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Operators & Factorization of gg Th

QCD
|~mi integrate out h

StepI SCET, (hc ,no , 5)

firmyms integrate out hed he

StepI SCETz(<,
i, SI

firmy"

I will
,
however, skip this two-step matching procedure, which is more rigirous

though , for brevity and heuristic purposes.

Instead ,
I will present operators and factorization inspired by region analysis.

fun -> all three propagators are hard and shrink to a point.

&
! 1

.nyxh Hi:
0= M KosG ·Gil

hard
2

E en be L ↑
G is the ni-collinear gange-inv.

~ gluon building block.

C gluon field dressed with WL

To calculate Hi
, we sandwich His, between &12 on-shell States :

Hi Risk
0

,10) /h(q)) (ki = [mymi)

Since ki=: = 0 · (510) = MyE(kil ·**(2) to all orders in Xs !

Them H, is nothing but the one-loop diagram on the left.

power counting : My , Ghrx n ~x

->
zk

⑰
E

!
c
- N

[

L
h Hz(z) Q

173
i E dep.

on mydz 8,(z) > dep. on my&z

In this diagram , one propagator is hard and shrinks to a point.



n
,

i) = hi Xn
,
10) U * Xn

,
(tm) Gua

, (0)

= Us Xn
,
10)G(0) Xu,

(ti

This is in the position space. We can convert it into the momentum

space by Fourier transformation :
n,k= mH

&,
n,
(t) = (b(k, z) finizin

,
(nK,

z)

Note that two collinear quark fields share the collinear momentum R.
z + (1- z) = 1

.

zn
,
(2) = has Xn

,
10)GioS(+in.)Xnl

82
,m

is defined similarly and its matrix element is identical to(
, n, (z)·

So from how on, we use 8(z) to denote both cases.

Calculate Halz) & <821z)] to have a taste

To extract Hz(z), we compute the on-shell amplitude of

n <g(kz)b(ER,)5(zki).
Then (1) takes the tree level result :

Mgb5 = Sodz' Huszi)<belzkij(zkgk/nlz (h(q)

=& H(z)ERRT

Kim ⑭ m ↳...
Er

,
zk, Er

,
zk, ER

,
zk,

LV NLO

Hy(z) = b(z+(1+G - f(z) + (g(z) + (7 (1-z) + 0(3))
↑

v

F((z)

[F(z)] :=FIzz)--G(-2)
2)T(2-29]

j + OkX5]

endpoint behavior of Hulz)



1

&Its is gauge invariant . It is simplest to calculate in the light-come

jange , nGMcGu,0 ,
then all n-collinear WLs reduce to 1 .

I

- L.
C.G. t

O(z) h(0)10U8(w+ innlG
n, sector m Sector

-- X

no talk toeach other

after soft decoupting !

One can further set the light-core gange in 12-collinear sector
.

↓
Then Gnusp(d > 9sGup(0)

20 of <9aSkilgy(R2) z(z) h(q3] =>Ezlz]

< kz

gu↓ S(W+ in,6) aut constraint↳ .

1-z Z

Evk
,

E E

LO
NLO

10 : < Pa(bi)9(2) hi 10U8(w+ in:213n
,
10)Gt1) he

=(galki) [10*(k) * S(+ in 2)Yu
,
10) Of Th

insert fine = ig,S64x F(x) GIX)4IX) and Wick contract

~ SIDSEM
.

7 my () eSVET(s) only E & logs

-T

(ons) = myTtSubSLere (t)T(s)+ [CKF(z) + Gky(t)

↳ Nur + (z + 1-z)] +o(j)]
[ iC] := (8,1737z+ 0.

= ...

↑
asymptotic of (817)



* ③ Note when the quark is soft (X, xx)

c + s = (1, x, x) + (x, x ,x) = (1
,x) = ho

C nc
virtuality~ x>) X !

m >

N

S

a collinear gluon turns a soft quark into a hard-collinear quark .

# L4,
this interaction is forbidden ,

since I- * is power suppressed .

At NLp,
it is allowed , and is a common feature at Np , through this

following interaction insertion :

2e(=W(x)iu-(X(X
X↑ ↑ I

X
-4

↑3 XX

7
- Sax (19 + h. c .) ~ XP.X = X = power suppressed

compared with Chtx &+p ~X
*.X*

= XO !

To describe the soft quark contributions, we need to insert twice : One

to convert n-collinear quark to the soft quark, then to convert

the soft quark into n-collinear quark.

