1 ,
0
,

0,Ei-MF,) , Py = (En,
0

,
0
, NEMg) ;Eim

E : What is there to integrate out for such a Minkowski process?

Introduce small parameter : (mj, ~my = = mj)

X:=w
Define two reference light-like rectors along the jet directions :

ut=CiI h= = 0 n1nz=

Im
Decompose a vector in the light-cone basis :

ph = n,-ph + mop + 4
P1 - ni = 0

= n·p +p + 4

=Top h + un-pi + 41
For brevity ,

we use n =n,
= m for this -jet example.

n.p + up + P

n- P5 = E
.-NEi-mE WMX

my [ n -Pj, = -- = ZE, Xo5

P = 0
&

Similarly, n- PT -XO5
,

inPar , Pet = 0.

Individual partons inside the jets can carry momenta with same

scaling rules,
but they can have transverse components as long as

pl<mi P= n.pin4i+PinXs
Thus

, partons inside jet 1 :

Cn-Pi,Pi ,Ple(*, XX5S < Collinear

partons inside jet 2 :

-

Cn-Pi,Pi ,~(x ,
X XeS (anti-collinear



These active particles have much less virtuality than hard modes :

is (x0, x0
, 05 hard ?↑n

~ (X, x0
,X%5

.

Answer to Q : integrate out those hard fluctuations in virtual exchange !
and the EFT c.o. f's would be collinear & anti-collinear

modes .

But this is NOT the whole story !

To see this point , we consider the classical example relevant to the 2-jet

process at one loop : (off-shell) massless Sudabor form factor.

* *p? = -p, x(p.
- P2)" = Q

3 3pz = -Pa
C XL

tTV

zqe V

P, Gs P P2Pi

zq= 1 - ** 2 +Ok
It suffices to consider the Scalar case

for illustration:
-2P:Pz

&=--too> F = eachntio:[le+pi+ io: - [le+patio
T = --100

due to off-shellness, the integral is IP finite. It is obviously no finite !

f+
y =1+22- F = futu + +0 v- z

v - ED = 1+ S

I

x
[PiPh

F = () es +(1+2)[x,So asf(1-h(x)
(U(9))129(J(s)'+3 H2

with (14) = Xi + Le + & ,
F( = Xd + andd

exercise o

Choose U() = Xy PixX,
=

I I
Er=w↳ Flas = etetlha)[dafdaz C+++2)(dix2# x

, xi+ x2xz)

This is called Sudabor double logarithms , which are typical

(2n + (2+
+ ...

n-loop

(n+ q ,n.q , q) = (1, 1, 0 Q hardIn CMS frame :

(n- p,,.p, pil-SX, 1 , 0) Q Collinear

anti-collinear

Pip? ~ &Q
(n . 42) Pa . PE (1 , x,O &



1. Region Analysis

reproduce F by method of region : decompose the integral into a sum

of simpler integrals depending on one single scale !

Method of Region : DR is necessary !

Spe <Sa*e D = Pine-23

⑦ linearity

Sep(afle) + bge) =afebget

& translation invariance

Sf(e+p) = S fles

⑤ scaling behavior .

Shf(x) = X
-*) fle).

4 normalization

Sc exp) -+ =
1.

coften neglect
Very important consequence :

↓

SP ((2)a = [
() +(1- E)

, if 2 + a = 0,

O · otherwise .

↓
exercise 1 : prove the above from axioms of DR. scaless integral

-

MOR : & determine large and small scales in a FI :
② identify regions of loop momenta. < X=

small
/

large: normally by experience :

ultrasoft region : en(x*, XY X)
,
ex*

soft : e- (X, X
,

X)
,
eix

collinear : er[X", 1
, X) ,

e2x*

anti-collinear : er/1, X2, X) , e=X
hard-collinear : er(X ,

1 , x)
, ex



anti-hard-collinear : ~(1 , X
,
X) ,

12x

naural : e- (1 . )
, 1) , e- Xo

ii) recently , identify geometricallyy.. ·

③ in each region , Taylor expand propagators.

