

Crystal calorimeter readout electronics: inputs and discussions

Yong Liu (IHEP) June 6, 2024

Yong Liu (liuyong@ihep.ac.cn)

Specifications

Key Parameters	Value	Remarks
MIP light yield	~200 p.e./MIP	Ensure EM resolution better than $2\%/\sqrt{E(GeV)}$
Dynamic range	0.1 - 10 ³ MIP/channel	Deposited energy up to ~10 GeV per crystal
	(1 - 10 ⁵ p.e./channel)	(With single photon calibration)
Energy threshold	0.1 MIP	Dependent on MIP Signal-to-Noise Ratio
Timing resolution	~400 ps @ 1 MIP	Geant4 simulation; for position reconstruction
Crystal non-uniformity	< 1%	Calibration precision
Temperature stability	Stable at ~0.05 $^\circ$ C	CMS ECAL (PWO4)
Gap tolerance	~100 μm	Crystal calorimeter prototype

Crystal-SiPM timing resolution

Crystal response uniformity

- $1 \times 1 \times 40$ cm³ BGO crystal with ESR wrapping
- Air/optical grease coupling
- Scan with Cs-137 radioactive source

Cs-137 with ~ 8mm collimator

- Generally good uniformity at ~2.5% level along a single bar
- Optical grease gives 59% improvement on detected photons
- Grease coupling is difficult to control

Automated scanning platform

Time resolution: radioactive source and cosmic-ray tests

• Time resolution: ~4 ns at 662 keV (2.5 ns with grease), ~1.5 ns for MIP signals

Time resolution: 2023 DESY beam-test

- (Quasi) 1-MIP response with 5 GeV/c electron beam
 - $1 \times 1 \times 40$ cm³ and $1.5 \times 1.5 \times 60$ cm³ BGO crystal
 - 25 μm pixel SiPM, DAQ 1.25GS/s DAQ

- Time resolution generally does not change significantly with position •
- Time resolution varies with signal amplitude •
 - Best result: 200 ps (40 cm BGO with >12 MIP signal, 60 cm BGO with > 20 MIP signal)

BGO and BSO timing resolution: Geant4 simulation

➤ 5GeV e-, 3×3mm² SiPM(HPK S14160-3015PS)

	Size	Decay time	Light yield	Time resolution	_
10% CFD	$1 \times 1 \times 40 cm^3$	60/300ns	8200ph/MeV	2.182ns	■ Here → BGO
	$1 \times 1 \times 6.95 cm^3$	60/300ns	8200ph/MeV	0.966ns	
	$1 \times 1 \times 40 cm^3$	25/100ns	8200ph/MeV	1.057ns	
	$1 \times 1 \times 40 cm^3$	60/300ns	2000ph/MeV	5.005ns	
	$1 \times 1 \times 6.95 cm^3$	25/100ns	2000ph/MeV	0.9534ns	
10% Fit	Size	Decay time	Light yield	Time resolution	
	$1 \times 1 \times 40 cm^3$	60/300ns	8200ph/MeV	1.428ns	► BGO
	$1 \times 1 \times 6.95 cm^3$	60/300ns	8200ph/MeV	0.8047ns	
	$1 \times 1 \times 40 cm^3$	25/100ns	8200ph/MeV	0.7232ns	
	$1 \times 1 \times 40 cm^3$	60/300ns	2000ph/MeV	3.028ns	
	$1 \times 1 \times 6.95 cm^3$	25/100ns	2000ph/MeV	0.7432ns	

BGO and BSO timing resolution: Geant4 simulation

➤ 5GeV muon, 3×3mm² SiPM (HPK S14160-3015PS)