Then we end up with the following operator 810)

81a = YPh10Xn10
,/*xLis,/yfq(y)) + n

Here Xn & Xnz are have- collinear quark fields ,
so scale as X*

Then 8 n X . X . X =X3 !

Then we perform soft decoupling of all fields , and organize different
sectors to arrive at

-
Lorentz & Color

= his(x[y79(x)Xnix) In,] inclex suppressed !

- ↑ (Xn
,(0)[n(y)y))

X*SYn,(X) Ta Y 10) Y YnT YnIs(Y+)
TV ↑

v

g(X- , y+)



As mentioned previously . Pinx P? -Ps -X
,

we need to integrate out he no modes. The matching deefficients are

the radiative jet functions :

Saxex-F)GX =JG
22,

-45
-

he fields ↓ collinear field

Jg(Pm(
To extract Jg ,

Sandwich the above operator egation between (9k./ ... 10)
,

with RE0 & <Rips = XmPh·

For on-shell state <g(kis I, <9(k) 1E,
1010) =&(1) Ta to all

orders of Xs !

Jg : 0 > Lo

3

More -

Jy(p4 = 1+(F -()e +(+a)T3)(2- 49 - 24 + 0(5)
.T(2-2E)

The vacuum matrix element of the soft quark fields & Soft Whs give the

NLp soft function.

Sg(h) =DiscSiset-itecgStlo

Lo :~Discsite&2-ms TISab

I
~EDisce--- motio

~ ecrof S(f+- [ -mi)

~ear(h+-
-mj)

-
G(b+1-

-my)
.

We will return to the soft function more explicitly later on.



toumgmt
es E

Sg(l- (x)

ruk : 0 Tz & Ts are both endpoint divergent !

andpoint S
some are regulated in DR

the other not : rapidity.

& Fggzn = H,<0,> + 2 Hz@<02+Se
- -

TI T2 T3
has extra IR poles in2 for Onshell States g(ki)g(R2)
(after dealingwith

endpoint div .]

Because external gluous carry color charges .

The extra IR poles can be described by

Egg = 1- S[j +0()

as ZgiFggen is E-finite.



Factorization without Endpoint Div. & Re-factorization

A subtraction procedure based on re-factorization theorems has been proven
to work to all orders inXs in hur & gg -> h (2009. 04456, 2009. 06779

and other processes ,
e.g..

2008. 0494) & 2205. 04478 & 2212.10447)

The philosophy is generic for NLP STET and is the only way compatible with

factorization & renormalization right now .

Sketch of the procedure :

Eggzn
= H..0.

&

> ill-defined due to
+4) Fir(z) <Owlz endpoint div.

# Hy .SJy(mut](muh) Syll-(+)

= H.. (0.) endpoint versions
J

+4)Fir(z) <Oulz-IFsIIOzIEI] < well-defined in

-

endpoint region

+4) [FzII(O2(z)I
+ Hy ·SJy(mutt](muh) Syll-f+)

= (H.
+ Hi)<01 endpoint versions

J

S
+4)Fir(z) <Oulz-IFzcIICOz(z)It > well-defined in

free of end. div
-

endpoint region
repectively. No need

of rapiality regulator!+ HzSSM Jg(mt)Jy(mt)Sgtt) well-definedisendpoint region

The last formulae follows from the fasts that

IFIIZXI = - Jg(mut-) Hs they are called he fact.
conditions, and have beenI Ill=SJg(mult)Syll-(+) proven using SCET .

see 2009. 06778 .

↳ 4 IFIIOles] = -2 H
,SMOJg)-mut)Jg(mul-) Sg(l-++)



"II/II
H, = over subtracted -bin.

The above factorization is fre of endpoint divergence. But all factorized
pieces are at bare level. One needs renormalize them and check whether

the subtractions procedure is compatible with its renormalization.

2009. 06778

However, it takes a lot to prove the compatibility , so I will skip this part.

not commute between renorm.
& subtraction/cutoffs

leads to complicated structures of Hilm) !·

Factorization at Renormalized Level :

Fgg >n
= H

,(k) (0.(4))

+ 4 Fzz,<Onzf] - IFrItiIICIE, full
+ Hs(t)SMJUMJ(mut-,HJg(-mult,H Sg(t+-

, f).

Here Egg has been involved to absorb the extra EIR poles !

Similar for Fuzzr.

A the E factors (hence the anomalous dimensions) are either well-known

or inforced from,consistency ,
not calculated directly at operator level .