& perform the expanded integral in each region in

the FULL space of loop momental

This is ensured by DR : overlap parts are scaless !

On the Sudakov Example
P, //n

① hard region :f~ (X, X0 , X0) Q P1/In

Xo 22 Xo X X

R+pl = ++ 2p.e + p, = +2
+ 21. (n-p, +p + Pi) + Pi

= e2 + n. P. n.e + O(x)

(e+P = +-+ n-pe + O(X) ·2PiP = Q2 + 0(x)

leading power[Lp)2 next-to-leading power

<NLp>
1

-> Fr = etpequc Certa(ep,n-e+ ir)(e+ n-p,me+ ig)
+ O(X)

= gertlite) +stu+- +0( + O(x)

E = EIR

②Colliner region : en(X, X0
,
XQ UpI

X x x0 X* X X x "

le+ p,x = A+ +,) = +2
+ 2pie + p = e+ nop,ne+ i p, ne + 1-Pi + pi

us nothing to expand !
X x Xo * X X x X3

+ 42)" = en.pie+Pane + 1 -Ph + PY

= n.Pine + OXX)

I

~ Fc = eStM23qh/PIn Latios (te+p+iv) (n-pure + iv)
+ O(X)

EFER
= eET3)]--slu +0(k) + O(x)



③anti-collinear region : 1-(Xo, X, XQ -P2

similar F=
= eSETUts)]- *-lu- O

Clearly Fu+Fc + Fc F ,
but rather

Fu+ Fc + Fi = eSETCHEl Pi+--
- + 0(2) + W(X)

DiPE/QX*&

# turns out there is an extra region : ev(XX,
XY& Cultrasoft)

Note that us

C + us nC

i + us ~

Hence exchanging ultrasoft particles between collinear and anti-collinear

sectors does NOT violate momentum conservation !

↑ ultrasoft region : e-(X , X, xY &

* x X- xox XX Xi
e+ p.) = e+ no p,ne+ i p, ne + 1-Pi + pi

= i -p,
n.e + pi + 0(3)

x+ p-) = n.p-m-e + p + 0(X)

1
-> Fus = eStefiori H+io) (n p,

ne+Pitio) /U-Pane+Di+ io)

= erETCIts)] i +fut +O +D

E= Env

> Fu+ Fc + Fi + Fus = F !

we 38* u

even 3
um

P PJ
,

3

ultrasoft exchange is needed for color neutralization.

We will reproduce the above analysis in terms of SCET !



2. Construction of LSCET

&field st = Pus + 4 + 0 + b + ... (if exist)

based on the scaling behavior of Fourier [momentum) modes !

For brevity ,
consider d. o. f's = us ,

< ,
c

,

:

. e
., ! = Pus + b + &2

Q : where is Ou

momentum conservation allows these interactions :

&PussL V

na2 Mus?I n222 Hus]

but not : 4,usus ↳-usPue
-

Mus?I Mus?I

&or :
L -

na2 =?2 Mus?I

u Sin = Le + L + Lus + Sctus Lisa

To construct LSCET ,
we first need to understand collinear fields 4: &Ac .

Since Pcr(X, X , x) is not homogeneous , the corresponding fields behave in

a complicated way.

Collinear Quark Field

The Spinor of a highly-energetic quark :

purp) = mups ; macE = pomp3
↳ NUsp)n0 + 0/m/E)

A Dirac spinor Contains more information than what we need !

Introduce 2 projectors : Pr =, P=

(P=&, = Pr ,
Pu+ Pr = 1)

In := Pris , Un : = Pric

clearly 4c = Buthm ,
and NYn = 0

, Mn#0 · Hence this
the right d.0.f field we need for a collinear quark !



We can assign power counting for fields as well.

-> up,E+p* +X

<01+94,(x)[,(0310) = Seipix ip+20

X4 Xo X2x(X) , Xo , X)

4) is not homogeneous in X , as Pc !

Hence <01FS3u(x)Tulos](0) = <01 **4 F,> ** > 10)

= SAPPix inaPi+io 2

x Xo x
*2

.x
*

V <

*

4 Ynvx

Likewise Yunx exercise 2

↑
power suppressed small component in 41 !

