Fu-Sheng Yu Lanzhou University

华中师范大学, 2024.06.12

- Why baryon physics
- Bottom-baryon decays
- Charm-baryon decays
- Summary

Outline

Heavy flavor physics

- Heavy flavor physics has achieved a great progress in the heavy meson systems during the past two decades.
- It established the KM mechanism for the CP violation in B meson decays.
- •However, the studies on heavy-flavor baryons are limited.

2-body

3-body

It is a non-trivial extension. More is different.

CP violation in baryons

- Sakharov conditions for Baryogenesis:
 - 1) **baryon** number violation
 - 2) C and <u>CP violation</u>
 - 3) out of thermal equilibrium
- CPV: SM < BAU. => new source of CPV, NP
- CPV well established in K, B and D mesons, **but CPV never established in any baryon**
- The visible matter in the Universe is mainly made of baryons

CP violation in baryons

CP violation in baryons

- •In 2017, LHCb reported 3σ evidence of CPV in $\Lambda_h \rightarrow p\pi\pi\pi$ [Nature Physics, 2017]
- 2019; PRL 2022]
- •In 2022, BESIII reported the measurement of CPV in $\Xi^- \to \Lambda^0 \pi^-$ [Nature 2022]
- •So far, no CPV in the baryon sector has been observed yet.

•In 2019 and 2022, BESIII reported the measurement of CPV in $\Lambda^0 \to p\pi^-$ [Nature Physics,

Opportunities

• LHCb is a baryon factory !! Large Production: $\frac{f_{\Lambda_b}}{f_{u,d}} \sim 0.5 \longrightarrow \frac{N_{\Lambda_b}}{N_{B^{0(-)}}} \sim 0.5$

LHCb is a baryon factory !! Large Production

$$A_{CP}(\Lambda_b^0 \to p\pi^-) = (-3.5 \pm 1.7 \pm 2.0) \%, \ A_{CP}(\Lambda_b^0 \to pK^-) = (-2.0 \pm 1.3 \pm 1.0) \%$$

•CPV in some B-meson decays are as large as 10%:

$$A_{CP}(\overline{B}{}^0 \to K^+\pi^-) = -(8.34 \pm 0.32)\%, \ A_{CP}(\overline{B}{}^0_s \to K^+\pi^-) = +(21.3 \pm 1.7)\%$$

It can be expected that CPV in b-baryons might be observed soon !!

Opportunities

$$\frac{f_{\Lambda_b}}{f_{u,d}} \sim 0.5 \longrightarrow \frac{N_{\Lambda_b}}{N_{B^{0(-)}}} \sim 0.5$$

• Precision of baryon CPV measurements has reached to the order of 1% [LHCb, PLB2018]

Theoretical Challenges

1. QCD dynamics for non-leptonic decays

•One more energetic quark, one more hard gluon. Counting rule of power expansion is violated by α_{s} .

2. Non-perturbative inputs

•Theoretical uncertainties are dominated by the non-perturbative input parameters, such as the light-cone distribution amplitudes (LCDA).

3. Observables

•T-odd triple products $(\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_3$, 3σ signal in $\Lambda_b \to p\pi\pi\pi$ [LHCb2017]. Defined by kinematics, but unclear relation to the decay amplitudes. No way for theoretical explanations and predictions.

Dynamics of Non-leptonic Decays

Dynamics of Non-leptonic Decays

- •QCD studies on baryons are limited
- •Generalized factorization [Hsiao, Geng, 2015; Liu, Geng, 2021]: lost of non-factorizable contributions, such as W-exchange diagrams.
- •QCDF [Zhu, Ke, Wei, 2016, 2018]: based on diquark picture, No W-exchange diagrams.
- •PQCD [Lu, Wang, Zou, Ali, Kramer, 2009]: only considering the leading twists of LCDAs.
- •Currently, no complete QCD-inspired method for non-leptonic b-baryon decays

	EXP	GF	PQCD	QCDF
$Br(\Lambda_b \to p\pi)[\times 10^{-6}]$	4.3 ± 0.8	4.2+-0.7	4.66 +2.22-1.81	4.11~4.57
$Br(\Lambda_b \to pK)[\times 10^{-6}]$	5.1 ± 0.9	4.8+-0.7	1.82 +0.97-1.07	1.70~3.15
$A_{CP}(\Lambda_b \to p\pi)[\%]$	-2.5 ± 2.9	-3.9+-0.2	-32 +49 ₋₁	-3.74~-3.08
$A_{CP}(\Lambda_b \to pK)[\%]$	-2.5 ± 2.2	5.8+-0.2	-3 +25 ₋₄	8.1~11.4

Dynamics of Non-leptonic Decays

- •QCD studies on baryons are limited
- •Generalized factorization [Hsiao, Geng, 2015; Liu, Geng, 2021]: lost of non-factorizable contributions, such as W-exchange diagrams.
- •QCDF [Zhu, Ke, Wei, 2016, 2018]: based on diquark picture, No W-exchange diagrams.
- •PQCD [Lu, Wang, Zou, Ali, Kramer, 2009]: only considering the leading twists of LCDAs.
- •Currently, no complete QCD-inspired method for non-leptonic b-baryon decays

	EXP	GF	PQCD	QCDF
$Br(\Lambda_b \to p\pi)[\times 10^{-6}]$	4.3 ± 0.8	4.2+-0.7	4.66 +2.22-1.81	4.11~4.57
$Br(\Lambda_b \to pK)[\times 10^{-6}]$	5.1 ± 0.9	4.8+-0.7	1.82 +0.97-1.07	1.70~3.15
$A_{CP}(\Lambda_b \to p\pi)[\%]$	-2.5 ± 2.9	-3.9+-0.2	-32 +49 ₋₁	-3.74~-3.08
$A_{CP}(\Lambda_b \to pK)[\%]$	-2.5 ± 2.2	5.8+-0.2	-3 +25 ₋₄	8.1~11.4

•Why CPV in $\Lambda_b \rightarrow p\pi$, pK is so small?

Baryons are Different

Baryons are Different

- •Baryons are very different from mesons!!
- •Factorization: Heavy-to-light form factor is factorizable at leading power in SCET. No end-point singularity! [Wei Wang, 1112.0237] Taking $\Lambda_h \to \Lambda$ as an example,
 - $\xi_{\Lambda} = f_{\Lambda_b} \Phi_{\Lambda_b}(x_i) \otimes J(x_i, y_i) \otimes f_{\Lambda} \Phi_{\Lambda}(y_i)$

Baryons are Different

- Baryons are very different from mesons!!
- •Factorization: Heavy-to-light form factor is factorizable at leading power in SCET. No end-point singularity! [Wei Wang, 1112.0237] Taking $\Lambda_h \to \Lambda$ as an example, $\xi_{\Lambda} = f_{\Lambda_b} \Phi_{\Lambda_b}(x_i) \otimes J(x_i, y_i) \otimes f_{\Lambda} \Phi_{\Lambda}(y_i)$
- •However, the leading-power result is one order of magnitude smaller than the total one
 - •Leading power: $\xi_{\Lambda}(0) = -0.012$ [W.Wang, 2011]
 - Total form factor: $\xi_{\Lambda}(0) = 0.18$ [Y.L.Shen, Y.M.Wang, 2016]
- •Two hard gluons suppressed by α_s^2 at the leading power. Compared to the soft contributions in the power corrections.

• PQCD successfully predicted CPV in B meson decays [Keum, H.n.Li, Sanda, 2000; C.D.Lu, Ukai, M.Z.Yang, 2000].

			2000	2004
直接CP破坏(%)	GFA	QCDF	PQCD	exp.
$B \to \pi^+ \pi^-$	-5 ± 3	-6 ± 12	$+30 \pm 20$	+32 ± 4
$B \rightarrow K^+ \pi^-$	$+10 \pm 3$	+5±9	-17 ± 5	-8.3 ± 0.4

PQCD approach

• PQCD successfully predicted CPV in B meson decays [Keum, H.n.Li, Sanda, 2000; C.D.Lu, Ukai, M.Z.Yang, 2000].

			2000	2004
直接CP破坏(%)	GFA	QCDF	PQCD	exp.
$B \to \pi^+ \pi^-$	-5 ± 3	-6 ± 12	$+30 \pm 20$	+32 ± 4
$B \rightarrow K^+ \pi^-$	+10 ± 3	+5 ± 9	<u>-17 ± 5</u>	-8.3 ± 0.4

- under collinear factorization:
 - Endpoint singularity: propagator $\sim 1/x_1x_2Q^2 \rightarrow \infty$ when $x_{1,2} \rightarrow 0,1$

$$M(Q^2) = \int_0^1 dx_1 dx_2 \,\phi_B(x_2,\mu^2) * T_H\left(x_1,x_2,\mu^2\right) = \int_0^1 dx_1 dx_2 \,\phi_B(x_2,\mu^2) + T_H\left(x_1,x_2,\mu^2\right) + T_H\left(x_1,x_2,\mu^2\right)$$

PQCD approach

• PQCD successfully predicted CPV in B meson decays [Keum, H.n.Li, Sanda, 2000; C.D.Lu, Ukai, M.Z.Yang, 2000].

			2000	2004
直接CP破坏(%)	GFA	QCDF	PQCD	exp.
$B \to \pi^+ \pi^-$	-5 ± 3	-6 ± 12	$+30 \pm 20$	+32 ± 4
$B \rightarrow K^+ \pi^-$	+10 ± 3	+5 ± 9	-17 ± 5	-8.3 ± 0.4

- under collinear factorization:
 - Endpoint

In the singularity: propagator
$$\sim 1/x_1 x_2 Q^2 \to \infty$$
 when $x_{1,2} \to 0,1$
$$M(Q^2) = \int_0^1 dx_1 dx_2 \, \phi_B(x_2,\mu^2) * T_H\left(x_1, x_2, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2)\right) * \phi_\pi(x_1,\mu^2)$$

- - propagator ~ $1/(x_1x_2Q^2 + k_T^2)$

$$M(Q^2) = \int_0^1 dx_1 dx_2 \int d\mathbf{k}_{1T} d\mathbf{k}_{2T} \phi_B(x_2, \mathbf{k}_{2T}, \mu^2) * T_H\left(x_1, x_2, \mathbf{k}_{2T}, \mathbf{k}_{1T}, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2)\right) * \phi_{\pi}(x_1, \mathbf{k}_{1T}, \mu^2)$$

PQCD approach

• PQCD approach (based on k_T factorization): retain transverse momentum of parton k_T ,

$\Lambda_b \rightarrow p$ form factors in PQCD

- In 2009, the form factors are two orders of magnitude smaller than LatticeQCD/experiments, considering only the leading twist of LCDAs of baryons. [C.D.Lu, Y.M.Wang, et al, 2009]
- In 2022, when consider contributions of high-twist LCDAs, they are consistent with LatticeQCD.
 [J.J.Han, Y.Li, H.n.Li, Y.L.Shen, Z.J.Xiao, FSY, 2022]

