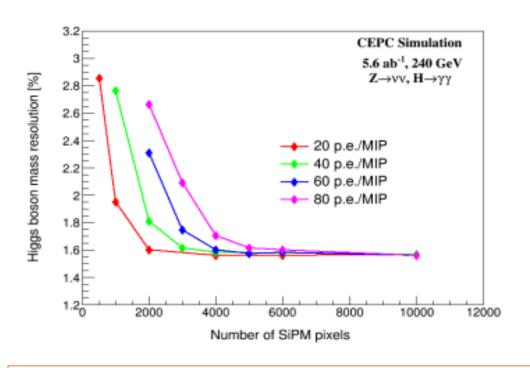

Plastic scintillator ECAL and HCAL

Yunlong Zhang

University of Science and Technology of China

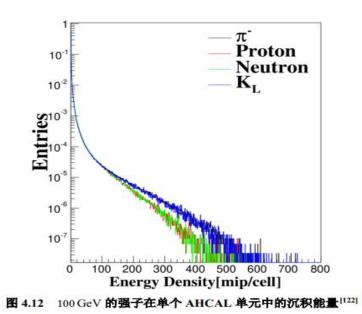
ScECAL


关键参数	S12571-010P	S12571-015P	S14160-1315
灵敏面积	$1 mm \times 1 mm$	1 mm × 1 mm	1.3mm×1.3mm
封装尺寸	1.9 mm × 2.4 mm	1.9 mm × 2.4 mm	2.63mm×2.1mm
像素数量	10000	4489	7248
像素尺寸	10 um	15 um	15 um
增益	1.35×10^{5}	2.3×10^{5}	3.6×10 ⁵
最灵敏波长	470 nm	460 nm	450 nm
光探测效率	10 %	25 %	32%
暗计数	100 kHz	100 kHz	200
串扰率	~ 7%	~ 13%	<1%
推荐电压	击穿电压 +4.5 V	击穿电压 +4 V	+4

	Parameters	Value	Remarks
	Light yield	20 pe/MIPs	
	Dynamic range	1- 16000 pe ?	高颗粒度探测器,每个单元上的能量沉积占比不大, 少数通道饱和对总能量影响不大
THE REAL PROPERTY.			

ScECAL

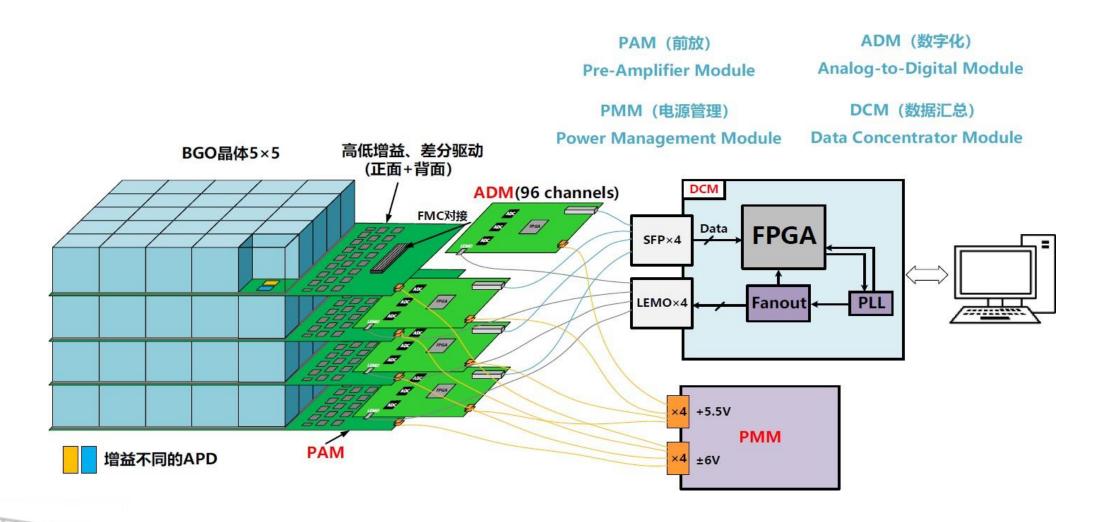
- 考虑SiPM的"饱和"效应 $N_{fired} = N_{pixel} \cdot (1 e^{-\frac{N_{seed}}{N_{pixel}}})$
 - Npixel = 7248
 - Nseed = 16000
- 计算得到Nfired = 6451
 - 说明饱和效应还没有达到极端情况(指数项还不能忽略)
 - 仍然可以根据"饱和公式"进行有效修正