RG



Renormalization & ADs of Soft-quark Functions

Soft-quark functions are essential ingredients in factorization formulae at NLP.

Goal& Outline :

This chapter devotes to renormalization and ADs of soft-quark funcs.
we initiate with h >2r/b-quark loop) as a warm-up ;

Then we move to gg > h(b-quark loop) , which has a new feature ;

Afterwards , we elaborate on the DY Case
,

which is at Xs level.

1. h < Nr (light-quark induced]

recall the factorization :

into out

ncdn

TheSoft function Suffe+) is the Forrier trans of the vacum matrix element

of the soft operator Op(s ,t) :

Or(s, +) = YSIitn-1 Yn
.
Ht)YnT (O)MN+

Yn+10)YnIIS)[(Su+)

rmk : 1) It is more natural and general to work atoperator level
,

instead of matrix element.

ii) It is technically easier to work directly in the position space.

Yn
.
H)Yn(O) & Yn

.
H)Yn[(O) can be combined as two finite - length

Wilson lines , such that no IR div. exist ! Win u,I

7 7

u= UzNI
-

Une
,
unne = Yn (4.) YIlua) =↑expigTagun

my Oris,+) =(th+ [th-,of+ 0,She (Sn+i)
O

in
su



If we replace no-sector with a heavy quark field held) , with or = 1
,

which is equir to a time-like infinite Wilson fine Y*0).
t

O Yu(d

%
+- Su

then we obtain the operator relevant to the leading twist light-come
distribution amplitude (LCDA) !

- Orls+) looks like a"domble copy" of that of LCDA .

We expect their ADs are related !

In the following, we first elaborate deriving the renormalization factor
(hence the AD) at one loop order.

Then we obtain the AD at two loops without explicit calculations ,
but based

on the "double copy" relation.

O

inIn
(a) (b) (C) (d)

(no IR poles, all UV poles in !7 (no uv poles

Calculating in the position space and at the operator level is much simpler !
Insert QCD interaction , open Wilson fines , and Wick contrations.

I ↓

la= (igs)" (dPz[1z)#*(t)T&q(z)Huf! du+ n-· Ab (hth-1Tb **+ <Isnt)

=
-gerdutitle =

up)a
A introducetheFeynman

Iasx-(su+ para . X

- exercise ?
Eur

, originates from 10 in position space
or to o in momentum space. by background field method

= N2Osxt-Oro
= X2/d(+Ovlst + Ok.

↳ plus distribution , non-local.



- cusp contribution

In = - Ligidareunddust even
-

ez

=- + =(n(stgtz) Or(s+) ↳ from Wick contraction

+ 0(E% between ↑(u+n-> &

Eur Ablusnt) from Wilsonlines.

Plot (d) does not have UV poles , due to off-light come phase factor.
plot (2) does not contribut either in the Feynman gange ,

but it

does contribute in the general Rg gange

1) = - X (1-3) Orist) +0

Counter terms =-
a + [b + mirrors +zq8=

-

-
-

or = -[I) + Int + [f) + mirrors + Eq.
↑
qbare= Zren =-O

↳
local

u Q(stif) = ObamSt) + &C) du + Efulsttie) + <2) S11-u)

-(+ (obare (ns,+) + Oban(s, u+1).

= SjbuZ(n)bare(us,+) + pare(s, u+)
- -

1) Nucl. Phys . B 129 (1977) 66

139(19783545
AD in MS scheme in general (in the convolution sense)

2) nep-ph/o512208
Ebare((w)) is expressed in terms of renormalized fields (w. Ze . Ex · Eas).
It depends our kinematic variable(s) (w).

& (sw> :4) = SSdw's z(WS , (ws) Ebare (Swis := z@bare

Obare((w()=** = /Saw's Z+ (w) , Swis)8(sws;4) Operator mixing
-

may happen.N

(z8z+ = z+ xz = 1) 0= Zijxbare
= thenis matrix

In Ms scheme, E = S(Iw)-(wis)+Z ins (Sw3, SW's)·

RGEof (swSiti) reads :

Ocsusit = = rQ8 = - ((dwU(w) ,Sus) & (swsit,

- Note that o=bare.



Thenc) = /[dwE(sm) , Swis) Obare(sw's

= Sidw E(sm), swis) (bw") /(Ins , SW"3)8 (SW") ,h)

=- (Skw"))- Ssaw's (Fz(sm ,swi) z(Iw's , Sw"3)"@CIW")i+)
-

V ↑
V

~ (SW3 , Sw"3]

i. e., u = - (enz) xzt (*)

It is E finite , because= +
4014)d
↓tw x14) Usual QSD

beta funs,

and&(4) = -255(4) +&(3)
↓

In reality, there is another formulation of (*)·

vz = U+-=+
> u = 262") .