	Lattice/exp	PQCD(2009)	PQCD(2022)
$f_1^{\Lambda_b \to p}(0)$	0.22 ± 0.08	0.002 ± 0.001	0.27 ± 0.12

	twist-3	twist-4	twist-5	twist-6	total
exponential					
twist-2	0.0007	-0.00007	-0.0005	-0.000003	0.0001
$twist-3^{+-}$	-0.0001	0.002	0.0004	-0.000004	0.002
$twist-3^{-+}$	-0.0002	0.0060	0.000004	0.00007	0.006
twist-4	0.01	0.00009	0.25	0.0000007	0.26
total	0.01	0.008	0.25	0.00007	$0.27 \pm 0.09 \pm 0.07$

proton

		twist-3	twist-4	twist-5	twist-6	total
	exponential					
	$\overline{twist-2}$	0.0007	-0.00007	-0.0005	-0.000003	0.0001
Λ.	$twist-3^{+-}$	-0.0001	0.002	0.0004	-0.000004	0.002
1b	$twist-3^{-+}$	-0.0002	0.0060	0.000004	0.00007	0.006
	twist-4	0.01	0.00009	0.25	0.0000007	0.26
	total	0.01	0.008	0.25	0.00007	$0.27 \pm 0.09 \pm 0.07$

proton

		twist-3	twist-4	twist-5	twist-6	total
Λ_b	$\begin{array}{c} \hline \text{exponential} \\ \text{twist-2} \\ \text{twist-3^{+-}} \\ \text{twist-3^{-+}} \\ \text{twist-4} \end{array}$	0.0007 -0.0001 -0.0002 0.01	-0.00007 0.002 0.0060 0.00009	-0.0005 0.0004 0.000004 0.25	-0.000003 -0.000004 0.00007 0.000007	$\begin{array}{c} 0.0001 \\ 0.002 \\ 0.006 \\ 0.26 \end{array}$
	total	0.01	0.008	0.25	0.00007	$0.27 \pm 0.09 \pm 0.07$

•High-twist LCDA dominant: twist-5 of proton + twist-4 of Λ_h

proton
•

		twist-3	twist-4	twist-5	twist-6	total
Λ_b	exponential twist-2 twist- 3^{+-} twist- 3^{-+}	0.0007 -0.0001 -0.0002	-0.00007 0.002 0.0060	-0.0005 0.0004 0.000004	-0.000003 -0.000004 0.00007	0.0001 0.002 0.006
	twist-4 total	$0.01 \\ 0.01$	0.00009 0.008	$\begin{array}{c} 0.25 \\ 0.25 \end{array}$	0.000007 0.00007	$0.26 \\ 0.27 \pm 0.09 \pm 0.07$

- •High-twist LCDA dominant: twist-5 of proton + twist-4 of Λ_h
- •Consistent with the power analysis by SCET.

proton

		twist-3	twist-4	twist-5	twist-6	total
Λ_b	exponential twist-2 twist- 3^{+-} twist- 3^{-+} twist-4	0.0007 -0.0001 -0.0002 0.01	-0.00007 0.002 0.0060 0.00009	$\begin{array}{c} -0.0005\\ 0.0004\\ 0.000004\\ 0.25\end{array}$	-0.000003 -0.000004 0.00007 0.000007	$\begin{array}{c} 0.0001 \\ 0.002 \\ 0.006 \\ 0.26 \end{array}$
	total	0.01	0.008	0.25	0.00007	$0.27 \pm 0.09 \pm 0.07$

- •High-twist LCDA dominant: twist-5 of proton + twist-4 of Λ_h
- •Consistent with the power analysis by SCET.
- •Safely twist expansion. Twist-6 of proton is highly suppressed.

	proton	
	twist-3	twist
exponential		
twist-2	0.0007	-0.000
$\cdot \cdot \cdot \circ + -$	0.0001	0.00

		twist-3	twist-4	twist-5	twist-6	total
Λ_b	$\begin{array}{c} \text{exponential} \\ \text{twist-2} \\ \text{twist-3^{+-}} \\ \text{twist-3^{-+}} \\ \text{twist-4} \\ \text{total} \end{array}$	$\begin{array}{c} 0.0007 \\ -0.0001 \\ -0.0002 \\ 0.01 \\ 0.01 \end{array}$	-0.00007 0.002 0.0060 0.00009 0.008	$\begin{array}{c} -0.0005\\ 0.0004\\ 0.000004\\ 0.25\\ 0.25\end{array}$	-0.000003 -0.000004 0.00007 0.000007 0.000007	$\begin{array}{c} 0.0001 \\ 0.002 \\ 0.006 \\ 0.26 \\ 0.27 \pm 0.09 \pm 0.07 \end{array}$

- •High-twist LCDA dominant: twist-5 of proton + twist-4 of Λ_h
- •Consistent with the power analysis by SCET.
- •Safely twist expansion. Twist-6 of proton is highly suppressed.
- •Perturbation protected. Results are given with $\mu \geq 1$ GeV.

Non-leptonic decays

• $\Lambda_b \to \Lambda_c \pi, \Lambda_c K, \Lambda J/\Psi, \Lambda \phi$ are recently studied by [C.Q.Zhang, J.M.Li, M.K.Jia, Zhou Rui, 2022]

It can be expected that PQCD can predict CPV of b-baryons

 $\pi^-/K^ \Lambda_b$ Λ_b

There are 200 Feynman diagrams for $\Lambda_b \to p\pi$, and 120 diagrams for $\Lambda_b \to pK$.

J.J.Han, Y.Li, H.n.Li, Y.L.Shen, Z.J.Xiao, FSY, in preparation

Observables

 $\mathcal{M} = i\bar{u}$

$$A_{CP}^{\text{dir}} = \frac{-2A |S^{T}|^{2} r_{1} \sin \Delta \phi}{A |S^{T}|^{2} (1 + r_{1}^{2} + 2r_{1} \cos \Delta \phi_{1} c)}$$

$$A_{CP}^{S} = \frac{-2r_{1}\sin\Delta\phi_{1}\sin\Delta\delta_{1}}{(1+r_{1}^{2}+2r_{1}\cos\Delta\phi_{1}\cos\Delta\delta_{1})}$$

$$A = \frac{(M_{\Lambda_b} + M_p)^2 - M_M^2}{M_{\Lambda_b}^2}$$

$$\overline{u}_p(S+P\gamma_5)u_{\Lambda_b}$$

$b_1 \sin \Delta \delta_1 - 2B |P^T|^2 r_2 \sin \Delta \phi_2 \sin \Delta \delta_2$ $\cos \Delta \delta_1 + B |P^T|^2 (1 + r_2^2 + 2r_2 \cos \Delta \phi_2 \cos \Delta \delta_2)$

$$A_{CP}^{P} = \frac{-2r_{2}\sin\Delta\phi_{2}\sin\Delta\delta_{2}}{(1+r_{2}^{2}+2r_{2}\cos\Delta\phi_{2}\cos\Delta\delta_{2})}$$

$$B = \frac{(M_{\Lambda_b} - M_p)^2 - M_M^2}{M_{\Lambda_b}^2}$$

Numerical Results

 $Br(\Lambda_b \to p\pi^-) = 4.65 \times 10^{-6}$ $A_{CP}^{dir}(\Lambda_b \to p\pi^-) = 4.29\%$ $A_{CP}^S(\Lambda_b \to p\pi^-) = 15\%$ $\Delta \delta_S = -19.31^\circ$ $r_S = 0.24$ $A_{CP}^P(\Lambda_b \to p\pi^-) = -6\%$ $\Delta \delta_P = -277.18^\circ$ $r_P = 0.03$

余纪新、韩佳杰、李亚、李湘楠、肖振军、于福升, 2024

$$Br(\Lambda_b \to pK^-) = 3.89 \times 10^{-6}$$

$$A_{CP}^{dir}(\Lambda_b \to pK^-) = -5.3\%$$

$$A_{CP}^S(\Lambda_b \to pK^-) = -4\%$$

$$\Delta \delta_S = -4.69^{\circ}$$

$$r_S = 4.83$$

$$A_{CP}^P(\Lambda_b \to pK^-) = -32\%$$

$$\Delta \delta_P = -135.31^{\circ}$$

$$r_P = 0.30$$

$\Lambda_b \rightarrow p \pi^-$	S	$\phi(S)^{\circ}$	Real(S)	$\operatorname{Imag}(S)$	P	$\phi(P)^{\circ}$	Real(P)	Imag(P)
T_{f}	832.17	180.00	-832.17	0.00	1172.14	180.00	-1172.14	0.00
T_{nf}	87.54	81.77	12.53	86.64	352.14	81.92	49.49	348.65
C'	29.00	-21.42	27.00	-10.59	46.29	4.80	46.13	3.87
E_2	79.80	42.40	58.93	53.81	67.41	-59.80	33.90	-58.26
B	15.95	-62.67	7.32	-14.17	20.90	33.07	17.51	11.40
Tree	735.54	170.95	-726.39	115.69	1069.70	163.40	-1025.10	305.66
$P_f^{C_1}$	68.67	180.00	-68.67	-0.00	3.42	180.00	-3.42	-0.00
$P_{nf}^{C_1}$	2.48	74.02	0.68	2.38	13.33	84.06	1.38	13.25
P^{C_2}	16.52	68.47	6.06	15.36	18.25	-104.55	-4.59	-17.66
$P^{E_1^u}$	10.56	88.27	0.32	10.55	8.75	-69.74	3.03	-8.21
P^B	1.60	113.43	-0.64	1.47	1.48	-9.91	1.46	-0.25
$P^{E_{1}^{d}} + P^{E_{2}}$	3.44	73.24	0.99	3.29	3.25	162.19	-3.10	1.00
Penguin	69.60	151.64	-61.25	33.06	12.98	-113.79	-5.23	-11.88

$\Lambda_b \rightarrow p K^-$	S	$\phi(S)^{\circ}$	Real(S)	$\operatorname{Imag}(S)$	P	$\phi(P)^{\circ}$	Real(P)	Imag(P)
T_{f}	1018.63	180.00	-1018.63	0.00	1439.70	180.00	-1439.70	0.00
T_{nf}	94.76	82.95	11.63	94.04	442.59	82.49	57.81	438.80
E_2	109.88	45.33	77.25	78.13	92.24	-60.79	45.02	-80.51
Tree	945.56	169.51	-929.75	172.17	1384.04	165.00	-1336.87	358.28
$P_f^{C_1}$	90.09	180.00	-90.09	-0.00	3.85	0.00	3.85	-0.00
$P_{nf}^{C_1}$	2.37	68.85	0.86	2.21	17.06	85.45	1.35	17.01
$P^{E_1^u}$	13.41	86.40	0.84	13.39	11.13	-70.96	3.63	-10.52
$P^{E_1^d}$	8.11	78.15	1.67	7.94	2.88	-124.36	-1.62	-2.38
Penguin	89.87	164.82	-86.73	23.54	8.30	29.69	7.21	4.11

CPV are cancelled by S- and P-wave amplitudes

$$\gamma_5 \gamma^{\mu} (1+\gamma_5) (\not p - \not p' + \not k_2') \gamma^{\nu} (\not p - \not p)$$

 $\mathscr{M} = i\bar{u}_p(S + P\gamma_5)u_{\Lambda_h}$

•Minus sign comes from V-A current in penguin diagram. •Non-factorizable contributions, benefitted by PQCD.

Dependence on the input parameter

 $\cdot \lambda_1$ is one parameter in the proton LCDA. Within the allowed region of λ_1 •CPV is less sensitive to the input parameters of LCDAs.

Nucleons, hyperons, octet and decuplet states, excited states

Nucleons, hyperons, octet and decuplet states, excited states

 Motivation: Limited knowledge for nucleons. VERY very limited for all the others, especially for HIGH TWISTs. So it restricts the prediction power of PQCD!!!