One can use In to express Un via EOM (or by doing the functional
integration in action)

Collinear Gange Field

The easiest (maybe most physical) way to see the counting rules of At
is to note that the Lorentz index matches withigh = ph . Hence

gange invariance dictates that At ~P , such that

iD = igh + gsAmaTan(X ,XYx)

is well-defined !

Ultrasoft Quark & Gange Fields

<01T\[us(x) [uglo)310) = SCPPuse-iPix i
↑tio

X8 Xo x2X
-4

↳ Ins wX3

AusvX3

Note that ① Ins & Aus are homogeneous in X ;

① Aus is power suppressed than Un i

③ Ans looks suppressed than Ac , but n-Aus-n.A



LSCET from LaCD (focus on L +1
it<itc + &us = In + hm+us

Al > An + Aus
xx x xx2 X

↳ Fits 4 > (5n+ Tw + [us) [Dc+us(3m+Mm + [us)
X2 X3 I X X X2

with iPatus = (inDa +&.Aus)* + (inD
=

+9.Aus) + iD + 9/tus

~ x: (inDa + gsn-Aus)En + YinDahu+Un+Eniu
-

Gassian mixing

X5 : Ins8s/Yn +...

"

X8 : [us Dus Ins
There are also pure gauge terms ,

which are neglected here.

Link : One can not conclude that IngiDustus is highly power suppressed
anal just neglect it. Because we need to consider the Sa*X in

the action !

S4xInsiDusIns ~O(X)

X
-

8X8 ~
[O]

2
-4 2c : x4

1
--

=S in DSn+.D
,Un+ EDIYu + EniDifu + pure givon ~ Xo

-

-

- I * 9n.Austn + pure gluon ~ /0

L ↑ -

V

Lifus : X4

<p interaction x
-8

+SatX EnsiDusIns + pure gluon ~ X

↑ V
#

Lo:
-

x-4 -

St = /x [us9sAYn ~ O(x) t ---

- -

-

Lis: x5

I
NLp interaction



As mentioned before, In is the large component in it , instead of Nu.
Besides , Um is Gaussian . Hence one can perform the functional integral
over In exactly :

SDSnDYue
"SscEtIfucIn -l

- SDIu eiSscETTfu ,
-- . I

&

Since it is Gaussian ,
it is equivalent to use the EOM of In given by

se
7

0 = Gh8(7)
- S = 5= inDan+ Du

exercise 3
↳ Un =- indatioDS

9

exact , no approximation !

idIfn + pure gluon< Sa = 5 in .Dan-in-D
-+i

To define (in-Detiol"properly ,
we introduce the collinear Wilson line :

W
,

(x)= exp(ig,/odtAc (x++)
(n-Ac ~xo

which satisfies

(in-DcW,(x)) = 0

Then at the diff- operator level,

W in . D
>W,(x) = in. G

↳
1 = We insio WI

in-D, +10

↳ Indctio life(X)

=IniD * We inSio WILDBu

= FrDW,((x) * (i))dt (WEcDifn)(x++n)

in . 6 (i) dt P(x+tu) = nw)t'd( ** n+ +n + x+

= p(X) .



3 . Multipole Expansion

If ultrasoft and collinear fields appear together ,
e.g.. Lctus,

one needs to multiple expand to be consistent with power counting.

Sc4xPus(x)(x) =Sax SPP) Pupus excess-

Pa

Pa 1 + Pan = Ron (X,
1

, X

Pns2(X2 ,
X, X4

↳ P+ Pus ~(x2,
1
, x) -> xm (1 , X* , x+)

i.e. xh = nx m + nx= + x]
- -

XI XI

1 X
-2 Xt

Pc. X = n. p>
n. x + n. pan-X + Pt - x

+

x x+ XoXoXX+

- - -
Xo Xo X-

But Ps-X I u-

p ix + n. 4, U-x + pst . X
+

X- X= XX0 X2 X+

- ~ w

Xo X2 X

= n-psrx + 0(X)

= Ps: X
=

Hence tus(x) < Pus(X-

4. Gauge Invariance

Gauge transformations involve glnon fields. For Cauti-) collinear and ultrasoft

fields, QCD gauge transformations should also speit into Cautif Collinear

and ultrasoft ones to not spoil power counting !