Back to h > Ur

z= (u(stie) +:) Scr-u) - 2(Yul + (Sx+)

↳U=-4() - ((u(s++ 2e2) + 2) Or(s,+ ;4)

+ (6du(u)+ (Op(us ,+,4) + Of(s, utjy))) + 0(5)

Exercise :

11) (0n(iz-oe)
=[dw. -51w-wisln-www

12)gizdudwiwuzi
= [dwl-s(w-wl) +wow

Sp(w) = zi Disc fasgisette
-

[01 Or (s,+) 10)

↳ w = h+- a consequence of reparameterization/ Lorentz invariance



Then it follows :

enSu(win) = - Sodw'U)W ,wilSy(w;H

with Uriwwll =-** ](fut + 2) diw-w +2WTIw,will +015]

TIw , wil =

- Ou-w'l
+

81w'-w]
LN Kernel

- win-wis w'lw'-wi
- +

in LCDA
L

YIw,w = - 98( -w] Tep(6) fuF +Us +

CNTIm,Wil Temp (4)

2. gg > h via light-quark loops.

recall the factorization

g

It looks rather similar as the case of h >22. . But there is an essential distinction

namely, the two external states carry color charges, such that the amplitude
is not IR finite ,

but rather has extra IR poles in E.

This distinction will require extra ingredients to derive the AD apart from
the formatism developped in h-> 20.

That external states with color charges is very common in PRCD,
e.g.

DY at NLp later on.
We will summarize the generality in the end.

The soft function Sg(W=f-e+) is the Fourier trans of the soft operator :

uns

Og(s,e) = ↑(Hn+Yu-H)Tayt10) ** Yul)+This isnt)

due to two insertions ofcolor matrices , we can combine semi-infin.
Wilsonfines to finite lengths any longer !

* direct calculation reveals that fixed-order results based on thesbore

not only have Ev poles but also EIR poles as expected , contrary to

he or case , where only Eur poles exist !

Yn(x)Tay(x) = yax)T
Y

adjoint WL . (T&c
= -fabe



An energetic gluon comes from -o to the , turning the soft (anti-equark into collinear

one , represented by Wilson length to 0
,

where the hard interaction happens !

u gas (s.) = Fin+Y)TIth- ,0 **T0
,SuYST*

Su+1)

inthe fact, 3 = F((th+[th-oIYO)T**yb()T"[0, Su+] q(su+1)
fig

Weadopt the first fire in the following .

O

# Ex semi-infinite adjoint Wilson lives.

th Su
8 &

correlations with those two Wilsonfines have IR poles .
But AD is

related to Eur poles .
How to proceed ?

O O O O

/ Mi Ki
..O O

# # #⑳
[d)

thefirst Lowis the same as that
of herr, up to a replacea

O

Exercise :

calculate
explicity

row .

Su
first diagram of the first

Eur ↓

I-v
=*( - [G)(6d(=)+ (04(4 ,+) +8y(s ,x+))

-* (G= +h(styet)) - * (1- 3) + -)0y4(s.+)

↓ ↑ kzqsusp aliagram vanish in

Feynman gange



We focus on the second row : plots (a) - (d) now.

How IR divergence develops in appearance of semi-infinite
Wilson lines ?

Use plot (b) as an example .
We stick with naive definition of Y.

-naivel = LigpEduseieEHxnvt12

we can either integrate out X first , which results in

-it.(th--Usu+) ( lot are neglected nore]
~ SidesSee (in--e) for brevity.

there is,divergence if
ne > 0 Crapidity

1
IR in momentum space

or integrate outa first , which results in

~ [x]dus(t)us

there is IR divergence in position space if X-

We need to disentangle IR poles fromSur to derive well-defined
UV renormalization & anomalous dimension !

One of the most natural way to regularize IR divergences is via

off-shellness (virtuality).

Wilson lives in the soft operator originate from soft-decoupting trans.

of energetic fields.

↑ Collinear : N+PaNQ() n-· Pc i ~ soft Cultra-soft)

im+· Pc [
i

:
i

<Pe++)+10 n-- e+ Pto n-- e + S-

X- X

n-1 n+1 +1 + p+ n+pan- 1 +n -1 ch+2

Xo X

S= to
,
likewise

n-
-p=

+ ro.