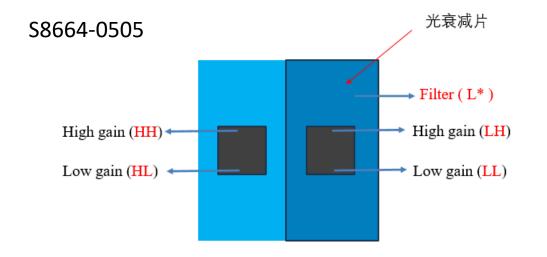

Parameters	Value	Remarks
Light yield	20 pe/MIPs	
Dynamic range	1- 6451 pe	48 fC – 310 pC
Electronics	< 0.2 pe	< 9.6 fC
noise		

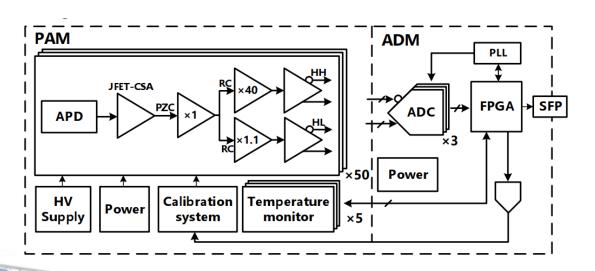
结论: 当LY=20 pe/MeV, SiPM像素数不要小于2000

Note: 虽然Npixel=2000时,该单元SiPM已进入极端饱和状态(e指数可以忽略),但考虑到该单元对总能量的占比不大,所以对最终的结果影响不大

AHCAL

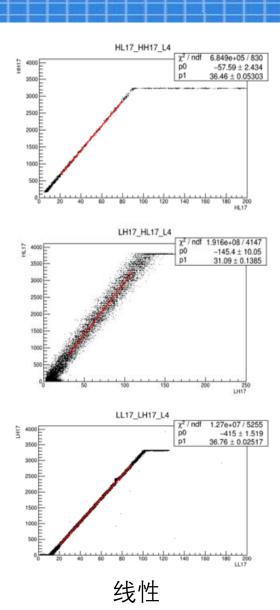


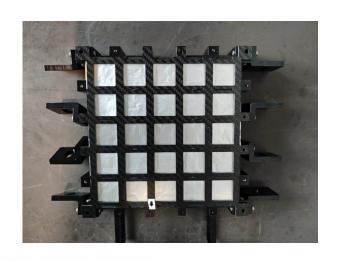

600 MIPs

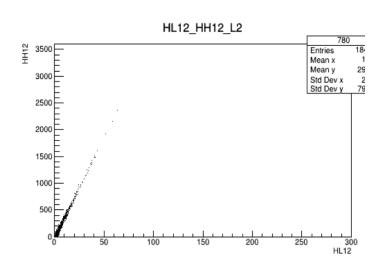

关键参数	S12571-010P	S12571-015P	S14160-1315
灵敏面积	$1 mm \times 1 mm$	$1 mm \times 1 mm$	1.3mm×1.3mm
封装尺寸	$1.9 \ mm \times 2.4 \ mm$	$1.9 \ mm \times 2.4 \ mm$	2.63mm×2.1mm
像素数量	10000	4489	7248
像素尺寸	10 um	15 um	15 um
増益	1.35×10^{5}	2.3×10^{5}	3.6×10 ⁵
最灵敏波长	470 nm	460 nm	450 nm
光探测效率	10 %	25 %	32%
暗计数	100 kHz	100 kHz	200
串扰率	~ 7%	~ 13%	<1%
推荐电压	击穿电压 +4.5 V	击穿电压 +4 V	+4

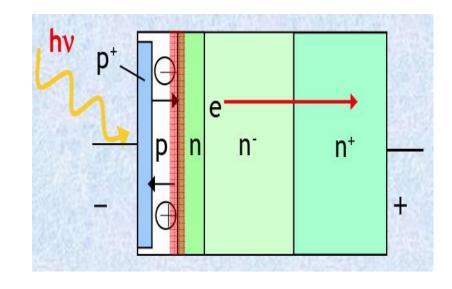
Parameters	Value	Remarks
Light yield	20 pe/MIPs	
Dynamic range	1- 12000 pe(不考虑饱和效应) 1-5864 pe (考虑饱和效应)	48 fC - 281 pC, 与ScECAL基本一致
Electronics noise	< 0.2 pe	< 9.6 fC