	Size	Decay time Light yield		MIP response (ch1+ch2)	Time resolution		
10% CFD	$1 \times 1 \times 40 cm^3$	60/300ns	8200ph/MeV	600p.e./MIP	3.691ns	← BGO	
	$1 \times 1 \times 40 cm^3$	25/100ns	25/100ns 2000ph/MeV 150p.e./MIP		4.244ns		
						_	
	Size	Decay time	Light yield	MIP response (ch1+ch2)	Time resolution		
10% Fit	$1 \times 1 \times 40 cm^3$	60/300ns	8200ph/MeV	600p.e./MIP	2.212ns	← BGO	
	1×1×40 <i>cm</i> ³	25/100ns	2000ph/MeV	150p.e./MIP	2.291ns	_	

Summary

(1) faster timing requires larger signal amplitudes (i.e. steeper leading edge);

(2) electronics capable of resolving single photons also leads to a high slew rate of MIP signals

Discussions: timing performance would be degraded by excluding single photon calibration?

SiPM: single photon calibration?

SiPM noise rate vs trigger threshold: lab tests

SiPM noise rate versus trigger threshold (in p.e.) ٠

DCR S13360-6025PE

- Dark count rate can be lower than 1 Hz with low trigger threshold (in voltage)
- High sensitivity to low energy particles

Low-energy threshold for SiPM-crystal

• Crystal-SiPM waveform peak (voltage) is proportional to integrated charge (QDC)

- 662 keV gamma corresponds to 0.07 MIP (2 channels)
- Requirement on dynamic range : 0.05~10³ MIP

- Trigger threshold (in voltage) of 15 p.e. is feasible
 - SiPM noise level is negligible (<<1 Hz) at 15 p.e.
- Sensitivity to detect low energy particles
- Stringent requirement on dynamic range: 10⁵ pixels

SiPM-ASIC studies: 2023 DESY beam-test

- Specs of state-of-art SiPM-readout chip (named MPT-2321)
 - Capability of single photon calibration; up to 1.6 nC; 50 ps TDC
- Beam-test of LYSO crystals, SiPMs and MPT2321
 - 5 GeV/c electron beam hits on LYSO crystal matrix
 - Readout with MPT chip + 25 μm pixel SiPM

- MPT chip: a large dynamic range and high SNR for single photon calibration
- Dynamic range can be further extended: lower SiPM gain, shorter pixel recovery time

CALOR 2024 poster: <u>Studies of</u> <u>a large dynamic range SiPM</u> <u>readout ASIC MPT2321-B</u>

- What can we benefit from single photon calibration?
 - SiPM gain monitoring: long-term stability -> calorimeter calibration scheme
 - SiPM saturation effects (large signals) -> corrections crucial for energy reconstruction
 - Sensitivity to detect low-energy particles (on the order of 100 keV)
- Status on technical part
 - State-of-art ASIC capable to resolve single photons with >=~15um SiPM pixels
 - For SiPM pixel pitch <=10um, more stringent requirements on better SNR for low signals
- Can we exclude the requirement of single photon calibration?
 - Yes, since 0.1 MIP (trigger threshold) corresponds the minimum signal and thus the dynamic range requirement is less stringent, i.e. 0.1 MIP – 10^3 MIP
 - Also need to come up with dedicated calibration schemes for SiPM monitoring, and SiPM saturation corrections (which still requires single photon information)

Photo-sensors: SiPM vs APD

• $1.6 - 3.6 \times 10^5$ pixels in $6 \times 6 \text{ mm}^2$ HPK-SiPM

HPK MPPC S14160-series data sheet

Type no.	Photosensitive area (mm)	Pixel pitch (µm)	Number of pixels	Fill factor (%)	Package	Window material	Window refractive index
S14160-1310PS	1.3×1.3	10	16663	31	Ceramic	Silicone resin	1.57
S14160-3010PS	3 × 3		89984				
S14160-6010PS NEW	6 × 6		359011				
S14160-1315PS	1.3×1.3	15	7284	49			
S14160-3015PS	3 × 3		39984				
S14160-6015PS NEW	6 × 6		159565				

• 2.4×10^5 pixels in 3 × 3 mm² NDL-SiPM

NDL-EQR06 Series SiPM data sheet

CEPC Calorimeters and Electronics

- CMS PWO4 calorimeter with APD readout
 - ~200ps timing resolution achieved only with large signals
 - Poor timing resolution at 1-MIP signal level: on the order of 10 ns

