

汇报人:

项目负责人: João Guimarães Costa

中国科学院高能物理研究所

课题 1: 梁志均 (Liang Zhijun) 中国科学院高能物理研究所

课题 3: 孙勇杰 (Sun Yongjie) 中国科学技术大学

Requirement of Kick-off Meeting

四、Project Management Workflow

- Specify, arrange the research tasks, clarify the responsibility of each task
- Establish project internal management system: project and funding
- management, internal academic communication, data sharing mechanism,
- \succ Preparation of the project organization implementation plan

Report Outline (报告提纲)

- Project Overview (项目概要)
- 2. 研究工作)
- 3.
- Project Organization and Management (项目组织管理机制) 4.
- 5.

Project (Task) Arrangement and Main Research Work (项目任务(课题)分解和主要

Key Points and Project Implementation Plans (项目实施关键节点和具体实施计划)

<u>Presentation of Achievement and Assessment Methods (成果呈现形式及测试方法)</u>

Guidance:"大科学装置前沿研究"重点专项2023年度项目申报指南

研究内容:

按照与 ATLAS 合作协议规定,完成硅径迹探测器、缪子谱仪和高颗粒度时间探测器相关研发、制造 和安装等工作。针对 LHC 高能量、高亮度的升级,改造 ATLAS 实验的粒子 探测器系统,开展相关 探测器研制、建造和运行,提升 ATLAS 实验对物理过程的灵敏度。 主要包括:

硅径迹探测器模块建造,径迹探测器系统集成和运行;缪子谱仪阻性板探测器及相关电子学的研制和 运行;高颗粒度时间探测器研发和建造;新一代有时间信息的硅像素探测器的研发。 考核指标:硅微条径迹探测器空间分辨率达到 25 微米。阻性板室探测器:计数率达 1 kHz/cm2, 探测 效率高于 95%, 时间分 辨率好于 1 ns。高颗粒度时间探测器:研发硅传感器、前端电子 学、探测器模 块组装等,研制出高时间分辨率的探测器模块与前端读出电路板,其时间分辨率好于50皮秒。新一 代有时间信息的硅像素探测器:研发时间分辨率在100皮秒以下的抗辐照传感器及前端电子学。

- 1. 粒子物理
- 1.3. ATLAS探测器升级(共性关键技术)

Guidance: "Frontier Research of Large Scientific Devices" Key Special 2023 Project **Application Guide**

1. Particle Physics

1.3. ATLAS Detector upgrade (common key technology)

Research content:

In accordance with the provisions of the cooperation agreement with ATLAS, complete the research and development, manufacturing and installation of silicon track detectors, muon spectrometers and high-granularity time detectors. For the upgrade of LHC high energy and high luminosity, transform the particle detector system of ATLAS experiments, carry out the development, construction and operation of related detectors, and improve the sensitivity of ATLAS experiments to physical processes.

Mainly including:

Construction of silicon track detector module, integration and operation of track detector system; development and operation of resistance plate detector and related electronics; research and development and construction of high granularity time detector; research and development of a new generation of silicon pixel detector with time information.

Assessment index: The spatial resolution of the silicon micro strip track detector reaches 25 microns. Resistive chamber detector: the counting rate is 1 kHz/cm2, the detection efficiency is higher than 95%, and the time resolution is better than 1 ns. High granularity time detector: develop silicon sensors, front-end electronics, detector module assembly, etc., and develop a high-time-resolution detector module and front-end readout circuit board, with a time resolution of more than 50 pics. A new generation of silicon pixel detectors with time information: develop anti-irradiation sensors and front-end electronics with a time resolution of less than 100 picoseconds.

1. 项目概要: Project Overview — Background

The Large Hadron Collider (LHC) Physics Program

The main limitation to progress is the amount of available data

	对撞能量	积分亮度
Run1 (2010-12)	7/8 TeV	∼ 26 fb ⁻¹
Run2 (2015-18)	13 TeV	~ 139 fb ⁻¹
Run3 (2022- <mark>25</mark>)	13.6 TeV	~ <mark>301</mark> fb ⁻¹ (计划取数)

ATLAS is one of two large multi-purpose experiments at the LHC at CERN

After Higgs Particle discovery in 2012, the main goals are:

 Study Higgs Boson in detail Search for new physics beyond SM (BSM)

The High-Luminosity-LHC Upgrade

Need 10x more data: ~300 fb⁻¹ to 3000-4000 fb⁻¹

This project relates to the corresponding detector upgrades

by 2029 LHC accelerator will be upgraded to deliver higher luminosity

including 12 CCT superconducting magnets from China

The High-Luminosity-LHC Challenges to Detectors

Instantaneous luminosity 7.5×10³⁴ cm⁻²s⁻¹

LHC

Data rates increased 5 to 7.5x nominal design rates

Current detectors cannot cope with such large rates, need: Larger granularity Faster trigger rates New technologies (fast timing)

Average number of interactions per bunch crossing (pile-up events) ~ 200

HL-LHC

HL-LHC: Pileup of 200

2. 任务分解和主要研究: **Task Arrangement and Main Research**

任务分解和主要研究: Task Arrangement and Main Research

中国科学院高能 物理研究所 (IHEP)

中国科学技术大学(USTC) 465

Total funding: 2200 万元

This Project: ATLAS Phase-2 Upgrade

一起 searching for new physics with ATLAS detector

课题1: IHEP-USTC-NJU-SDU

新

High Granularity Timing Detector (HGTD)

- Precision time reconstruction (30-50 ps) with Low-Gain Avalanche Diodes (LGAD)
- Improved pile-up separation and bunch-by-bunch luminosity