Nucleons, hyperons, octet and decuplet states, excited states

- Motivation: Limited knowledge for nucleons. VERY very limited for all the others, especially for HIGH TWISTs. So it restricts the prediction power of PQCD!!!
- Non-perturbative methods: LaMET and Lattice QCD, Dyson-Schwinger equation, Light-Front Quantization, inverse-problem QCD sum rules

Nucleons, hyperons, octet and decuplet states, excited states

- Motivation: Limited knowledge for nucleons. VERY very limited for all the others, especially for HIGH TWISTs. So it restricts the prediction power of PQCD!!!
- Non-perturbative methods: LaMET and Lattice QCD, Dyson-Schwinger equation, Light-Front Quantization, inverse-problem QCD sum rules
- Experiments: $eN \to eN$ and $ee \to p\bar{p}, \Lambda\bar{\Lambda}$ by PQCD or light-cone sum rules
- Motivation: Limited knowledge for nucleons. VERY very limited for all the others, especially for HIGH TWISTs. So it restricts the prediction power of PQCD!!!
- Non-perturbative methods: LaMET and Lattice QCD, Dyson-Schwinger equation, Light-Front Quantization, inverse-problem QCD sum rules
- Experiments: $eN \to eN$ and $ee \to p\bar{p}, \Lambda\bar{\Lambda}$ by PQCD or light-cone sum rules
- b-baryon

- Motivation: Limited knowledge for nucleons. VERY very limited for all the others, especially for HIGH TWISTs. So it restricts the prediction power of PQCD!!!
- Non-perturbative methods: LaMET and Lattice QCD, Dyson-Schwinger equation, Light-Front Quantization, inverse-problem QCD sum rules
- Experiments: $eN \to eN$ and $ee \to p\bar{p}, \Lambda\bar{\Lambda}$ by PQCD or light-cone sum rules
- b-baryon
 - Motivation: Very model-dependent. Very large uncertainties of parameters.

- Motivation: Limited knowledge for nucleons. VERY very limited for all the others, especially for HIGH TWISTs. So it restricts the prediction power of PQCD!!!
- Non-perturbative methods: LaMET and Lattice QCD, Dyson-Schwinger equation, Light-Front Quantization, inverse-problem QCD sum rules
- Experiments: $eN \to eN$ and $ee \to p\bar{p}, \Lambda\bar{\Lambda}$ by PQCD or light-cone sum rules
- b-baryon
 - Motivation: Very model-dependent. Very large uncertainties of parameters. Methods: QCD sum rules, phenomenologies.

- Motivation: Limited knowledge for nucleons. VERY very limited for all the others, especially for HIGH TWISTs. So it restricts the prediction power of PQCD!!!
- Non-perturbative methods: LaMET and Lattice QCD, Dyson-Schwinger equation, Light-Front Quantization, inverse-problem QCD sum rules
- Experiments: $eN \to eN$ and $ee \to p\bar{p}, \Lambda\bar{\Lambda}$ by PQCD or light-cone sum rules
- b-baryon
 - Motivation: Very model-dependent. Very large uncertainties of parameters. Methods: QCD sum rules, phenomenologies.

 - Higher twists.

How to predict CPV in multi-body decays?

 $\Lambda_h^0 \to p\pi^-, pK^-$

 $\Lambda_h^0 \rightarrow p K_S^0 \pi^-, p K_S^0 K^-, p \pi^0 \pi^-$

 $\Lambda_h^0 \to \Lambda^0 K^+ K^-, \ \Lambda^0 K^+ \pi^-, \ \Lambda^0 \pi^+ \pi^-$

 $\Lambda_{h}^{0} \to p\pi^{+}\pi^{-}\pi^{-}, pK^{-}\pi^{+}\pi^{-}, pK^{-}K^{+}\pi^{-}, pK^{-}K^{+}K^{-}$

$$-, p\pi^0 K^-$$

- Rescattering mechanism for charm CPV, Data-driven extraction of the $\pi\pi \rightarrow KK$ scatterings [Bediaga, Frederico, Magalhaes, PRL2023; Pich, Solomonidi, Silva, PRD2023].
- Rescattering mechanism have been successfully used to predict the discovery channel of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ [FSY, Jiang, Li, Lu, Wang, Zhao, '17]

Triangle diagrams

Much more channels are included in the rescattering mechanism

CPV can be easily obtained within the rescattering mechanism

 $\lambda_d A_d + \lambda_s A_s$

Branching Ratios

Only one parameter explains all the 8 experimental data!

Decay modes	Topology	$\mathcal{B}R_{\mathrm{SD}}(\%)$	$\mathcal{B}R_{LD}(\%)$	$\mathcal{B}R_{ ext{tot}}(\%)$	$\mathcal{B}R_{\mathrm{exp}}(\%)$
$\Lambda_c^+\to\Lambda^0\rho^+$	T, C', E_2, B	6.12	$2.30\substack{+1.18\-1.94}$	$6.26\substack{+2.44 \\ -1.39}$	4.06 ± 0.52
$\Lambda_c^+\to \Sigma^+\rho^0$	C', E_2, B	_	_	$0.77\substack{+1.38 \\ -0.53}$	< 1.7
$\Lambda_c^+ \to \Sigma^+ \omega$	C', E_2, B	_	_	$2.06\substack{+0.40\\-1.78}$	1.7 ± 0.21
$\Lambda_c^+\to \Sigma^+\phi$	E_1	_	_	$0.33\substack{+0.08\\-0.29}$	0.39 ± 0.06
$\Lambda_c^+ \to p \bar{K}^{*0}$	C, E_1	$3.26 imes 10^{-3}$	$3.76\substack{+1.37 \\ -3.43}$	$3.70^{+1.29}_{-3.39}$	1.96 ± 0.27
$\Lambda_c^+ \to \Xi^0 K^{*+}$	E_2,B	_	_	$1.94\substack{+0.40\\-1.68}$	_
Decay modes	Topology	$\mathcal{B}R_{\rm SD}(imes 10^{-3})$	$\mathcal{B}R_{ m LD}(imes 10^{-3})$	$\mathcal{B}R_{\mathrm{tot}}(imes 10^{-3})$	$\mathcal{B}R_{\mathrm{exp}}(imes 10^{-3})$
$\Lambda_c^+ \to \Lambda^0 K^{*+}$	T, C', E_2, B	2.92	$2.78^{+1.28}_{-1.02}$	$4.71\substack{+0.48\\-0.20}$	_
$\Lambda_c^+ \to \Sigma^0 K^{*+}$	C', E_2, B	_	_	$1.60\substack{+0.89\\-0.62}$	_
$\Lambda_c^+ \to \Sigma^+ K^{*0}$	C', E_1	_	_	$2.10\substack{+1.37 \\ -0.86}$	3.5 ± 1.0
$\Lambda_c^+ o p\phi$	C	1.78×10^{-3}	$1.44^{+1.14}_{-0.66}$	$1.37\substack{+1.13\\-0.65}$	1.06 ± 0.14
$\Lambda_c^+ \to p\omega$	C, C', E_1, E_2, B	1.48×10^{-3}	$1.28\substack{+0.46\\-0.37}$	$1.26\substack{+0.45\\-0.37}$	0.83 ± 0.11
$\Lambda_c^+ \to p \rho^0$	C, C', E_1, E_2, B	1.81×10^{-3}	$2.79^{+1.89}_{-1.29}$	$2.72^{+1.87}_{-1.27}$	_
Decay modes	Topology	$\mathcal{B}R_{\mathrm{SD}}(imes 10^{-4})$	$\mathcal{B}R_{ m LD}(imes 10^{-4})$	$\mathcal{B}R_{\mathrm{tot}}(imes 10^{-4})$	$\mathcal{B}R_{\mathrm{exp}}$
$\Lambda_c^+ \to p K^{*0}$	C, C'	9.28×10^{-4}	$0.53\substack{+3.67 \\ -0.38}$	$0.55\substack{+3.71 \\ -0.39}$	
$\Lambda_c^+ \to n K^{*+}$	T, C'	3.66	$0.44\substack{+1.64 \\ -0.30}$	$5.08\substack{+1.95\\-0.66}$	_

表 I: The branching ratio of $\Lambda_c^+ \to \mathcal{B}_8 V$ processes with $\eta = 0.6 \pm 0.1$.

C.P.Jia, H.Y.Jiang, J.P.Wang, FSY, 2405.xxxxx

Branching Ratios

Only one parameter explains all the 8 experimental data!

$$BR(\Lambda_c^+ \to p\pi^+\pi^-) = (4.60 \pm 0.26) \times 10^{-3}$$

Decay modes	Topology	$\mathcal{B}R_{\mathrm{SD}}(\%)$	$\mathcal{B}R_{\mathrm{LD}}(\%)$	$\mathcal{B}R_{ ext{tot}}(\%)$	$\mathcal{B}R_{\mathrm{exp}}(\%)$
$\Lambda_c^+\to\Lambda^0\rho^+$	T, C', E_2, B	6.12	$2.30\substack{+1.18\-1.94}$	$6.26\substack{+2.44 \\ -1.39}$	4.06 ± 0.52
$\Lambda_c^+\to \Sigma^+\rho^0$	C', E_2, B	_	_	$0.77\substack{+1.38 \\ -0.53}$	< 1.7
$\Lambda_c^+ \to \Sigma^+ \omega$	C', E_2, B	_	_	$2.06\substack{+0.40\\-1.78}$	1.7 ± 0.21
$\Lambda_c^+\to \Sigma^+\phi$	E_1	_	_	$0.33\substack{+0.08\\-0.29}$	0.39 ± 0.06
$\Lambda_c^+ o p \bar{K}^{*0}$	C, E_1	$3.26 imes 10^{-3}$	$3.76\substack{+1.37 \\ -3.43}$	$3.70^{+1.29}_{-3.39}$	1.96 ± 0.27
$\Lambda_c^+\to \Xi^0 K^{*+}$	E_2, B	_	_	$1.94\substack{+0.40\\-1.68}$	_
Decay modes	Topology	$\mathcal{B}R_{\rm SD}(imes 10^{-3})$	$\mathcal{B}R_{ m LD}(imes 10^{-3})$	$\mathcal{B}R_{\mathrm{tot}}(imes 10^{-3})$	$\mathcal{B}R_{\mathrm{exp}}(imes 10^{-3})$
$\Lambda_c^+ \to \Lambda^0 K^{*+}$	T, C', E_2, B	2.92	$2.78^{+1.28}_{-1.02}$	$4.71\substack{+0.48\\-0.20}$	_
$\Lambda_c^+ \to \Sigma^0 K^{*+}$	C', E_2, B	_	_	$1.60\substack{+0.89\\-0.62}$	_
$\Lambda_c^+ \to \Sigma^+ K^{*0}$	C', E_1	_	_	$2.10\substack{+1.37 \\ -0.86}$	3.5 ± 1.0
$\Lambda_c^+ \to p\phi$	C	1.78×10^{-3}	$1.44^{+1.14}_{-0.66}$	$1.37\substack{+1.13\\-0.65}$	1.06 ± 0.14
$\Lambda_c^+ \to p\omega$	C, C', E_1, E_2, B	1.48×10^{-3}	$1.28\substack{+0.46\\-0.37}$	$1.26\substack{+0.45\\-0.37}$	0.83 ± 0.11
$\Lambda_c^+ \to p \rho^0$	C, C', E_1, E_2, B	1.81×10^{-3}	$2.79^{+1.89}_{-1.29}$	$2.72^{+1.87}_{-1.27}$	_
Decay modes	Topology	$\mathcal{B}R_{\mathrm{SD}}(imes 10^{-4})$	$\mathcal{B}R_{ m LD}(imes 10^{-4})$	$\mathcal{B}R_{ ext{tot}}(imes 10^{-4})$	$\mathcal{B}R_{\mathrm{exp}}$
$\Lambda_c^+ \to p K^{*0}$	C, C'	9.28×10^{-4}	$0.53\substack{+3.67 \\ -0.38}$	$0.55\substack{+3.71 \\ -0.39}$	_
$\Lambda_c^+ \to n K^{*+}$	T, C'	3.66	$0.44\substack{+1.64 \\ -0.30}$	$5.08\substack{+1.95 \\ -0.66}$	_

表 I: The branching ratio of $\Lambda_c^+ \to \mathcal{B}_8 V$ processes with $\eta = 0.6 \pm 0.1$.