ECAL和AHCAL的读出 可以采用同种设计



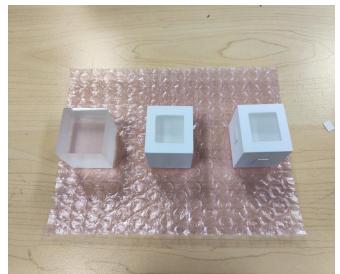



前端电子学的APD面

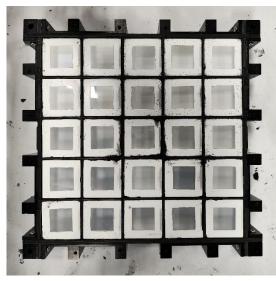

\$8664-0505

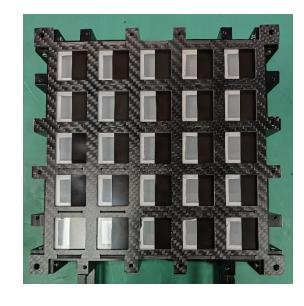
- P-on-N结构
- 专门用于光收集设计
- pn结区 (雪崩区) 很薄~10 um, 光子在pn结区基本全部转换
- 带电粒子在该区直接电离信号很小
- 带电粒子在n-, n+区电离产生的hole对雪崩信号没贡献

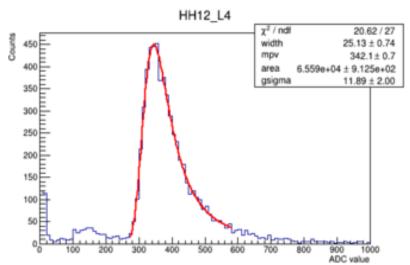
带电粒子直接电离的信号

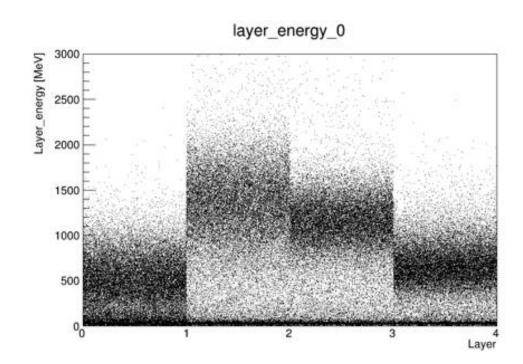


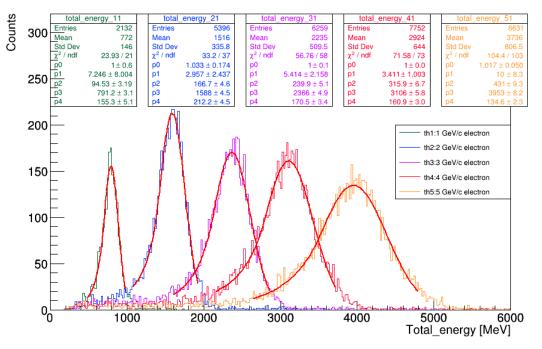
测试过程中,对APD进行遮光处理。 结果显示5 GeV带电粒子在 showermax位置直接电离的信号幅 度,与不遮光情况相比小于1%


但对于遮光的APD,该电离信号 不能忽略

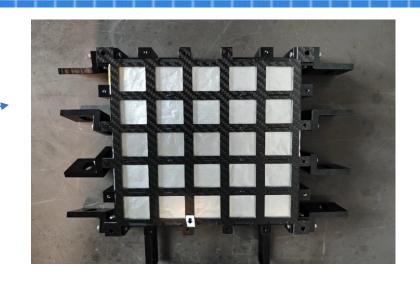

解决办法:采用小面积APD,比如研发新型的P-on-N LGAD?

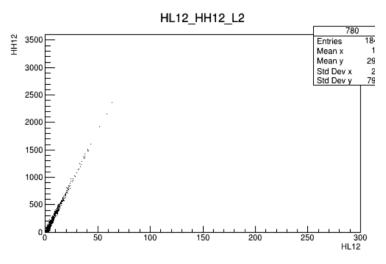






total_energy_81


● 直接在APD的电离信号


测试过程中,对APD进行遮光处理。 结果显示5 GeV带电粒子在showermax位置直接电 离的信号幅度,与不遮光情况相比小于1%

但对于遮光的APD,由于光信号小了,该电 离信号不能忽略

解决办法:采用小面积APD替代遮光方案,

比如研发新型的小面积P-on-N LGAD?

带电粒子直接电离的信号