> eikonal propagator related to Wilson line



I
1 and normally suppressed

i

n--e + i0+
> Pexpig,a9dxe

-*Ot
m-H(X +X=)

i
> Pexpig,Tafde-

*
m-H(X +Xnz)

nt-l + St

Then semi-infinite WL has exponential suppression when X- -2.

&R poles are regulated as tog(S+ 14) ·

In this context
,

we refine the define two seme-infinite adjoint WLs.

Yay = Pexp=-gfabxeX A((X+xn))

Based on this definition, 2 poles in plot (a)-() are all UV. But they
hasS dependence !

For example , now

I LigpEduseieHxn--vui12

x[(+u-)+ +39(Su+

=xt)([x]x S-=
x(= - -)

=fu + fu)- inteV) + 0(5-) Og(s,+) + 018%)
.

uv

In total
,

the sum of the two rows reall :

(81)
Ignns= (G-)S(*)+ Jog (ast)+ Ou >s,at)

G
+ (2 + fustfie) + 2fu- -fu%)

-2() + -((s+figh) -F On)(S+)
Y ZI

We can not read off the E factor , which should only be of UV nature,
directly ,

since the above depends on 8-5+ as IR regulators.

Those IR-related terms can be systematically subtracted and the

subtraction procedure is consistent with factorization ,
which will be

discussed laten"



*

Sg(0) = yay :
define 893/0155g(o) 10) = gab R+R-

then Og(S,+) :=
Oh (s,

+)

<Sglos)
=

On 1+)

R+R-

Easy to find :

(5g()) = R+R= = 1+E+. =- + Efu)-S- 2+1)
Cancel with 8- 8+ -dep. in

Onus!

↳ OgIS,tipl = Obare(St)-S -G) - E(CF- [G)fu(s+Hev)
S

in mom. space this becomes - Eu(b) - CF2Obae
In(e- p+/fil =ensw/fi)

+ (F -=()(jx()+ (03a(a+)+Obare(s,a+)3+01,/
well defined !

Based on the same formulae , he can read off the AD Ug.

In mom. space , it leads

VgIw,w =--C + G(S(-wil + 8)F- EG)WTIWin's]
Subtraction & Factorization .

S
& : Why subtracted procedure produces the correct result ?

Q2i We subtract something ,
we must multiply it back. How can this

be consistent with factorization ?

The two questions are closely related.

Matching eg . of the jet function :

(BXe"PsX- F(WIDYn(x) YnWn(01) = JgInpmp) (**10)in
P

Y
collinear gange-invariant
gluon field.

To extract Jg ,
We impose <R1--.107

,
with b=0 , k-n.



Then <RIJAno 10) ~@ to all orders of Xs , since R =0 all

loop corrections are scaless .

In 2212.10447, two external gluous are onshell : ki = R = 0·

But as mentioned, S1-regulators in WLs sle dictated by off-shellness of
external particles (gluons in the current case),

We should consider the factorization in the context of small off-shellness .

In this context, the factorization reads

(.... MggymEHz:g(Mnl)Jg(-Muh Sun (1-1) (g(kil)<Agki)
&

V

T3
4 If ki = R2 =0

,
then

I
>Ag(k)) = 1 to all orders of XS.

Chose regulators)
T3 has IR poles of 2 in DR

.

Such IR poles in a can be removed by Egg , where Egg renormalizes
UV poles of SCET gluonic two-jet operator :

Ogg = AtAn 10)

Egg = 1- 2-th-M) = + 0(i)

② If kito ,
then the amplitude is has NO IR poles in !

[22t0 propagates
as S in WLs of I <Ag(kil) #l any more ,

but rather :

Ous) !
#(k) = 1+I -Ef + oldi) .

Now we rewrite as

T3 = H3ITgTgISARERETAgRi)
II

= HzlJgTgI@ Sy [ARisRE <Agski)
11

Zjg .

One can read the formulae either in on-shell or off-shell
cases.



3. Soft-Quark Function in Brell-Yan.

In the above two cases
,

we focus on amplitude - level soft functions &NLP.
Now we turn the benchmark process , BY ,

whose soft function is

at cross-section level .

Besides, we will find some universality.

