非平衡量子色动力学 Non-equilibrium QCD matter

University of Chinese Academy of Sciences Beijing, June 14th, 2024

Xiaojian Du

The Galician Institute of High Energy Physics University of Santiago de Compostela

Outline

The QCD matter

• From the Big Bang to the Little Bang

Far-from-equilibrium QCD matter

• The turbulent nature of quark-gluon plasma (QGP)

Early stage of heavy-ion collisions (HICs)

- The pre-hydrodynamic QGP in HICs
- Probing the pre-hydrodynamic QGP in HICs

Quantum speedup for the QCD matter

• An exciting new avenue for computing

Conclusions

The QCD matter

From the Big Bang to the Little Bang

Matter

Physics is the natural science of matter Reductionism:

Constitutes and finer structure of matter

Emergence:

More is different
 多者异也

Quarks and gluon

Reductionism: Quantum Chromodynamics (QCD)

One of the theory with finest structure experimentally verified

Hagedorn temperature (1960s):

• The number of hadronic (e.g. proton, neutron, etc.) states diverges when approaching T_H : $\lim_{K \to K} Tr[e^{-\beta H}] - \infty$

$$\lim_{T\to T_H} Tr[e^{-\beta H}] = \infty$$

• Absolute hot? Indicating new degrees of freedom beyond T_H . All hadrons are expected to be made of these new degrees of freedom

Asymptotic freedom (1970s):

(Gross, Wilczek, Politzer, 2004 Nobel Prize)

Quantum Chromodynamics (QCD)

$$\mathcal{L}_{\text{QCD}} = \sum_{f}^{N_f} \bar{\psi}_f \ (i\gamma^{\mu}D_{\mu} - m)\psi_f \ -\frac{1}{4}F^a_{\mu\nu}F^{\mu\nu}_a$$

- Running coupling becomes weaker at larger exchange momentum)
- Deconfinement of quark/gluon from hadron (new degree of freedom).

The QCD Plasma

Emergence: Quark-gluon plasma (QGP)

- A new phase of and the hottest matter in the Universe
 Where to find it:
- A few microseconds after the Big Bang in nature

Heavy-ion collisions as the Little Bang:

 Smash nucleus to produce a bulk medium of free quarks and gluon

"More is different" in high-energy nuclear physics: 核子重如牛,对撞生新态

Probing the QCD plasma

Heavy-ion collisions (HICs)

Largest experiment in human history

High energy heavy-ion collisions (1980s - current):

- Super Proton Synchrotron (SPS) at CERN (1980s, 1990s, 2000s)
- Then Relativistic Heavy-Ion Collider (RHIC) at Brookhaven (2000s, ...)
- Then Large Hardon Collider (LHC) at CERN (2000s, ...)

Earliest signal of the quark-gluon plasma (2000s):

- J/ψ abnormal suppression at SPS@CERN
- Theoretically predicted by Matsui & Satz (1986)

Fruitful physics in heavy-ion collisions:

A complex multi-stage experiment, including: Initial production of quarks and gluon, Thermalization of the non-equilibrium QGP, Dynamic production of hard and electromagnetic probes in the QGP, Hadronization,

Far-from-equilibrium QCD matter

The turbulent nature of quark-gluon plasma

Thermalization of the QCD plasma

Two typical far-from-equilibrium systems

Over-occupied and under-occupied plasmas

Over-occupied plasma:

Separation of scale

 $\langle p\rangle_0 \ll T$

- Direct energy cascade
 Low → High momentum
- Initial state in HICs

Under-occupied plasma:

Separation of scale

 $\langle p \rangle_0 \gg T$

Inverse energy cascade

High \rightarrow Low momentum

Jets in HICs

Non-equilibrium QCD plasma

QCD effective kinetic theory (QCD EKT)

• The state-of-the-art tool to study non-equilibrium QCD plasma

2-point correlations from the QCD

$$\mathcal{L}_{\text{QCD}} = \sum_{f}^{N_f} \bar{\psi}_f \; (i\gamma^{\mu}D_{\mu} - m)\psi_f \; -\frac{1}{4}F^a_{\mu\nu}F^{\mu\nu}_a$$