4 Collinear trans .

Uc
Sn > Uc(X) fulx)

n .As
a

> Uc(X) n-AcUx)+ U, (x)(n -GU((x)
At Uc() At WEI) + UcI (G_Ucx)



n-Ac(x) + n.Aus(X-
14 > Ucx)) - - )Ub(x)+ 4xx)(n -cut(x)) .

Ins & Aus do not transform !

Was
Uc

> Uc)Was U) = UW

&. Ultrasoft trans.

In Urs, Hry(X-)Su(x)

Ac Un UngX-)Ac(x)UnsX-

&us
Yas

> Ung(x) [us(X

Aus
Uns

> Uns()Aus(X) Unl + Uns()(2U)

W,
Yus

> Unsixt WUs(x-

5. RPI

typy I I #

ht > n + Al nt > ret rut > xnM

it > it in < in + All int < X+ it

A+ 1X + ~ x

6. Soft Decoupling

[n(x)* (into + ggh. Ack) + 93n . An(X-1)Snix

field redef· Ju(x) = Snix-19 & A = Snix-Al(x) StX-

Su(x) = Pexp(ig, )d+ n . Ausl+h+)

(in. Du Su(x) =0

c = 5(x) * Six -) Su(x-1)in . b + 9gn. As (x)) &r*(x)

=(x (in. a + g, n.A! (x))f(x)

= (xin-D(X)fn(x)

Decoupting does not mean soft gluon emission disappear. But rather
, soft

gluous are entirely described by soft Wilson limes !



* Factorization and Renormalization of 2-Jet Current at LP

we 38* u CQY

even
3

see > In
,11" 115i

P PJ
,

u

N I

Fu < [r(Q

Fc ><p. X: % = <p, W.S*
10) 0

Fi ><10) = (42/W-10

Es > ↑(St10) Su(01)10

JM = F10U410) = FOX 4,
10) match into SCET operator

g)auge invariance 7
V

Enla WalUWatCOYuld
V > WLs here also have physical interpretation
Enld(Xn(0 by tree level matching.

Note Pcr(X,
Xo

,
x)

, Per(x, X , X]

Hence in. D
,

& in. Do are not X suppressed at all ! In principle these

gange-covariant parts should also appear in the matching procedure !

=

uaWUWY(0 Pitt
,Eos(inD=) WUWE(in-Da)So

= (Wi)(d) (in·)Chr (WISn) los V is

translation on lightcomes !

~ FiloW 4,10)
match

, [dsde ~(5,t)WeHrsU(WISn)(si)

Acting on Spc .... /Pi) and using translation invariance

V

= Sasde Tr(sit) eitn.-is WOW)(0)
↑

V

(v(n-p= n -Pc)
=Cr(Q)

soft-decoupling VIET10
↑

- 7

t

Flow 4,10)
match

,CIQUE COL USC S(W 100
-

[ W
#

i X(0)

Reproduce from Ustetcos
, depends on time !



II
. NLP Factorization : A Brief Taste from gg

buark
> h

In <99)
my < MH ,

X = my/m+ < /

k, = kz = 0

by xb wat N -1-

>
~ b 3 ~ 3

~a Rz

LO NLO

b
L 1

b
t L

wa
, + - N

t --

> >
er ne ↓ ↳ Eb wei

Ri Rz

LO NLO

Entr & Fgg-> n
& my due to Higgs Coupling.

So they are zero in my >0 limit. That's why people normally
consider gg top quar h.
But loop corrections enhance the light-quark contribution to

&

~ myflogm-
-> this log is large !

These corrections can be obtained systematically and more precisely.
Besides , these processes are benchmark to investigate NLp SCET formalism!



Region Analysisof
us Y

This part devotes to region analysis of light-quark induced h < 20 form factor
to initiate the factorization pattern.