In this section, we focus on the ga-channel of DY ,
which is NLP.

soft quark

Collinear quark

~ NL() =2H((ddJgSi , we
collinear gluon

The soft function S&P is defined as three-fold Farrier trans of the

soft operator :

Noi()=TrY(xo+San-TaYut (x)YufIXo
-

/I ↑Y(0) Yn- 10)TIYIsI(Sn]
uns

-g .TrotS(YtX+SuTIxotSch ,XoYu
-

-An+
-u+ x-FYo 10, Sin-IT

*Isnt [sIsin-1

- M ... ) = CoO)10
* D · Xo

LO :
& · Sz-

sing 3 NT(2-H
-on - -Al-

Exercise : i) derive this ;

ii) Do Fourier trans
,

to obtain the mom, space version :

Now=a wife

Due to semi-infinite WLs, there are IR divergences in 9 if without
extra IR regulator :

We adopt the sames-regulator , which is related to off-shellness :

Unlike the ggt he case
,
there are both virtuala real corrections.



But in appearance of 8-regulator , there are no a poles in real emission!

-Du+ -But
-Du+ -yu+ -Du+ -yu+

-

↳ E &

&

sing 3 6 3
-on

&

-Al-
on·

on

(a) (b) [C]

-Du+ -But -An+
-u+

&

-

& ·
& &

Si 6 3 3
-on -Al-

-on -Al-

[d] (e)

real corrections :

-Du+ -But -Du+ -But -Du+ -yu+

wi.T .&

3 3 3
~

-on -Al-
-on -on -Al-

say (b) [a]

-Du+ -But -Du+ -But -An+
-u+

Fi
-on -on

[d)) 19] if

Exercise : Show , for example, dees not have a pole
in presence of 8-regulator ·

T

I+Fog(0 ,43132) + Og(x0 , s ,25)]

+IfSteers,se)-2fu-tu + 2 I

-CI +2u +2fw(fieLes,SuL] ONP CXo,Is

no Xo dependence ,neue no on-clopt. ! +O(ti)
sat the moment)



(

NP,
Succe:
OXs
Si(X)Si(Xo)

& th-
& &

·..
·

wer

Sh :

-out-out

Somethme
-on--un-

ST = colWIlo)
,
WI=FrFYt[th- 0 1 Yn10)

S = Colle , Eit= Fy)Hut) [th ,JCyc10)
We explain this later in terms of factorization & quark and gluon

PDFs X-1 behavior !

S = ItFT -E - - (fut + fusipee))] + &(i)

= **I- - *( + +2 liners (I + 0(5)

Eur

&)LEGO = Dare (o , (x) -* +1- P + C)4(xo -2s,
-24s -1)

+ GE +44 + (s.
+ (n-In +z)} Obare (Xo , (5)

- (F-4)/ita)0Nare(Xo,S, (r) + Ughbare (Xo .Sc)

↓xo = In (ife(X0-io)]
+ O(x;)

.

↳ = fu(inerositiol)
↓s= fu(-iheV(Scrio)]



Then we can read off the AD in position space directly from the above :

Og(o ,(i) = - UN (X0 , 153 :k)

withUN= [8(+Cx - 4Csts-us
+44 - 2[ ->Bot DEVP(Xo, 153 :f)

+4(4 -2)(6d+[OX ,x,Sif) +O(0,S,092: 7 1])
+ 0(x]

We can Foulier transform to the momentum space as :

(wist =-Since
&NSo, wi, vi ;bya

with up-like

MP(o ,So sw=Simil +RTs(,2)= 6(303-52's)

- f(r-m)f(wc-vi) (4((-G)(u +3( -80)f(u,-vi)+4(C -2) W .TIWill
-

+ (WE> W2 , wi <> wil + 0(5)
L

this is exactly the same as that of Yq for gg > h !

We have seen building blocks of ADs for soft-quark functions !1
there are some extra relations between different ADs, see later on.

Now we explain the origin of the subtractions and how theywre dictated

by factorization .

The previous factorization is partonic :

A( =4HJS , (ws)

The full factorization reads

NP() = rodz(dx(x-XX) ffgA(z)
which involves(antil-quark & gluon PDFS.



H . Ig are matching coefficients ,
which all irrelevant for IR

↳arrangement.

The point is Ag in fact has extra IR poles , which cancel exactly
with the PDFs ! This is similar as gg-h case

.

ga
We denote those IR poles as EPDF

HIJgT]S Siz] SiZ]

= HIJgTg] Sg] · En

AD of Soft-Quark Functions : A Glimpse of Hidden Structures

1. We have seen the operator t double copy" briefly between Ord the LIDA

Here we establish the relation between ADs more precisely.

Note that V (S ,+) = Vi(s) + Filt) ,
Wil =2 or 8.

at one loop explicitly.



-




