# **CEPCSW ----- VXT \_Barrel section**

Tianyuan Zhang 2024.05.30

#### **VTX-Two structures**

➤ Input the following two structures in CEPCSW without changing the radius, the ladder number of each layer, etc.



|              | layerX | size .mm ( $W \times H \times L$ mm) | the number of Al layer | support thickness .mm |
|--------------|--------|--------------------------------------|------------------------|-----------------------|
| Short Barrel | layer1 | 17.4×1.7×260                         | 4×2                    | 0.167×2               |
|              | layer2 | 17.4×1.7×260                         | 4×2                    | 0.167×2               |
|              | layer3 | 17.4×1.7×260                         | 4×2                    | 0.167×2               |
| Long Barrel  | layer1 | 17.4×1.7×260                         | 4×2                    | 0.167×2               |
|              | layer2 | 17.4×2.5×494                         | 6×2                    | 0.179×2               |
|              | layer3 | 17.4×3.2×749                         | 6×2                    | 0.185×2               |

## **VTX-Material Budget**



The material budget  $X_0$  of the short barrel structure varies with  $\varphi$  when  $\theta = -90^{\circ}$ .

The material budget  $X_0$  of the long barrel structure varies with  $\varphi$  when  $\theta = -90^{\circ}$ .

- When particles are vertically incident on VXD1 and VXD2, the material budget of each layer(double-layer) is  $0.00374X_0$ ,  $0.00429X_0$ .
- $\triangleright$  Due to the rotation arrangement and the presence of overlap,  $X_0$  is not uniformly distributed in the  $\varphi-direction$ ;

#### **VTX-Material Budget**



- structure shown on the right.
- $\rightarrow$  When  $\theta = -90^{\circ}$ , the  $\overline{X_0}$  corresponding to Beampipe, VXD1, and VXD2 are  $0.00162X_0$ ,  $0.00565X_0$ , and  $0.00676X_0$ , respectively, which is higher than the CDR requirement of  $0.30\%X_0$ .
- $\triangleright$  As the  $\theta$  decreases, the  $\overline{X_0}$  increases.

#### $VTX-d_0$ resolution



▶ Using the long barrel structure and the short barrel structure, within the momentum range of  $P \in (10, 100) GeV/c$ , the resolution of vertex has a significant impact on  $d_0$  resolution, and vertex with Cmicron has an improvement of nearly 20% compared to vertex with 5um;

#### **VTX-Next Plan**

- Study whether there is a structure with smaller overlap;
- $\triangleright$  Summarize the impact of different structures on  $d_0$  resolution;
- Using M11 matrix to improve the geometric parameters of some vertex detectors.

# Thanks for Your Attention

## VTX-Back up