The 10 starts at one loop already. For brevity ,
we neglect the numerators.

Two-loop extension and some details here can be found in 1912 . 08818.

See 2501 . 11824 for a recent calculation.

0. Setup

e+ hig-R 1
I = eSte(py3-ID/e-meetR,n-mi -- (e-mi-m

e X:= m/mH < 1 not implicit.
NRE=0

, 2Rik=m & k, = mac , kz = my

direct calculation

I

I = (1) eTCa)(%Soda(%d, &(1- (1)
(())1-22(f(x))1+2

mis

U1) = Cite+ &, F(x) = -m +Kit 42

= -PTXe+Ln = 2 t eF
fez

T: spanning trees
F : spanning
2-forest

11 choose h(x)= X.+* +Y
T, # Tz

SI = (tHx()T(H2)( d (x, - x)+- [#]

& Ihas chosen h()= Lifes
=Mix log-m Ok so

+x3]

set = mit runk : full dependence can be expressed
V

in terms of Liz
= [logh-m + O(X, 9) .

I hard region :In (1 , 1 ,
13

e-mi = e +O(x) ;

myxh C+ris" -m = +2+ 2 kit + 0 (X);

(t-ka) - mi = e - 2k·l + O(X);
ii

In= (Y)H+EgER(dPe
I

V <PR Itzl:t+zkie:t-2k't
-

w = 0, = - (_He estETCHa)T"(-E)
.

E= EIR
TH-2E)



or we can start directly from #

↳ Im = (th()T()(
=-CHETTT(l-22] W

2.Collinear region : ~ (x2, 1 , x)

e- mi = e"-m"

(e+Ri) - m = (f+Ri)" - m

xh It-k-m2 = -2Rzt + O(X) = -Myne + 0(x)·

I

ii Ic
= Cheered

Teme.[lethil-m--that

~ kn
This integral is not regulated by D =4-23 ! my rapidity div.

need extra regulatory
CV1C 5(z+me / mm)

Is =Chtcfdze-me --lethil-m-EmiH7S S(z+me/mH)Merex+xk,)-m
&(z)

-Med S(z-X+me/mH)

=e-m2 :2

I

=-)x-m=
-

=M /d /MEsse Et is the hard func.
1

Crapidity div..) [02(z))

endpoint div.

3. Anti-collinear region : er(1,X, X)

likewise...

4. soft region :1~ (X,X ,
x) (nc)
e+ k, ~ (1 , X

, x) +R,~X()e2 hard-collinear

&-Rap ~ IX, 1 , x) Se-RaleXx e2 anti-hard-collinear

(ut]
nc xh

Atris-m = 2 kie + OIX

X-R2 -m = -2Rz-e + 01X1
ii

1
Is=(pHEEDtimioMunetio--Mine+ io

which has rapidity divergence as well.



= E + i

=

L N

S(1-0+) for expo C = <!

> 2 7 >D = ?
4 S S 2 + 0 = [1 + S

SUff) ful
S L l+> 0

W = V + G
s

So
, Is=Mimil-

= OSet (e-++-my
-"Ext-+

-mz)

cancellation of rapidity divergence

The full result
,
I= logh -m + O(X, 3) ,

does not have rapidity dir.

-

When dividing into regions, rapidity divergence is inevitable
,

since DC can not

distinguish pi-prx due to the same virtuality :

But the divergence must cancel inthe end.

One can either introduce an extra regulator, e .% ., analytic regulator , which

will cancel after summing over all regions ;
Or one can introduce a consistent cutoff-., which we adopt below !

[(s) =Sz T() = -even e-
X

C

(S = emax MH) =>
-

sector decomposition of Is = I
,
lease- + Is(f+<-) 11/III/
- --

Is , a Is
,i

S
e+

soft & Collinear



We can skip to analyze the analytic structure by using reverse unitarity :

Is=
Sp-ne)St

e-motio

I
Slatze)= (n)a+ae

- to
-

a+ ne +
:d)

V

Then we calculate
S1P-n. 1)
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