C.P.Jia, H.Y.Jiang, J.P.Wang, FSY, 2405.xxxxx

Dependence on η

$$A = \frac{\left|H_{1,\frac{1}{2}}\right|^{2} - \left|H_{-1,-\frac{1}{2}}\right|^{2}}{\left|H_{1,\frac{1}{2}}\right|^{2} + \left|H_{-1,-\frac{1}{2}}\right|^{2}} \qquad A_{CP} = \frac{\Gamma - \bar{\Gamma}}{\Gamma + \bar{\Gamma}}$$

C.P.Jia, H.Y.Jiang, J.P.Wang, FSY, 2406.xxxxx

 Reasonable strong phases •Can predict more processes:

 $\Lambda_h \to p\pi^-, pK^-, \Lambda\phi, \qquad \Lambda_h \to p\rho^ \Lambda_h \rightarrow \Lambda^0 + \phi/f_0(980), \Lambda^0 + \rho^0/f_0(500)$ $\Lambda_h \rightarrow N^*(1520, 1535) + K_S^0, N^* + \overline{K}^*$ $\Lambda_b \rightarrow \Lambda(1520) + \pi^0, \Lambda(1520) + K^{*0}$ 汪建鹏、段铸丁、王进、尚慧强、冯天亮、赵正

CPV in Λ_h decay by **FSI**

$$,pK^{*-},pa_1(1260)^-,pK_1^-(1270,1400),$$
 $\Xi_b^0 o pK^-$
00,980), $p + K^{*-}/\kappa(700), p + K_{0,2}^{*-}(1430)$
 $\Xi^{*0}/\kappa(700), N^* + \rho^0/f_0(500), N^* + \phi/f_0(980)$
 $D/\kappa(700), \Lambda(1520) + \rho^0/f_0(500), \Lambda(1520) + \phi/f_0(980)$
与山、贾彩萍,于福升、吕才典、李润辉、秦溱, 2024

 Reasonable strong phases •Can predict more processes:

 $\Lambda_h \to p\pi^-, pK^-, \Lambda\phi, \qquad \Lambda_h \to p\rho^ \Lambda_h \rightarrow \Lambda^0 + \phi/f_0(980), \Lambda^0 + \rho^0/f_0(500)$ $\Lambda_h \rightarrow N^*(1520, 1535) + K_S^0, N^* + \overline{K}^*$ $\Lambda_b \rightarrow \Lambda(1520) + \pi^0, \Lambda(1520) + K^{*0}$ 汪建鹏、段铸丁、王进、尚慧强、冯天亮、赵山 •Prospects: Strong couplings with N^{3}

CPV in Λ_h decay by **FSI**

$$,pK^{*-},pa_1(1260)^-,pK_1^-(1270,1400),$$
 $\Xi_b^0 op pK^-$
00,980), $p + K^{*-}/\kappa(700), p + K_{0,2}^{*-}(1430)$
 $\mathbb{R}^{*0}/\kappa(700), N^* + \rho^0/f_0(500), N^* + \phi/f_0(980)$
 $\Omega/\kappa(700), \Lambda(1520) + \rho^0/f_0(500), \Lambda(1520) + \phi/f_0(980)$
与山、贾彩萍,于福升、吕才典、李润辉、秦溱, 2024
(1520), N(1535), \Lambda*(1520)

- Baryons have nonzero spins which can construct more observables and thus are helpful to find large CPV for measurements.
- Direct CPV in the decays: $a_{CP}^{dir} \propto \sin \delta_s \sin \phi_w$. Sensitive to the strong phases.

Observables

Observables

- •Baryons have nonzero spins which can construct more observables and thus are helpful to find large CPV for measurements.
- Direct CPV in the decays: $a_{CP}^{\text{dir}} \propto \sin \delta_s \sin \phi_w$. Sensitive to the strong phases.
- Momentum \vec{p} and spin \vec{s} are odd under T operation. T-odd triple product: $(\vec{s}_1 \times \vec{s}_2) \cdot \vec{p}$
- Example (1): $\vec{s}_i \times \vec{s}_f \cdot \vec{p}$ measures the β parameter in $\Lambda \to p\pi$ [Lee, Yang, 1957] It was found that $a_{CP}^{\beta} \propto \beta + \bar{\beta} \propto \cos \delta_s \sin \phi_w$ [Donoghue, Pakvasa, 1985]

Observables

- Baryons have nonzero spins which can construct more observables and thus are helpful to find large CPV for measurements.
- Direct CPV in the decays: $a_{CP}^{dir} \propto \sin \delta_s \sin \phi_w$. Sensitive to the strong phases.
- Momentum \vec{p} and spin \vec{s} are odd under T operation. T-odd triple product: $(\vec{s}_1 \times \vec{s}_2) \cdot \vec{p}$
- Example (1): $\vec{s}_i \times \vec{s}_f \cdot \vec{p}$ measures the β parameter in $\Lambda \to p\pi$ [Lee, Yang, 1957] It was found that $a_{CP}^{\beta} \propto \beta + \bar{\beta} \propto \cos \delta_s \sin \phi_w$ [Donoghue, Pakvasa, 1985]
- Example (2): It was proposed to measure $A_B \propto N(\vec{p} \cdot \vec{\epsilon}_1 \times \vec{\epsilon}_2 > 0) N(\vec{p} \cdot \vec{\epsilon}_1 \times \vec{\epsilon}_2 < 0)$ in $B \to VV$, whose CPV is $A_B + A_{\overline{B}} \propto \cos \delta_s \sin \phi_w$ [Valencia, 1989]

- Precise prediction on strong phases is far beyond control currently
- Complimentary CPV observables proportional to sin δ or cos δ cover all the $(0, 2\pi)$ region
- Whatever the strong phase is, either $|\sin \delta|$ or $|\cos \delta|$ would be larger than 0.7 which is large enough for measurements
- But keep in mind that not all the CPV observables of $\cos\delta$ and $\sin \delta$ are exactly complementary, since they might have different strong phases.

Complementarity: $\cos \delta_{c}$ vs $\sin \delta_{c}$

 $a_{CP}^{(1)} \propto \cos \delta_s \sin \phi_w$ $a_{CP}^{(2)} \propto \sin \delta_s \sin \phi_w$

- To find the exactly complementary observables, we should know
 - why are some CPV observables proportional to $\cos \delta_s$?
 - what are the conditions to construct such observables?

- To find the exactly complementary observables, we should know
 - why are some CPV observables proportional to $\cos \delta_{\rm s}$?
 - what are the conditions to construct such observables?
- Why $\cos \delta_s$?
 - T-odd operator Q_{-} : $TQ_{-}T^{-1} = -Q_{-}$

• T is anti-unitary, T = UK with U a unitary operator and K a complex conjugation

- To find the exactly complementary observables, we should know
 - why are some CPV observables proportional to $\cos \delta_{\rm s}$?
 - what are the conditions to construct such observables?
- Why $\cos \delta_s$?
 - T-odd operator Q_{-} : $TQ_{-}T^{-1} = -Q_{-}$
 - T is anti-unitary, T = UK with U a unitary operator and K a complex conjugation
- Two conditions:
 - (1) For a basis of final states and a unitary transformation so that $UT |\psi_n\rangle = e^{i\alpha} |\psi_n\rangle$ (2) Q_{-} is invariant under this unitary transformation, $UQ_{-}U^{\dagger} = Q_{-}$

•Proof:

$$\begin{split} \langle f|Q_{-}|f\rangle &= \langle i|S^{\dagger}Q_{-}S|i\rangle \\ &= \sum_{m,n} \langle \psi_{i}|S^{\dagger}|\psi_{m}\rangle \langle \psi_{m}|Q_{-}|\psi_{n}\rangle \langle \psi_{n}|S| \\ &= \sum_{m,n} A_{m}^{*}A_{n} \langle \psi_{m}|Q_{-}|\psi_{n}\rangle \;. \end{split}$$

Why $\cos \delta_s$? What conditions?

• Proof:

$$\begin{split} \langle f|Q_{-}|f\rangle &= \langle i|S^{\dagger}Q_{-}S|i\rangle \\ &= \sum_{m,n} \langle \psi_{i}|S^{\dagger}|\psi_{m}\rangle \langle \psi_{m}|Q_{-}|\psi_{n}\rangle \langle \psi_{n}|S| \\ &= \sum_{m,n} A_{m}^{*}A_{n} \langle \psi_{m}|Q_{-}|\psi_{n}\rangle \;. \end{split}$$

$$\langle f | Q_{-} | f \rangle \propto \sum_{m_{f}}$$

Why $\cos \delta_s$? What conditions?

•Proof:

$$\begin{split} \langle f|Q_{-}|f\rangle &= \langle i|S^{\dagger}Q_{-}S|i\rangle \\ &= \sum_{m,n} \langle \psi_{i}|S^{\dagger}|\psi_{m}\rangle \langle \psi_{m}|Q_{-}|\psi_{n}\rangle \langle \psi_{n}|S| \\ &= \sum_{m,n} A_{m}^{*}A_{n} \langle \psi_{m}|Q_{-}|\psi_{n}\rangle \;. \end{split}$$

$$\langle f | Q_{-} | f \rangle \propto \sum_{m}$$

$$A_{\rm CP}^{Q_-} \equiv \frac{\langle f | Q_- | f \rangle - \langle \bar{f} | \bar{Q}_- | \bar{f} \rangle}{\langle f | Q_- | f \rangle + \langle \bar{f} | \bar{Q}_- | \bar{f} \rangle} \quad \mathbf{c}$$

Quod erat demonstrandum.

Why $\cos \delta_s$? What conditions?

CPV induced by T-odd and T-even

$$a_{CP}^{\text{T-odd}} \propto \sum_{m,n} (Im(A_m^*A_n - \bar{A}_m^*\bar{A}_n)) \propto \cos \delta_s \sin \phi_w$$
$$a_{CP}^{\text{T-even}} \propto \sum_{m,n} (Re(A_m^*A_n - \bar{A}_m^*\bar{A}_n)) \propto \sin \delta_s \sin \phi_w$$

• Example: $\Lambda_c^+ \to \Lambda^0 K^+$, Lee-Yang decay-asymmetry parameter

 $\alpha \propto Re[S]$ T-even: $\vec{s}_i \cdot \vec{p}$

T-odd: $(\vec{s}_i \times \vec{s}_f) \cdot \vec{p}$ $\beta \propto Im[S]$

$$S^*P] \qquad a^{\alpha}_{CP} = \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}} \propto \sin \delta$$

$$S^*P] \qquad a^{\beta}_{CP} = \frac{\beta + \overline{\beta}}{\beta - \overline{\beta}} \propto \cos \delta$$

$$compliments$$

Angular distributions

$$\frac{d\Gamma}{dc_{1} dc_{2} d\varphi} \propto -\frac{s_{1}^{2} s_{2}^{2}}{\sqrt{3}} \operatorname{Im} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^{*} + \mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \sin 2\varphi
+ \frac{s_{1}^{2} s_{2}^{2}}{\sqrt{3}} \operatorname{Re} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^{*} + \mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos 2\varphi
- \frac{4s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Im} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \sin \varphi
+ \frac{4s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos \varphi$$

$$\sin \varphi = (\vec{n}_a \times \vec{n}_b) \cdot \hat{p}_b = \vec{n}_a \cdot (\vec{n}_b)$$
$$\sin 2\varphi = 2\sin \varphi \cos \varphi \propto [(\vec{p}_1 \times \vec{p}_2)]$$

 $\times \hat{p}_b) \propto (\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_4$ $\hat{p}_2) \cdot (\vec{p}_3 \times \vec{p}_4)][(\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_4].$

Angular distributions

$$\frac{d\Gamma}{dc_{1} dc_{2} d\varphi} \propto -\frac{s_{1}^{2} s_{2}^{2}}{\sqrt{3}} \operatorname{Im} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^{*} + \mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \sin 2\varphi
+ \frac{s_{1}^{2} s_{2}^{2}}{\sqrt{3}} \operatorname{Re} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^{*} + \mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos 2\varphi
- \frac{4s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Im} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \sin \varphi
+ \frac{4s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos \varphi$$

$$\sin\varphi = (\vec{n}_a \times \vec{n}_b) \cdot \hat{p}_b = \vec{n}_a \cdot (\vec{n}_b)$$

 $\sin 2\varphi = 2\sin\varphi\cos\varphi\propto [(\vec{p_1}\times\vec{p_2})\cdot(\vec{p_3}\times\vec{p_4})][(\vec{p_1}\times\vec{p_2})\cdot\vec{p_4}].$

- •Angular distributions of resonant contributions are necessary. It is more clear in theory.