Set of coupled Boltzmann equations for quarks and gluon distribution:

$$\begin{pmatrix} \frac{\partial}{\partial \tau} - \frac{p_{\parallel}}{\tau} \frac{\partial}{\partial p_{\parallel}} \end{pmatrix} f_{a}(\tau, p_{T}, p_{\parallel}) = -C_{a}^{2 \leftrightarrow 2}[f](\tau, p_{T}, p_{\parallel}) - C_{a}^{1 \leftrightarrow 2}[f](\tau, p_{T}, p_{\parallel}) \\ a = g, u, \bar{u}, d, \bar{d}, s, \bar{s}$$

Nf

Including both elastic and inelastic scatterings in the QCD:

Turbulence of the QCD plasma

Self-similar energy cascade

Turbulence in over-occupied QCD plasma
 Self-similar scaling spectra:

$$f_g(p,t) = (t/t_0)^{\alpha} f_0 f_S \left((t/t_0)^{\beta} \frac{p}{\langle p \rangle_0} \right)$$

Universal Scaling Function

$$f_S\left((t/t_0)^\beta \frac{p}{\langle p\rangle_0}\right)$$

Scaling Exponents from Yang-Mills plasma

$$\alpha = -rac{4}{7}$$
, $eta = -rac{1}{7}$

Scaling works for the QCD plasma: gluon dominated

Quark spectra following gluon spectrum

Turbulence of the QCD plasma

X Du, S Schlichting, Phys. Rev. D 104 (2021) 054011

Early stage of heavy-ion collisions I

The pre-hydrodynamic QGP in HICs

Non-equilibrium QCD plasma in HICs

Heavy-ion collision: A multi-stage experiment

• Where does the QGP thermalization occur in HICs? Early stage

Equilibration/thermalization of the QGP:

Kinetic equilibration

Universal attractor solution in HICs

• The second law of thermodynamics

Anisotropization and isotropization:

- Longitudial expansion in the early stage of HICs (anisotropization)
- Hydrodynamization (isotropization)

Memory loss

 Different initial state tends to reach a unique point

Universality

 The unique point can occur even before the hydrodynamics become valid

Evolution of pressure

X Du, M Heller, S Schlichting, V Svensson, Phys. Rev. D 106 (2022) 014016

Chemical equilibration

Quarks slow down the equilibration

X Du, Schlichting, Phys. Rev. D 104 (2021) 054011 **X Du**, Schlichting, Phys. Rev. Lett. 127 (2021) 122301

Attractor solution

Conservation in equilibration

• Thermalization is about change, what is unchanged during thermalization? **Energy and charge conservation:**

$$\left(\mathbf{\tau}^{4/3}\mathbf{e}\right)_{\widetilde{\omega}} = \left(4\pi \frac{\eta T_{\text{eff}}}{\mathbf{e} + \mathbf{p}}\right)^{\frac{4}{9}} \left(\frac{\pi^2}{30} \nu_{\text{eff}}\right)^{\frac{1}{9}} \left(\mathbf{\tau}\mathbf{e}\right)^{\frac{8}{9}}_{0} C_{\infty} \mathcal{E}(\widetilde{\omega})$$

X Du, S Schlichting, Phys. Rev. Lett. 127 (2021) 122301 Xiaojian Du | 非平衡量子色动力学 Non-equilibrium QCD matter

Fluctuation on top of the attractor

Fluctuation propagation in equilibration

 Provide a complete picture of the pre-hydrodynamic plasma in HICs and initial condition for hydrodynamic simulations

Bulk medium in average:

$$\left(\frac{\partial}{\partial \tau} - \frac{p_{\parallel}}{\tau} \frac{\partial}{\partial p_{\parallel}}\right) f_a(\tau, p) = -C_a \ [f](\tau, p)$$