CALOR2024 Talk:

https://indico.cern.ch/event/1339557/contribut

ions/5915206/attachments/2859707/5002904/

CALOR2024"PRESENTATION ORLANDI.pdf

 $\underbrace{\underbrace{\textbf{F}}_{\text{eff}}^{\text{V}}}_{10^{-1}} \underbrace{\underbrace{\textbf{CMS Preliminary - Run1}}_{\text{CMS Preliminary - Run1}} \underbrace{\textbf{EB}}_{\sigma(t)} = \underbrace{\underbrace{\textbf{N}}_{A_{\text{off}}/\sigma_n} \oplus \sqrt{2}C}_{n} \\ \textbf{N} = 35.2 \pm 0.6 \text{ ns}}_{C} = 0.0743 \pm 0.0003 \text{ ns}}_{10^{-1}} \\ \underbrace{10^{-1}}_{10^{-1}} \underbrace{10^{-2}}_{10^{-2}} \underbrace{10^{-3}}_{n} A_{\text{eff}}/\sigma_n} \\ A_{\text{eff}}/\sigma_n$

E in EB [GeV]

Figure 1. Barrel, electrons from Z decays: spread of the time difference as a function of the effective amplitude. A fit to the distribution, using the quadrature of a noise and a constant contribution, is superimposed.

Figure 2. Study of neighboring crystals of a photon energy deposit: spread of the time difference as a function of the effective amplitude. A fit to the distribution, using the quadrature of a noise and a constant contribution, is superimposed.

Timing performance of the CMS ECAL and prospects for the

future, Daniele del Re 2015 J. Phys.: Conf. Ser. 587 012003

CEPC Calorimeters and Electronics

CMS ECAL with APD readout: spike events

- Ionisations directly in APD
 - Leading to a large energy deposition, equivalent to a high energy photon

Other considerations on photosensors

- Industry applications
 - SiPM: wide applications in medical imaging, Laser-TOF (LiDar in autombiles)
 - Potentials in cost reduction and better QA/QC for mass production
 - APD: limited applications
 - Only limited applications in HEP, as far as I know
 - Would lead to a higher price tag than SiPM, given the same sensitive area

Summary on photosensor options

- SiPM and readout ASIC
 - Commercial SiPM product can cover up to 3.6×10^5 pixels
 - Existing ASIC can already cover a large dynamic range of 10⁴
 - Beam test demonstrated quasi 1-MIP timing resolution of 500-600 ps
 - Wide applications in industry: potentials of cost effective and quality control
- APD in crystal calorimeter
 - CMS PWO ECAL: 1-MIP timing resolution on the order of ~10ns
 - CMS PWO ECAL: "Spike" events
 - Limited applications: unclear picture of cost reduction for mass production

- Waveform sampling
 - Pros
 - Best timing performance: leading-edge waveform fitting
 - Capability to distinguish pile-up waveforms (-> largely depends on the occupancy level per channel)
 - Cons
 - Significantly huge data throughput and power consumption
 - Calorimeters in high granularity (millions of channels): possible bottlenecks due to boundary conditions for data, power and space

Personal remarks

- As far as I know, there are no calorimeters at collider experiments that have used waveform sampling readout
- High granularity calorimeters are based on low-power chips that only extract key information on charge and timing

Christophe's talk at Pisa Meeting 2024

Waveform sampling

- Switched capacitor arrays (DRS4, Nalu, SPIDER...)
 - Pulse shape analysis
 - High accurcay timing, digital CFD
 - Sizeable power to provide GHz BW on large capacitance
 - large data volume
- Often used in off-detector electronics
 - Space and cooling available
 - Small/medium size detector readout and/or characterization
 - See LHCb calorimeter upgrade
- Upcoming R&D
 - Power reduction, Front-end integration
 - Data bandwitdth
 - Time walk correction, potentially best for ps accuracy

mega