 $(\hat{p}_1 \times \hat{p}_2) \propto (\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_4$

• Triple-product of momentum, $(\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_3$, is not good. $\sin \varphi$ with $\sin \theta_1 \cos \theta_1 \sin \theta_2 \cos \theta_2$

- the current stage.
- LHCb Run3 begins collecting more data.

Summary

Baryon physics is an opportunity of heavy flavor physics at

• We are ready to predict CPV of heavy-flavor baryon decays.

Thank you very much!

Backups

Theoretical progresses: PQCD

Power-suppressed contribution incredibly surpasses the leading-power one

$$b] \cdot \phi_{\Lambda_b} \cdot T_H \cdot \phi_p$$

$$r = \frac{m_p}{M_{\Lambda_b}}$$

$$\frac{\text{twist-5}}{r^2 \cdot 2\sqrt{2}x_3} \quad r^3 \cdot 4\sqrt{2}(1-x_1)(1-x_2')$$

$$\cdot (1-x_1)(1-x_2') \quad \sim 0$$

$$\cdot (1-x_1)(1-x_2') \quad \sim 0$$

$$r^3 \cdot (1-x_2') \quad \sim 0$$

J.J.Han, Y.Li, H.n.Li, Y.L.Shen, Z.J.Xiao, FSY, 2202.04804

Light-Cone Distribution Amplitudes: Λ_b

$$(Y_{\Lambda_b})_{\alpha\beta\gamma}(x_i,\mu) = \frac{1}{8\sqrt{2}N_c} \Big\{ f_{\Lambda_b}^{(1)}(\mu) [M_1(x_2, M_2)] \Big\} \Big\} = \frac{1}{8\sqrt{2}N_c} \Big\{ f_{\Lambda_b}^{(1)}(\mu) [M_1(x_2, M_2)] \Big\} \Big\} = \frac{1}{8\sqrt{2}N_c} \Big\{ f_{\Lambda_b}^{(1)}(\mu) [M_1(x_2, M_2)] \Big\} = \frac{1}{8\sqrt{2}N_c} \Big\} = \frac{1}{8\sqrt{2}N_c} \Big\{ f_{\Lambda_b}^{(1)}(\mu) [M_1(x_2, M_2)] \Big\} = \frac{1}{8\sqrt{2}N_c} \Big\} = \frac{1}{$$

$$M_{1}(x_{2}, x_{3}) = \frac{\cancel{n}}{4} \cancel{\psi}_{3}^{+-}(x_{2}, x_{3}) + \frac{\cancel{n}}{4} \cancel{\psi}_{3}^{-+}(x_{2}, x_{3}),$$

$$M_{2}(x_{2}, x_{3}) = \frac{\cancel{n}}{\sqrt{2}} \cancel{\psi}_{2}(x_{2}, x_{3}) + \frac{\cancel{n}}{\sqrt{2}} \cancel{\psi}_{4}(x_{2}, x_{3}),$$

$$egin{aligned} & (Y_{\Lambda_b})_{lphaeta\gamma}(x_i,\mu) = rac{f'_{\Lambda_b}}{8\sqrt{2}N_c} [(
ot\!\!/ + m_{\Lambda_b})\gamma_5 C]_{eta\gamma} [\Lambda_b(p)]_{lpha}\psi(x_i,\mu), \ & \psi(x_i) = N x_1 x_2 x_3 \; exp\left(-rac{m_{\Lambda_b}^2}{2eta^2 x_1} - rac{m_l^2}{2eta^2 x_2} - rac{m_l^2}{2eta^2 x_3}
ight), \end{aligned}$$

 $(x_{3})\gamma_{5}C^{T}]_{\gamma\beta}+f^{(2)}_{\Lambda_{b}}(\mu)[M_{2}(x_{2},x_{3})\gamma_{5}C^{T}]_{\gamma\beta}\Big\}[\Lambda_{b}(p)]_{lpha}$

Light-Cone Distribution Amplitudes: Λ_b

$$\begin{split} \psi_{2}(x_{2}, x_{3}) = & m_{\Lambda_{b}}^{4} x_{2} x_{3} \left[\frac{1}{\epsilon_{0}^{4}} e^{-m_{\Lambda_{b}}(x_{2}+x_{3})/\epsilon_{0}} + a_{2} C_{2}^{3/2} (\frac{x_{2}-x_{3}}{x_{2}+x_{3}}) \frac{1}{\epsilon_{1}^{4}} e^{-m_{\Lambda_{b}}(x_{2}+x_{3})/\epsilon_{1}} \right] \\ \psi_{3}^{+-}(x_{2}, x_{3}) = & \frac{2m_{\Lambda_{b}}^{3} x_{2}}{\epsilon_{3}^{3}} e^{-m_{\Lambda_{b}}(x_{2}+x_{3})/\epsilon_{3}}, \\ \psi_{3}^{-+}(x_{2}, x_{3}) = & \frac{2m_{\Lambda_{b}}^{3} x_{3}}{\epsilon_{3}^{3}} e^{-m_{\Lambda_{b}}(x_{2}+x_{3})/\epsilon_{3}}, \\ \psi_{4}(x_{2}, x_{3}) = & \frac{5}{\mathcal{N}} m_{\Lambda_{b}}^{2} \int_{m_{\Lambda_{b}}(x_{2}+x_{3})/2}^{s_{0}} ds e^{-s/\tau} (s - m_{\Lambda_{b}}(x_{2}+x_{3})/2)^{3}, \end{split}$$

Ball, Braun, Gardi, 0804.2424, PLB 2008

$$\begin{split} \psi_{2}(x_{2},x_{3}) &= m_{\Lambda_{b}}^{4} x_{2} x_{3} \frac{a_{2}^{(2)}}{\epsilon_{2}^{(2)4}} C_{2}^{3/2} (\frac{x_{2}-x_{3}}{x_{2}+x_{3}}) e^{-m_{\Lambda_{b}}/(x_{2}+x_{3})/\epsilon_{2}^{(2)}}, \\ \psi_{3}^{+-}(x_{2},x_{3}) &= m_{\Lambda_{b}}^{3} (x_{2}+x_{3}) \left[\frac{a_{2}^{(3)}}{\epsilon_{2}^{(3)3}} C_{2}^{1/2} (\frac{x_{2}-x_{3}}{x_{2}+x_{3}}) e^{-m_{\Lambda_{b}}(x_{2}+x_{3})/\epsilon_{2}^{(3)}} + \frac{b_{3}^{(3)}}{\eta_{3}^{(3)3}} C_{2}^{1/2} (\frac{x_{2}-x_{3}}{x_{2}+x_{3}}) e^{-m_{\Lambda_{b}}(x_{2}+x_{3})/\eta_{3}^{(3)}} \right] \\ \psi_{3}^{-+}(x_{2},x_{3}) &= m_{\Lambda_{b}}^{3} (x_{2}+x_{3}) \left[\frac{a_{2}^{(3)}}{\epsilon_{2}^{(3)3}} C_{2}^{1/2} (\frac{x_{2}-x_{3}}{x_{2}+x_{3}}) e^{-m_{\Lambda_{b}}(x_{2}+x_{3})/\epsilon_{2}^{(3)}} - \frac{b_{3}^{(3)}}{\eta_{3}^{(3)3}} C_{2}^{1/2} (\frac{x_{2}-x_{3}}{x_{2}+x_{3}}) e^{-m_{\Lambda_{b}}(x_{2}+x_{3})/\eta_{3}^{(3)}} \right] \\ \psi_{4}(x_{2},x_{3}) &= m_{\Lambda_{b}}^{2} \frac{a_{2}^{(4)}}{\epsilon_{2}^{(4)^{2}}} C_{2}^{1/2} (\frac{x_{2}-x_{3}}{x_{2}+x_{3}}) e^{-m_{\Lambda_{b}}(x_{2}+x_{3})/\epsilon_{2}^{(4)}}, \qquad a_{2}^{(2)} &= 0.391 \pm 0.279, \ a_{2}^{(3)} \stackrel{(=)}{=} -0.161 \stackrel{(=).108}{t_{-0.207}}, \ a_{2}^{(4)} &= -0.541 \stackrel{(=).17}{t_{-0.207}}, \ a_{2}^{(4)} &= -0.541 \stackrel{(=).17}$$

Ali, Hambrock, Parkhomenko, W.Wang, 2012

Model-I: Gegenbauer-1

Model-II: Gegenbauer-2

with the Gegenbauer moment
$$a_2 = 0.333^{0.250}_{-0.333}$$
, the Gegenbauer polynomia $3(5x^2-1)/2$, the parameters $\epsilon_0 = 200^{+130}_{-60}$ MeV, $\epsilon_1 = 650^{+650}_{-300}$ MeV and ϵ_1

$$\frac{1}{2} = 0.391 \pm 0.279, \ a_2^{(3)} = -0.161^{+0.108}_{-0.207}, \ a_2^{(4)} = -0.541^{+0.173}_{-0.09}, \ b_3^{(3)} = 0.055^{+0.01}_{-0.02} \ \text{GeV}, \ \epsilon_2^{(2)} = 0.551^{+\infty}_{-0.356} \ \text{GeV}, \ \epsilon_2^{(3)} = 0.055^{+0.01}_{-0.02} \ \text{GeV}, \ \epsilon_2^{(4)} = 0.262^{+0.116}_{-0.132} \ \text{GeV} = 0.633 \pm 0.099 \ \text{GeV}.$$

Light-Cone Distribution Amplitudes: Λ_b

$$egin{aligned} \psi_2(x_2,x_3) =& rac{x_2 x_3}{\omega_0^4} m_{\Lambda_b}^4 e^{-(x_2+x_3)m_{\Lambda_b}/\omega_0}, \ \psi_3^{+-}(x_2,x_3) =& rac{2 x_2}{\omega_0^3} m_{\Lambda_b}^3 e^{-(x_2+x_3)m_{\Lambda_b}/\omega_0}, \ \psi_3^{-+}(x_2,x_3) =& rac{2 x_3}{\omega_0^3} m_{\Lambda_b}^3 e^{-(x_2+x_3)m_{\Lambda_b}/\omega_0}, \ \psi_4(x_2,x_3) =& rac{1}{\omega_0^2} m_{\Lambda_b}^2 e^{-(x_2+x_3)m_{\Lambda_b}/\omega_0}, \end{aligned}$$

Model-III: Exponential

$$\begin{split} \psi_{2}(x_{2}, x_{3}) &= \frac{15x_{2}x_{3}m_{\Lambda_{b}}^{4}(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}})}{4\bar{\Lambda}^{5}} \Theta(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}}) \\ \psi_{3}^{+-}(x_{2}, x_{3}) &= \frac{15x_{2}m_{\Lambda_{b}}^{3}(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}})^{2}}{4\bar{\Lambda}^{5}} \Theta(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}}), \\ \psi_{3}^{-+}(x_{2}, x_{3}) &= \frac{15x_{3}m_{\Lambda_{b}}^{3}(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}})^{2}}{4\bar{\Lambda}^{5}} \Theta(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}}), \\ \psi_{4}(x_{2}, x_{3}) &= \frac{5m_{\Lambda_{b}}^{2}(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}})^{3}}{8\bar{\Lambda}^{5}} \Theta(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}}), \end{split}$$