- Attractor from conservation Hot spots as fluctuation: $\left(\frac{\partial}{\partial \tau} + \nu \cdot \frac{\partial}{\partial x} - \frac{p_{\parallel}}{\tau} \frac{\partial}{\partial p_{\parallel}} \right) \delta f_a(\tau, x, p) = -\delta C_a \ [f, \delta f](\tau, x, p)$
- Linear response theory: Energy-momentum tensor /charge-current vector responses to perturbations/fluctuation (hot spots)

$$\delta T_{x}^{\mu\nu}(\tau_{\text{hydro}}, x) = \int d^{2}x' G_{\alpha\beta}^{\mu\nu}(x, x', \tau_{\text{hydro}}, \tau_{\text{EKT}}) \delta T_{x}^{\alpha\beta}(\tau_{\text{EKT}}, x')$$
$$\delta J_{x}^{\mu}(\tau_{\text{hydro}}, x) = \int d^{2}x' F_{\alpha}^{\mu}(x, x', \tau_{\text{hydro}}, \tau_{\text{EKT}}) \delta J_{x}^{\alpha}(\tau_{\text{EKT}}, x')$$

Thermalization Hydrodynamization

T Dore, **X Du**, S Schlichting, will appear on arXiv soon...

Early stage of heavy-ion collisions II

Probing the pre-hydrodynamic QGP in HICs

Non-equilibrium QCD plasma in HICs

Phenomenology of the pre-equilibrium stage

How to probe/measure the pre-equilibrium stage?

• Electromagnetic probe, such as di-leptons: no further interaction with the QGP Xiaojian Du | 非平衡量子色动力学 Non-equilibrium QCD matter

Di-lepton as a probe

Electromagnetic probes in heavy-ion collisions

- Di-lepton calculations in HICs were focusing on thermal production **Di-lepton production in the pre-equilibrium QGP in HICs**:
- Speed of Isotropization/Chemical equilibration of quark/anti-quark

$$\boxed{\frac{dN^{l+l-}}{d^4xd^4K}} = \int \frac{d^3p_1}{(2\pi)^3} \frac{d^3p_2}{(2\pi)^3} 4N_c \sum_f f_q(x,p_1) f_{\bar{q}}(x,p_1) v_{q\bar{q}} \sigma_{q\bar{q}}^{l+l-} \delta^{(4)}(K-P_1-P_2)$$

Di-lepton as a probe

Electromagnetic probes in heavy-ion collisions

Di-lepton may serve as a speedometer of equilibration of the QGP

M Coquet, **X Du**, JY Ollitrault, S Schlichting, M. Winn, Phys. Lett. B821 (2021) 136626 M Coquet, **X Du**, JY Ollitrault, S Schlichting, M. Winn, Nucl. Phys. A. 1030 (2023) 122579 M Coquet, **X Du**, JY Ollitrault, S Schlichting, M. Winn, Phys. Rev. Lett. 132 (2024) 232301

Quantum speedup for the QCD matter

An exciting new avenue for computing

Quantum computing

Gate-based digital quantum computing

- Quantum computing is parallel computing in nature
- Quantum computing can potentially speed up calculation

Circuit of a digital computer:

Classical bits: 0 and 1

Typical classical gates: AND, NOT, OR, etc... Typical classical circuits: Adder, Multiplication, etc...

Quantum circuit of a digital quantum computer:

Xiaojian Du | 非平衡量子色动力学 Non-equilibrium QCD matter

Quantum bits (qubit):

|0> and |1> and superposition of themwith quantum phase

$$\frac{|0\rangle + e^{i\varphi}|1\rangle}{\sqrt{2}}$$

Typical quantum gates: X(not), Y(rotation), Z(phase flip), Hadamard(superposition), etc... **Typical quantum circuits:** Adder, Fourier Transform, etc...

