

Progress on Glass Scintillator HCAL

Dejing Du

2024.06.21

Glass Scintillator HCAL

PFA-oriented detector system: CEPC 4th concept design

- Hadronic calorimeter (HCAL) with glass scintillator tiles
- Requires glass scintillator with dense, bright, cost efficient
- Expect better hadronic energy resolution \rightarrow better BMR
- R&D activities for glass scintillator HCAL
 - HCAL design, simulation studies and hardware developments
 - Hadronic energy resolution studies
 - PFA optimization and physics performance studies
 - Glass scintillator tiles: testing with cosmics/sources/beams
 - Key requirement: MIP response ~100 p.e. in 10 mm

Si Tracker

Si Vertex Tracker (TPC/DC)

Standalone Simulation setup

- GSHCAL geometry
 - Refer to Scintillator-Steel AHCAL (CEPC CDR baseline)
 - Replace plastic scintillator with glass scintillator
- Glass scintillator material
 - Components: Gd-B-Si-Ge-Ce³⁺
 - Nuclear interaction length (NIL): 23.83 cm
 - MIP response: 7 MeV/cm
- GSHCAL nominal setup parameters:

	Baseline (at CDR)	Ongoing (for TDR)
Total number of layers	40	48
Total NIL	5λ	6 λ
Glass tile size	40×40×10 mm ³	40×40×10 mm ³
Glass density	6 g/cm ³	6 g/cm ³
Readout threshold	0.1 MIP	0.1 MIP

Impact of energy threshold

- Vary energy threshold from 0 to 1 MIP
- Extract stochastic and constant terms in energy resolution
- The energy leakage of 40 Layers GSHCAL is significant, especially for the constant term
- Energy threshold has a significant impact on the energy resolution, and lower energy threshold would always be desirable for better energy resolution

Impact of glass scintillator density

- Fixed NIL of each layer, vary glass density from 3 to 7 g/cm3
- Extract stochastic and constant terms in energy resolution
- Higher glass density can improve hadronic energy resolution and provide a more compact detector structure

Impact of glass tile thickness

- Fixed NIL of each layer, vary glass tile thickness from 5 to 15 mm
- Extract stochastic and constant terms in energy resolution
- The hadronic energy resolution can be improved with thicker glass tiles, especially the stochastic term

Impact of glass tile transverse size

- Vary glass tile size from 10×10 to 50×50 mm2
- Extract stochastic and constant terms in energy resolution

➤ The

Impact of number of layers

- Fixed total NIL and glass tile thickness, vary layers from 30 to 80
 - More layers \rightarrow thinner steel thickness \rightarrow larger sampling fraction
- Extract stochastic and constant terms in energy resolution
- The hadronic energy resolution can be improved with more sensitive layers, especially the stochastic term

Beamtest setup of glass tiles

• First batch: 11 glass tiles with various tile dimensions successfully tested at CERN, using 10 GeV muon beam

 Second batch: 9 glass tiles with standard tile dimensions (4×4×1 cm3) successfully tested at DESY, using 5 GeV electron beam

Beamtest results of glass tiles

- First batch of tiles: typical MIP response of range of 10–79 p.e./MIP
 - Due to the different of glass components and production process
- Second batch of tiles: Quis-MIP response is 71–96 p.e./MIP, showed generally relatively good uniformity with the same batch

Beamtest results at DESY: tile uniformity

Tile coupled with one SiPM (6×6 mm³): cavity not yet implemented for better response uniformity

Tile coupled with 4 SiPMs $(3 \times 3 \text{ mm}^3)$, to keep the same sensitive area

- > 4 SiPMs can significantly improve tile non-uniformity at same total sensitive area
 - Glass tile uniformity need to be further optimized

Progress on R&D of glass scintillator material

- ➢ GS1 sample with best performance
 - Density: 6 g/cm3
 - Light yield: 985 ph/MeV
 - Decay time: 105 ns
 - Small size: 5×5×5 mm3
- Very promising to achieve the CEPC
 GSHCAL requirement
- The difficulty is to achieve such good performance with large size samples

Summary and plans

- Update the impacts of some key parameters to hadronic energy resolution at TDR setup
 - Energy threshold, glass density, tile thickness, tile transverse size, No. layers
- Beamtest results of glass tiles and R&D progress of glass material shows that the properties of glass scintillator is very close to our requirement
- Next plans
 - The improvement of constant term
 - Implement the digitization using real data in the simulation
 - Design optimization of glass tiles for optimal performance