Model-IV: Free Parton

 $\omega_0 = 0.4 \text{ GeV}$

Bell, Feldmann, Y.M.Wang, Yip, 1308.6114, JHEP2013

Light-Cone Distribution Amplitudes: proton

$$\begin{split} &\langle \mathbf{0} \mid \varepsilon^{ijk} u_{\alpha}^{i'}(a_{1}z) \left[a_{1}z, a_{0}z \right]_{i',i} u_{\beta}^{j'}(a_{2}z) \left[a_{2}z, a_{0}z \right]^{i',i} u_{\alpha}^{j'}(a_{2}z) \left[a_{2}z, a_{0}z \right]^{i',i} u_{\alpha}^{j'}(a_{1}z) u_{\beta}^{j}(a_{2}z) d_{\gamma}^{k}(a_{3}z) \left| P \right\rangle = \\ &= S_{1}MC_{\alpha\beta} \left(\gamma_{5}N^{+} \right)_{\gamma} + S_{2}MC_{\alpha\beta} \left(\gamma_{5}N^{-} \right)_{\gamma} + P_{1}M \left(\gamma_{5}C \right)_{\alpha\beta} N_{\gamma}^{+} + R_{\gamma} \left(\psi C \right)_{\alpha\beta} \left(\gamma_{5}N^{+} \right)_{\gamma} + V_{2} \left(\psi C \right)_{\alpha\beta} \left(\gamma_{5}N^{-} \right)_{\gamma} + \frac{V_{3}}{2}M \left(\gamma_{\perp}C \right)_{\alpha\beta} \left(\gamma^{\perp} + \frac{W^{4}}{2}M \left(\gamma_{\perp}C \right)_{\alpha\beta} \left(\gamma^{\perp}\gamma_{5}N^{-} \right)_{\gamma} + V_{5}\frac{M^{2}}{2pz} \left(\xi C \right)_{\alpha\beta} \left(\gamma_{5}N^{+} \right)_{\gamma} + \frac{M^{2}}{2pz} V_{6} \\ &+ A_{1} \left(\psi \gamma_{5}C \right)_{\alpha\beta} N_{\gamma}^{+} + A_{2} \left(\psi \gamma_{5}C \right)_{\alpha\beta} N_{\gamma}^{-} + \frac{A_{3}}{2}M \left(\gamma_{\perp}\gamma_{5}C \right)_{\alpha\beta} \left(\gamma^{\perp}N \right) \\ &+ \frac{A_{4}}{2}M \left(\gamma_{\perp}\gamma_{5}C \right)_{\alpha\beta} \left(\gamma^{\perp}N^{-} \right)_{\gamma} + A_{5}\frac{M^{2}}{2pz} \left(\xi \gamma_{5}C \right)_{\alpha\beta} N_{\gamma}^{+} + \frac{M^{2}}{2pz} A_{6} \left(\xi \right) \\ &+ T_{1} \left(i\sigma_{\perp p}C \right)_{\alpha\beta} \left(\gamma^{\perp}\gamma_{5}N^{+} \right)_{\gamma} + T_{2} \left(i\sigma_{\perp p}C \right)_{\alpha\beta} \left(\gamma^{\perp}\gamma_{5}N^{-} \right)_{\gamma} + T_{3}\frac{M}{pz} \\ &+ T_{4}\frac{M}{pz} \left(i\sigma_{z p}C \right)_{\alpha\beta} \left(\gamma^{\perp}N^{-} \right)_{\gamma} + T_{5}\frac{M^{2}}{2pz} \left(i\sigma_{\perp z}C \right)_{\alpha\beta} \left(\gamma^{\perp}\gamma_{5}N^{+} \right)_{\gamma} + \frac{K}{2} \\ &+ M\frac{T_{7}}{2} \left(\sigma_{\perp \perp'}C \right)_{\alpha\beta} \left(\sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} + M\frac{T_{8}}{2} \left(\sigma_{\perp \perp'}C \right)_{\alpha\beta} \left(\sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left(\sigma_{\perp \perp'}C \right)_{\alpha\beta} \left(\sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} + M\frac{T_{8}}{2} \left(\sigma_{\perp \perp'}C \right)_{\alpha\beta} \left(\sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left(\sigma_{\perp \perp'}C \right)_{\alpha\beta} \left(\sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} + M\frac{T_{8}}{2} \left(\sigma_{\perp \perp'}C \right)_{\alpha\beta} \left(\sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left(\sigma_{\perp \perp'}C \right)_{\alpha\beta} \left(\sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left(\sigma_{\perp \perp'}C \right)_{\alpha\beta} \left(\sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left(\sigma_{\perp \perp'}C \right)_{\alpha\beta} \left(\sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left(\sigma_{\perp \perp'}C \right)_{\alpha\beta} \left(\sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left(\sigma_{\perp \perp'}C \right)_{\alpha\beta} \left(\sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left(\sigma_{\perp \perp'}C \right)_{\alpha\beta} \left(\sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left(\sigma_{\perp \perp'}C \right)_{\alpha\beta} \left(\sigma_{\perp \perp'}C \right)_{\alpha\beta} \left(\sigma_{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\$$

 $[z]_{j',j} d_{\gamma}^{k'}(a_3 z) [a_3 z, a_0 z]_{k',k} |P(P,\lambda)\rangle$

 $P_2 M \left(\gamma_5 C\right)_{\alpha\beta} N_{\gamma}^{-}$ $\gamma^{\perp}\gamma_5 N^+)_{\gamma}$ $_{S}(\not z C)_{\alpha\beta} \left(\gamma_{5} N^{-}\right)_{\gamma}$ $^{r+})_{\gamma}$ $(\not z \gamma_5 C)_{\alpha\beta} N_{\gamma}^{-}$ $\frac{1}{c} \left(i \sigma_{p z} C \right)_{\alpha \beta} \left(\gamma_5 N^+ \right)_{\gamma}$

 $\frac{M^2}{2pz}T_6\left(i\sigma_{\perp\,z}C\right)_{\alpha\beta}\left(\gamma^{\perp}\gamma_5N^{-}\right)_{\gamma}$

Braun, Fries, Mahnke, Stein, hep-ph/0007279, NPB 2000

 V^{-} (2.9) J_{γ} , 40

Light-Cone Distribution Amplitudes: proton

• Twist-3 LCDAs

$$\begin{split} V_1(x_i) =& 120x_1x_2x_3[\phi_3^0 + \phi_3^+(1 - 3x_3)], \\ A_1(x_i) =& 120x_1x_2x_3(x_2 - x_1)\phi_3^-, \\ T_1(x_i) =& 120x_1x_2x_3[\phi_3^0 + \frac{1}{2}(\phi_3^- - \phi_3^+)(1 - 3x_3)]. \end{split}$$

• Twist-4 LCDAs

$$\begin{split} V_2(x_i) &= 24x_1x_2[\phi_4^0 + \phi_4^+(1-5x_3)], \\ V_3(x_i) &= 12x_3[\psi_4^0(1-x_3) + \psi_4^-(x_1^2 + x_2^2 - x_3(1-x_3)) + \psi_4^+(1-x_3-10x_1x_2)], \\ A_2(x_i) &= 24x_1x_2(x_2 - x_1)\phi_4^-, \\ A_3(x_i) &= 12x_3(x_2 - x_1)[(psi_4^0 + \psi_4^+) + \psi_4^-(1-2x_3)], \\ T_2(x_i) &= 24x_1x_2[\xi_4^0 + \xi_4^+(1-5x_3)], \\ T_3(x_i) &= 6x_3[(\xi_4^0 + \phi_4^0 + \psi_4^0)(1-x_3) + (\xi_4^- + \phi_4^- - \psi_4^-)(x_1^2 + x_2^2 - x_3(1-x_3)) \\ &\quad + (\xi_4^+ + \phi_4^+ + \psi_4^+)(1-x_3-10x_1x_2)], \\ T_7(x_i) &= 6x_3[(-\xi_4^0 + \phi_4^0 + \psi_4^0)(1-x_3) + (-\xi_4^- + \phi_4^- - \psi_4^-)(x_1^2 + x_2^2 - x_3(1-x_3)) \\ &\quad + (-\xi_4^+ + \phi_4^+ + \psi_4^+)(1-x_3-10x_1x_2)], \\ S_1(x_i) &= 6x_3(x_2 - x_1)[(\xi_4^0 + \phi_4^0 + \psi_4^0 + \xi_4^+ + \phi_4^+ + \psi_4^+) + (\xi_4^- - \phi_4^- - \psi_4^-)(1-2x_3)], \\ P_1(x_i) &= 6x_3(x_2 - x_1)[(\xi_4^0 - \phi_4^0 - \psi_4^0 + \xi_4^+ - \phi_4^+ - \psi_4^+) + (\xi_4^- - \phi_4^- + \psi_4^-)(1-2x_3)]. \end{split}$$

• Twist-5 LCDAs

$$\begin{split} V_4(x_i) &= 3[\psi_5^0(1-x_3) + \psi_5^-(2x_1x_2 - x_3(1-x_3)) + \psi_5^+(1-x_3 - 2(x_1^2 + x_2^2))], \\ V_5(x_i) &= 6x_3[\phi_5^0 + \phi_5^+(1-2x_3)], \\ A_4(x_i) &= 3(x_2 - x_1)[-\psi_5^0 + \psi_5^- x_3 + \psi_5^+(1-2x_3)], \\ A_5(x_i) &= 6x_3(x_2 - x_1)\phi_5^-, \\ T_4(x_i) &= \frac{3}{2}[(\xi_5^0 + \psi_5^0 + \phi_5^0)(1-x_3) + (\xi_5^- + \phi_5^- - \psi_5^-)(2x_1x_2 - x_3(1-x_3)) \\ &\quad + (\xi_5^+ + \phi_5^+ + \psi_5^+)(1-x_3 - 2(x_1^2 + x_2^2))], \\ T_5(x_i) &= 6x_3[\xi_5^0 + \xi_5^+(1-2x_3)], \\ T_8(x_i) &= \frac{3}{2}[(\psi_5^0 + \phi_5^0 - \xi_5^0)(1-x_3) + (\phi_5^- - \phi_5^- - \xi_5^-)(2x_1x_2 - x_3(1-x_3)) \\ &\quad + (\phi_5^+ + \phi_5^+ - \xi_5^+)(\mu)(1-x_3 - 2(x_1^2 + x_2^2))], \\ S_2(x_i) &= \frac{3}{2}(x_2 - x_1)[-(\psi_5^0 + \phi_5^0 + \xi_5^0) + (\xi_5^- + \phi_5^- - \psi_5^0)x_3 + (\xi_5^+ + \phi_5^+ + \psi_5^0)(1-2x_3)], \\ P_2(x_i) &= \frac{3}{2}(x_2 - x_1)[(\psi_5^0 + \phi_5^0 - \xi_5^0) + (\xi_5^- - \phi_5^- + \psi_5^0)x_3 + (\xi_5^+ - \phi_5^+ - \psi_5^0)(1-2x_3)]. \end{split}$$

• Twist-6 LCDAs

$$\begin{split} V_6(x_i) =& 2[\phi_6^0 + \phi_6^+ (1 - 3x_3)], \\ A_6(x_i) =& 2(x_2 - x_1)\phi_6^-, \\ T_6(x_i) =& 2[\phi_6^0 + \frac{1}{2}(\phi_6^- - \phi_6^+)(1 - 3x_3)], \end{split}$$