Heavy quark thermalization

Hard probes in heavy-ion collisions

Distinguished scale compared to the thermal QCD plasma

Hard probe energy $E \gg T$ Medium temperature(jet energy/heavy quark mass)(Light parton energy in medium)

Time scales in thermalization:

Heavy quark production $\tau_O \sim 1/M$

QGP thermalization

Heavy quark thermalization

 $\tau_R \sim M/T^2$

 $\tau_0 \ll \tau_H \ll \tau_R$

 $\tau_H \sim 1/T$

Heavy quark thermalizes mostly in the thermal QCD plasma (also in most of simulations)

Heavy quark thermalization

Heavy quark dynamics

Large mass, low velocity, elastic kicks from the medium dominate

Stochastic differential equation (SDE) for heavy quark dynamics:

Stochastic process on quantum circuit

Similar to classical circuit

We have to implement **reset** gates to implement U_W and addition to recycle quantum register

Stochastic process on quantum circuit

Quantum speedup

Accelerated Quantum circuit Monte-Carlo (aQCMC)

Breadth-oriented aQCMC

(b) The breadth-oriented aQCMC with the QAE

No reset gates, no recycle of quantum registers, the whole circuit is unitary

Stochastic process on quantum circuit

Quantum speedup

Accelerated Quantum circuit Monte-Carlo (aQCMC)

Breadth-oriented aQCMC

(b) The breadth-oriented aQCMC with the QAE

The quantum speed up algorithm **Quantum Amplitude Estimation (QAE)** requires a **Grover's operator** that can be constructed with a unitary circuit

Quantum Amplitude Estimation (QAE)

Quantum speedup

Oracle

$$A_{F}|\psi\rangle_{n}|0\rangle = \cos(\theta)|\psi_{0}^{*}\rangle_{n}|0\rangle + \sin(\theta)|\psi_{1}^{*}\rangle_{n}|1\rangle \qquad \text{Momentum}_{\text{Distribution}} |\psi\rangle_{n} = \sum_{i=0}^{\infty} \sqrt{P(i)}|i\rangle_{n}$$

$$a = \sin^{2}(\theta) \qquad \text{Expectation value} \qquad a = \sum_{i=0}^{2^{n}-1} F(i)P(i)$$

$$Q^{k}A_{F}|\psi\rangle_{n}|0\rangle = \cos((2k+1)\theta)|\psi_{0}^{*}\rangle_{n}|0\rangle + \sin((2k+1)\theta)|\psi_{1}^{*}\rangle_{n}|1\rangle$$

$$\text{Bad state} \qquad \text{Good state}$$

Likelihood

$$L_k(h, N) = [\sin^2((2k+1)\theta)]^h [\cos^2((2k+1)\theta)]^{N-h}$$

Combined Likelihood

$$L(h,N) = \prod_{k=0}^{M} L_k(h,N)$$

 $2^{n} - 1$

Quantum speedup

Quantum Amplitude Estimation (QAE)

Quantum speedup

 $a = \sin^2(\theta)$

Combined Likelihood $L(h, N) = \prod_{k=0}^{M} L_k(h, N)$

Y Suzuki et al., Quantum Information Processing, 19, 75, 2020 Xiaojian Du | 非平衡量子色动力学 Non-equilibrium QCD matter

Quantum speedup

Quantum Amplitude Estimation (QAE)

Quantum speedup •

X Du, W Qian, Phys. Rev. D 109 (2024) 076025

Y Suzuki et al., Quantum Information Processing, 19, 75, 2020 Xiaojian Du | 非平衡量子色动力学 Non-equilibrium QCD matter

Simulation results on heavy quark thermalization

X Du, W Qian, Phys. Rev. D 109 (2024) 076025

Simulation results on heavy quark thermalization

Time evolution of density

Isotropically, anisotropically towards thermal equilibrium

X Du, W Qian, Phys. Rev. D 109 (2024) 076025

Conclusions

0381 0100

Summary

The QCD matter

• Philosophy of reductionism and emergence

Far-from-equilibrium QCD matter

• Self-similarity and Kolmogorov spectra as signatures of turbulence

Early stage of heavy-ion collisions (HICs)

- Kinetic and chemical equilibrations, attractor, etc...
- Di-lepton as a probe for the pre-hydrodynamic QGP in HICs

Quantum speedup for the QCD matter

Heavy quark thermalization on quantum computer and quantum speedup

谢谢大家 Thanks!