- LCDAs V_i, A_i, T_i, S_i, P_i are functions of param
 - $V_1(x_i) = 120x_1x_2x_3[\phi_3^0]$ $A_1(x_i) = 120x_1x_2x_3(x_2)$ $T_1(x_i) = 120x_1x_2x_3[\phi_3^0]$
- The parameters $\phi_i^{\pm,0}, \psi_i^{\pm,0}, \xi_i^{\pm,0}$ depend on 8 parameters

$$\begin{split} \phi_{3}^{0} &= \phi_{6}^{0} = f_{N}, \qquad \phi_{4}^{0} = \phi_{5}^{0} = \frac{1}{2}(\lambda_{1} + f_{N}), \qquad \phi_{4}^{-} = \frac{5}{4} \Big(\lambda_{1} \big(1 - 2f_{1}^{d} - 4f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 1 \big) \Big), \\ \xi_{4}^{0} &= \xi_{5}^{0} = \frac{1}{6} \lambda_{2}, \qquad \psi_{4}^{0} = \psi_{5}^{0} = \frac{1}{2}(f_{N} - \lambda_{1}). \qquad \phi_{4}^{+} = \frac{1}{4} \Big(\lambda_{1} \big(3 - 10f_{1}^{d} \big) - f_{N} \big(10V_{1}^{d} - 3 \big) \big), \\ \psi_{4}^{-} &= -\frac{5}{4} \Big(\lambda_{1} \big(2 - 7f_{1}^{d} + f_{1}^{u} \big) + f_{N} \big(A_{1}^{u} + 3V_{1}^{d} - 2 \big) \big), \\ \lambda_{1} \big(-2 + 5f_{1}^{d} + 5f_{1}^{u} \big) + f_{N} \big(2 + 5A_{1}^{u} - 5V_{1}^{d} \big) \big), \\ \psi_{4}^{-} &= -\frac{5}{4} \Big(\lambda_{1} \big(2 - 7f_{1}^{d} + f_{1}^{u} \big) + f_{N} \big(A_{1}^{u} + 3V_{1}^{d} - 2 \big) \big), \\ \psi_{5}^{-} &= \frac{5}{3} \Big(\lambda_{1} \big(f_{1}^{d} - f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 1 \big) \big), \qquad \phi_{6}^{-} &= \frac{1}{2} \Big(\lambda_{1} \big(1 - 4f_{1}^{d} - 2f_{1}^{u} \big) + f_{N} \big(1 + 4A_{1}^{u} \big) \big), \\ \psi_{5}^{-} &= \frac{5}{3} \Big(\lambda_{1} \big(f_{1}^{d} - f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 1 \big) \big), \qquad \phi_{6}^{-} &= \frac{1}{2} \Big(\lambda_{1} \big(1 - 2f_{1}^{d} \big) + f_{N} \big(1 + 4A_{1}^{u} \big) \big), \\ \psi_{5}^{-} &= \frac{5}{3} \Big(\lambda_{1} \big(f_{1}^{d} - f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 1 \big) \big), \qquad \phi_{6}^{+} &= \Big(\lambda_{1} \big(1 - 2f_{1}^{d} \big) + f_{N} \big(4V_{1}^{d} - 1 \big) \Big). \\ \psi_{5}^{-} &= \frac{5}{3} \Big(\lambda_{1} \big(-1 + f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 3V_{1}^{u} \big) \big), \qquad \psi_{5}^{+} &= \frac{5}{3} \Big(\lambda_{1} \big(-1 + f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 1 \big) \Big), \\ \psi_{5}^{-} &= \frac{5}{3} \Big(\lambda_{1} \big(f_{1}^{d} - f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 3V_{1}^{u} \big) \big), \qquad \psi_{5}^{+} &= \frac{5}{3} \Big(\lambda_{1} \big(-1 + f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 3V_{1}^{u} \big) \Big), \\ \psi_{5}^{+} &= \frac{5}{3} \Big(\lambda_{1} \big(-1 + f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 3V_{1}^{u} \big) \big), \qquad \psi_{5}^{+} &= \frac{5}{3} \Big(\lambda_{1} \big(-1 + f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 3V_{1}^{u} \big) \Big), \\ \psi_{5}^{+} &= \frac{5}{3} \Big(\lambda_{1} \big(-1 + f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 3V_{1}^{u} \big) \Big), \qquad \psi_{5}^{+} &= \frac{5}{3} \Big(\lambda_{1} \big(-1 + f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 3V_{1}^{u} \big) \Big), \\ \psi_{5}^{+} &= \frac{5}{3} \Big(\lambda_{1} \big(-1 + f_{1}^{u} \big) + f_{N} \big(2A_{1}^{$$

$$\begin{split} \phi_{3}^{0} &= \phi_{6}^{0} = f_{N}, \qquad \phi_{4}^{0} = \phi_{5}^{0} = \frac{1}{2}(\lambda_{1} + f_{N}), \qquad \phi_{4}^{-} = \frac{5}{4} \Big(\lambda_{1} \big(1 - 2f_{1}^{d} - 4f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 1 \big) \Big), \\ \xi_{4}^{0} &= \xi_{5}^{0} = \frac{1}{6} \lambda_{2}, \qquad \psi_{4}^{0} = \psi_{5}^{0} = \frac{1}{2}(f_{N} - \lambda_{1}). \qquad \phi_{4}^{+} = \frac{1}{4} \Big(\lambda_{1} \big(3 - 10f_{1}^{d} \big) - f_{N} \big(10V_{1}^{d} - 3 \big) \big), \\ \psi_{4}^{-} &= -\frac{5}{4} \Big(\lambda_{1} \big(2 - 7f_{1}^{d} + f_{1}^{u} \big) + f_{N} \big(A_{1}^{u} + 3V_{1}^{d} - 2 \big) \big), \\ \lambda_{1} \big(-2 + 5f_{1}^{d} + 5f_{1}^{u} \big) + f_{N} \big(2 + 5A_{1}^{u} - 5V_{1}^{d} \big) \big), \\ \lambda_{2} \big(4 - 15f_{2}^{d} \big), \qquad \phi_{5}^{-} &= \frac{5}{3} \Big(\lambda_{1} \big(f_{1}^{d} - f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 1 \big) \big), \qquad \phi_{6}^{-} &= \frac{1}{2} \Big(\lambda_{1} \big(1 - 4f_{1}^{d} - 2f_{1}^{u} \big) + f_{N} \big(1 + 4A_{1}^{u} \big) \big), \\ \phi_{5}^{-} &= \frac{5}{3} \Big(\lambda_{1} \big(f_{1}^{d} - f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 1 \big) \big), \qquad \phi_{6}^{-} &= \frac{1}{2} \Big(\lambda_{1} \big(1 - 2f_{1}^{d} \big) + f_{N} \big(1 + 4A_{1}^{u} \big) \big), \\ \phi_{5}^{-} &= \frac{5}{3} \Big(\lambda_{1} \big(f_{1}^{d} - f_{1}^{u} \big) + f_{N} \big(3 + 4V_{1}^{d} \big) \big), \qquad \phi_{6}^{+} &= \Big(\lambda_{1} \big(1 - 2f_{1}^{d} \big) + f_{N} \big(4V_{1}^{d} - 1 \big) \Big). \\ \psi_{5}^{-} &= \frac{5}{3} \Big(\lambda_{1} \big(-1 + f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 3V_{1}^{d} \big) \big), \qquad \psi_{5}^{+} &= \frac{5}{3} \Big(\lambda_{1} \big(1 - 2f_{1}^{d} \big) + f_{N} \big(4V_{1}^{d} - 1 \big) \Big). \\ \psi_{5}^{-} &= \frac{5}{3} \Big(\lambda_{1} \big(f_{1}^{d} - f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 3V_{1}^{d} \big) \big), \qquad \psi_{5}^{+} &= \frac{5}{3} \Big(\lambda_{1} \big(1 - 2f_{1}^{d} \big) + f_{N} \big(4V_{1}^{d} - 1 \big) \Big). \\ \psi_{5}^{+} &= \frac{5}{3} \Big(\lambda_{1} \big(-1 + f_{1}^{u} \big) + f_{N} \big(1 - A_{1}^{u} - 3V_{1}^{d} \big) \big), \qquad \psi_{5}^{+} &= \frac{5}{3} \Big(\lambda_{1} \big(-1 + f_{1}^{u} \big) + f_{N} \big(1 - 4f_{1}^{u} - 2f_{1}^{u} \big) + f_{N} \big(4V_{1}^{u} - 1 \big) \Big). \\ \psi_{5}^{+} &= \frac{5}{3} \Big(\lambda_{1} \big(-1 + f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 3V_{1}^{u} \big) \Big), \qquad \psi_{5}^{+} &= \frac{5}{3} \Big(\lambda_{1} \big(-1 + f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 3V_{1}^{u} \big) \Big), \\ \psi_{5}^{+} &= \frac{5}{3} \Big(\lambda_{1} \big(-1 + f_{1}^{u} \big) + f_{N} \big(2A_{1}^{u} - 3V_{1}^{u} \big) \Big), \qquad \psi_{5}^{+} &= \frac{5}{3} \Big(\lambda_{1$$

$$\begin{split} \phi_{3}^{0} &= \phi_{6}^{0} = f_{N}, \qquad \phi_{4}^{0} = \phi_{5}^{0} = \frac{1}{2}(\lambda_{1} + f_{N}), \qquad \phi_{4}^{-} = \frac{5}{4}\left(\lambda_{1}\left(1 - 2f_{1}^{d} - 4f_{1}^{u}\right) + f_{N}\left(2A_{1}^{u} - 1\right)\right), \\ \xi_{4}^{0} &= \xi_{5}^{0} = \frac{1}{6}\lambda_{2}, \qquad \psi_{4}^{0} = \psi_{5}^{0} = \frac{1}{2}(f_{N} - \lambda_{1}). \qquad \phi_{4}^{+} = \frac{1}{4}\left(\lambda_{1}\left(3 - 10f_{1}^{d}\right) - f_{N}\left(10V_{1}^{d} - 3\right)\right), \\ \psi_{4}^{+} &= -\frac{1}{4}\left(\lambda_{1}\left(-2 + 5f_{1}^{d} + 5f_{1}^{u}\right) + f_{N}\left(2 + 5A_{1}^{u} - 5V_{1}^{u}\right)\right), \\ \xi_{4}^{-} &= \frac{5}{16}\lambda_{2}\left(4 - 15f_{2}^{d}\right), \qquad \psi_{4}^{0} = -\frac{5}{4}\left(\lambda_{1}\left(1 - 4f_{1}^{d} - 2f_{1}^{u}\right) + f_{N}\left(1 + 4A_{1}^{u}\right)\right), \\ \xi_{5}^{+} &= \frac{1}{16}\lambda_{2}\left(4 - 15f_{2}^{d}\right), \qquad \psi_{5}^{0} = \frac{5}{3}\left(\lambda_{1}\left(f_{1}^{d} - f_{1}^{u}\right) + f_{N}\left(2A_{1}^{u} - 1\right)\right), \qquad \phi_{6}^{-} &= \frac{1}{2}\left(\lambda_{1}\left(1 - 4f_{1}^{d} - 2f_{1}^{u}\right) + f_{N}\left(1 + 4A_{1}^{u}\right)\right), \\ \psi_{5}^{+} &= \frac{5}{6}\left(\lambda_{1}\left(4f_{1}^{d} - 1\right) + f_{N}\left(3 + 4V_{1}^{d}\right)\right), \qquad \phi_{6}^{+} &= \left(\lambda_{1}\left(1 - 2f_{1}^{d}\right) + f_{N}\left(4V_{1}^{d} - 1\right)\right)\right). \\ \psi_{5}^{+} &= \frac{5}{3}\left(\lambda_{1}\left(f_{1}^{d} - f_{1}^{u}\right) + f_{N}\left(2 - A_{1}^{u} - 3V_{1}^{d}\right)\right), \\ \psi_{5}^{+} &= \frac{5}{3}\left(\lambda_{1}\left(-1 + f_{1}^{u}\right) + f_{N}\left(1 + A_{1}^{u} + V_{1}^{d}\right)\right), \\ \xi_{5}^{+} &= -\frac{5}{12}\lambda_{2}\left(2 - 3f_{2}^{d}\right), \end{aligned}$$

$$\begin{split} \phi_{3}^{0} &= \phi_{6}^{0} = f_{N}, \qquad \phi_{4}^{0} = \phi_{5}^{0} = \frac{1}{2}(\lambda_{1} + f_{N}), \qquad \phi_{4}^{-} = \frac{5}{4}\left(\lambda_{1}\left(1 - 2f_{1}^{d} - 4f_{1}^{u}\right) + f_{N}\left(2A_{1}^{u} - 1\right)\right), \\ &\quad \xi_{4}^{0} = \xi_{5}^{0} = \frac{1}{6}\lambda_{2}, \qquad \psi_{4}^{0} = \psi_{5}^{0} = \frac{1}{2}(f_{N} - \lambda_{1}). \qquad \phi_{4}^{+} = \frac{1}{4}\left(\lambda_{1}\left(3 - 10f_{1}^{d}\right) - f_{N}\left(10V_{1}^{d} - 3\right)\right), \\ &\quad \psi_{4}^{-} = -\frac{5}{4}\left(\lambda_{1}\left(2 - 7f_{1}^{d} + f_{1}^{u}\right) + f_{N}\left(A_{1}^{u} + 3V_{1}^{d} - 2\right)\right), \\ &\quad \psi_{4}^{-} = -\frac{5}{4}\left(\lambda_{1}\left(2 - 7f_{1}^{d} + f_{1}^{u}\right) + f_{N}\left(A_{1}^{u} + 3V_{1}^{d} - 2\right)\right), \\ &\quad \psi_{4}^{-} = -\frac{5}{4}\left(\lambda_{1}\left(2 - 7f_{1}^{d} + f_{1}^{u}\right) + f_{N}\left(A_{1}^{u} + 3V_{1}^{d} - 2\right)\right), \\ &\quad \psi_{5}^{-} = \frac{5}{3}\left(\lambda_{1}\left(f_{1}^{d} - f_{1}^{u}\right) + f_{N}\left(2A_{1}^{u} - 1\right)\right), \qquad \phi_{6}^{-} = \frac{1}{2}\left(\lambda_{1}\left(1 - 4f_{1}^{d} - 2f_{1}^{u}\right) + f_{N}\left(1 + 4A_{1}^{u}\right)\right), \\ &\quad \psi_{5}^{+} = -\frac{5}{6}\left(\lambda_{1}\left(4f_{1}^{d} - 1\right) + f_{N}\left(2A_{1}^{u} - 1\right)\right), \qquad \phi_{6}^{+} = \left(\lambda_{1}\left(1 - 2f_{1}^{d}\right) + f_{N}\left(4V_{1}^{d} - 1\right)\right). \\ &\quad \psi_{5}^{-} = \frac{5}{3}\left(\lambda_{1}\left(f_{1}^{d} - f_{1}^{u}\right) + f_{N}\left(2A_{1}^{u} - 1\right)\right), \qquad \phi_{6}^{+} = \left(\lambda_{1}\left(1 - 2f_{1}^{d}\right) + f_{N}\left(4V_{1}^{d} - 1\right)\right). \\ &\quad \psi_{5}^{-} = \frac{5}{3}\left(\lambda_{1}\left(f_{1}^{d} - f_{1}^{u}\right) + f_{N}\left(2A_{1}^{u} - 1\right)\right), \qquad \phi_{6}^{+} = \left(\lambda_{1}\left(1 - 2f_{1}^{d}\right) + f_{N}\left(4V_{1}^{d} - 1\right)\right). \\ &\quad \psi_{5}^{-} = \frac{5}{3}\left(\lambda_{1}\left(1 - f_{1}^{u}\right) + f_{N}\left(2A_{1}^{u} - 1\right)\right), \qquad \psi_{5}^{+} = \frac{5}{3}\left(\lambda_{1}\left(1 - 2f_{1}^{d}\right) + f_{N}\left(4V_{1}^{d} - 1\right)\right). \\ &\quad \psi_{5}^{-} = \frac{5}{3}\left(\lambda_{1}\left(1 - f_{1}^{u}\right) + f_{N}\left(2A_{1}^{u} - 1\right)\right), \qquad \psi_{5}^{+} = \frac{5}{3}\left(\lambda_{1}\left(1 - 1 + f_{1}^{u}\right) + f_{N}\left(2A_{1}^{u} - 1\right)\right), \\ &\quad \psi_{5}^{+} = \frac{5}{3}\left(\lambda_{1}\left(1 - 2f_{1}^{d}\right) + f_{N}\left(4V_{1}^{d} - 1\right)\right). \\ &\quad \psi_{5}^{+} = \frac{5}{3}\left(\lambda_{1}\left(1 - 1 + f_{1}^{u}\right) + f_{N}\left(2A_{1}^{u} - 1\right)\right), \qquad \psi_{5}^{+} = \frac{5}{3}\left(\lambda_{1}\left(1 - 2f_{1}^{d}\right) + f_{N}\left(4V_{1}^{d} - 1\right)\right). \\ &\quad \psi_{5}^{+} = \frac{5}{3}\left(\lambda_{1}\left(1 - 4f_{1}^{u} - 2f_{1}^{u}\right) + f_{N}\left(4V_{1}^{u} - 1\right)\right). \\ &\quad \psi_{5}^{+} = \frac{5}{3}\left(\lambda_{1}\left(1 - 4f_{1}^{u} - 4f_{1}^{u}\right) + f_{N}\left(2A_{1}^{u} - 4f_{1}^{u}\right)\right). \\ &\quad \psi_{5}^{+$$

	$f_N(GeV^2)$	$\lambda_1 (GeV^2)$	$\lambda_2 (GeV^2)$	V_1^d	A_1^u	f_1^d	f_2^d	f_1^u
$\begin{array}{c c} {\rm QCDSR(2001)} & 8 \\ {\rm QCDSR(2006)} & 9 \\ {\rm LCSR(2006)} & 9 \end{array} (5 \\ \end{array}$	$.3 \pm 0.5) \times 10^{-3}$ $.0 \pm 0.5) \times 10^{-3}$ $.0 \pm 0.5) \times 10^{-3}$	$-(2.7 \pm 0.9) \times 10^{-2}$ $-(2.7 \pm 0.9) \times 10^{-2}$ $-(2.7 \pm 0.9) \times 10^{-2}$	$(5.1 \pm 1.9) \times 10^{-2}$ $(5.4 \pm 1.9) \times 10^{-2}$ $(5.4 \pm 1.9) \times 10^{-2}$	$\begin{array}{c} 0.23 \pm 0.03 \\ 0.23 \pm 0.03 \\ 0.3 \end{array}$	$\begin{array}{c} 0.38 \pm 0.15 \\ 0.38 \pm 0.15 \\ 0.13 \end{array}$	$0.6 \pm 0.2 \\ 0.4 \pm 0.05 \\ 0.33$	$\begin{array}{c} 0.15 \pm 0.06 \\ 0.22 \pm 0.05 \\ 0.25 \end{array}$	0.22 ± 0.13 0.07 ± 0.03 0.09

neters
$$\phi_i^{\pm,0}, \psi_i^{\pm,0}, \xi_i^{\pm,0}$$

 $p_3^0 + \phi_3^+ (1 - 3x_3)],$
 $p_2 - x_1)\phi_3^-,$
 $p_3^0 + \frac{1}{2}(\phi_3^- - \phi_3^+)(1 - 3x_3)].$

Braun, 2001

Light-Cone Distribution Amplitudes: proton

Table 2: Parameters in the proton LCDAs in units of 10^{-2} GeV² [73]. The accuracy of those parameters without uncertainties is of order of 50%.

	ϕ^0_i	ϕ_i^-	ϕ^+_i	ψ^0_i	ψ_i^-	ψ_i^+	ξ^0_i	ξ_i^-	ξ_i^+
twist-3 $(i = 3)$	0.53 ± 0.05	2.11	0.57						
twist-4 $(i = 4)$	-1.08 ± 0.47	3.22	2.12	1.61 ± 0.47	-6.13	0.99	0.85 ± 0.31	2.79	0.56
twist-5 $(i = 5)$	-1.08 ± 0.47	-2.01	1.42	$1.61 \pm .047$	-0.98	-0.99	0.85 ± 0.31	-0.95	0.46
twist-6 $(i = 6)$	0.53 ± 0.05	3.09	-0.25						
Parameters of LCDAs of proton

Model	Method	$\begin{array}{c} f_N \cdot 10^3 \\ \text{Gev}^2 \end{array}$	$\lambda_1 \cdot 10^3$ Gev ²	$\lambda_2 \cdot 10^3$ Gev ²	A ^{u} ₁	V ^d ₁	f ₁ ^{u}	<i>f</i> ^{<i>d</i>} ₁	f ^d ₂	Ref.
	QCDSR	5.0(5)	-27(9)	54(19)						
ASY		-	-	-	0	1/3	1/10	3/10	4/15	
CZ	QCDSR	5.3(5)	-	-	0.47	0.22	-	-	-	[1]
KS	QCDSR	5.1(3)	-	-	0.34	0.24	-	-	-	[2]
COZ	QCDSR	5.0(3)	-	-	0.39	0.23	-	-	-	[3]
SB	QCDSR	-	-	-	0.38	0.24	-	-	-	[4]
BK	PQCD	6.64	-	-	0.08	0.31	-	-	-	[5]
BLW	QCDSR	-	-	-	0.38(15)	0.23(3)	0.07(5)	0.40(20)	0.22(5)	[6]
BLW	LCSR (LO)	-	-	-	0.13	0.30	0.09	0.33	0.25	[6]
ABO1	LCSR (NLO)	-	-	-	0.11	0.30	0.11	0.27	-	[7]
ABO2	LCSR (NLO)				0.11	0.30	0.11	0.29	-	[7]
LAT09	LATTICE	3.23 (63)	-35.57 (65)	70.02 (13)	0.19 (2)	0.20 (1)	-	-	-	[8]
LAT14	LATTICE	3.07 (36)	-38.77 (18)	77.64 (37)	0.07 (4)	0.31 (2)	-	-	-	[9]
LAT19	LATTICE	3.54 (6)	-44.9 (42)	93.4 (48)	0.30 (32)	0.192 (22)	-	-	-	[10]

thanks to K.S.Huang

Reference

- [1] V. Chernyak and I. Zhitnitsky, Nucl. Phys. B246, 52 (1984).
- [2] I. King and C. T. Sachrajda, Nucl.Phys. B279, 785 (1987).
- [3] V. Chernyak, A. Ogloblin, and I. Zhitnitsky, Z.Phys. C42, 569 (1989).
- [4] N. Stefanis and M. Bergmann, Phys.Rev. D47, 3685 (1993), hep-ph/9211250.
- [5] J. Bolz and P. Kroll, Z.Phys. A356, 327 (1996), hepph/9603289.
- [6] V. Braun, A. Lenz, and M. Wittmann, Phys.Rev. D73, 094019 (2006), hep-ph/0604050
- [7] I. Anikin, V. Braun, and N. Offen, Phys.Rev. D88, 114021 (2013), 1310.1375.
- [8] V. M. Braun et al. (QCDSF Collaboration), Phys.Rev. D79, 034504 (2009), 0811.2712.
- [9] V.M. Braun, S. Collins, B. Gl¨aßle, M. G¨ockeler, A. Sch¨afer, R.W. Schiel, W. S¨oldner, A. Sternbeck, P. Wein, Phys. Rev. D89, 094511 (2014)

Sternbeck, P. Wein, Phys. Rev. D89, 0 [10] Gunnar S. Bali et al. Light-cone distri QCD. *Eur. Phys. J. A*, 55(7):116, 2019.

[10] Gunnar S. Bali et al. Light-cone distribution amplitudes of octet baryons from lattice