课题2: IHEP-THU-NJU

New Inner Tracking Detector (ITk)

- All silicon with at least 9 layers up to $|\eta| = 4$
- Less material, finer segmentation

Other

Upgraded Trigger and Data **Acquisition System**

- Single Level Trigger with 1 MHz output
- Improved 10 kHZ Event Farm

Electronics Upgrades

- On-detector/off-detector electronics upgrades of LAr Calorimeter, Tile Calorimeter & Muon Detectors
- 40 MHz continuous readout with finer segmentation to trigger

Additional smaller upgrades

- Luminosity detectors (1% precision)
- HL-ZDC (Heavy Ion physics)
- Muon sMDT chambers

课题3: USTC-SJTU

New Muon Chambers

- Inner barrel region with new RPCs and electronics
- Improved trigger efficiency/momentum resolution, reduced fake rate

Project Decomposition (项目课题分解)

ATLAS detector phase II upgrade

Development of detectors with higher counting rates and more radiation resistance Upgrade to more advanced and faster electronics and readout systems

课题1: **High Granularity Timing Detector** 中国科学院高能物理研究所 (IHEP) 中国科学技术大学(USTC) 南京大学 (NJU) 山东大学 (SDU)

High time resolution silicon detector technology

中国科学院高能物理研究所 (IHEP) 中国科学技术大学 (USTC) 清华大学 (THU)

ATLAS experimental physics targets

Improve the precise accuracy of Higgs boson property measurements Increase the sensitivity of new physics

Inner Tracker Detector

2.1: Silicon Strip Detector 2.2: Timing Pixel Detector

课题3: **Muon Detector**

中国科学技术大学 (USTC) 上海交通大学 (SJTU)

课题1: High Granularity Timing Detector **Physics Requirements and Key Technologies**

Timing Detector (HGTD) to reduce pileup at LHC + precise Luminosity measurement

- Collisions spread ~250 ps time scale \rightarrow reach 30-50 ps timing resolution
- Significantly improve compared to ~1 ns precision in conventional silicon sensor
 - Adding 4th dimension information for the first time

Introduce a new Silicon technology Low Gain Avalanche Diode (LGAD) Strong Competitions: HPK (Japan), FBK (Italy), CNM (Spain), Micron (UK), IME (China)

课题2: Inner Silicon Tracker Upgrade Physics Requirements and Key Technologies

- \bullet

 Detector Occupancy TRT occupancy will reach 100%

 Radiation Damage Current tracking detector can not reach the HL-LHC 4000 fb⁻¹ (ID (400 fb⁻¹), SCT (700 fb⁻¹), IBL (850 fb⁻¹))

Bandwidth Saturation

Current front-end electronics can not handle the new event rates (Pixel and SCT: max 2×10^{34} cm⁻²s⁻¹)

New full silicon tracker of large dimensions

60 m² 165 m² larger solid angle

R&D for possible future timing pixel detector Further improvement against pile-up

课题3: Muon Detector Upgrade Physics Requirements and Key Technologies

To cope with the HL-LHC event rates NEW highly performant muon chambers are required for trigger

3 layers of "Thin-gap" RPC muon singlets will be installed in the Barrel Inner region

Thin-gap RPC controls the avalanche charges by decreasing the gap size The loss in gas gain will be compensated by GeSi based front-end electronics with higher sensitivity and S/N ratio

Task decomposition and schedule (任务分解和进度安排)

课题1: High Granularity Timing Detector Research Content, Assessment Index (考核指标,研究内容)

Develop all key components for the Timing Detector

- Developed radiation hard LGAD silicon sensor
- Build large-area ASIC+Sensor Module with robot •
- Develop Front-end electronics, high voltage system, flexible cable •
- Assessment index (考核指标):
 - Sensor and detector module time resolution reach <u>30-50 ps</u>

LGAD sensor

Electronics

Module ASIC+LGAD

High Voltage supply

课题1: High Granularity Timing Detector **Research Method**

Self-developed irradiation hard silicon sensor based on domestic foundry Our LGAD sensors prototype is the most radiation resistant in the World • CERN is purchasing 66% of our LGADs; We provided 1/3 as in-kind contribution

- Develop automatic large area module assembly with robot ullet
- Use Beta source electron (~MeV), electron test beam at DESY(~GeV), or cosmic muon

Radiation hardness

Automatic assembly robot

Timing measurement setup With beta source

课题2: Inner Silicon Tracker Upgrade Research Content, Assessment Index (研究内容, 考核指标)

2.2: Timing Pixel Detector R&D

Assessment index (考核指标)

- Complete strip barrel detector with modules with 25 µm spacial resolution
- Timing Pixel detector R&D: Sensor and electronics with time resolution better than 100 ps

- Study radiation hard sensor and readout ASIC
- Produce strip detector module
- Integrate silicon modules into tracker

Pixelated LGAD sensor R&D Fast front-end electronics data buffering, readout, transmission

课题2: Inner Silicon Tracker Upgrade

Research Method

Sensor and ASIC irradiation studies will be carried out at CSNS with proton beam

The project team plans to deliver 10% Strip barrel modules (for this project 200 modules)

Two teams will work in parallel (IHEP and RAL, UK)

Participate in: Strip Barrel Stave loading at RAL, UK **Barrel tracker system integration at CERN**

R&D on Timing Pixel Detector

Pixelated AC LGAD sensor will be designed and fabricated

Timing Pixel Readout Module design with high precision TDC (collaboration with Berkeley Labs, et al)

Testing on bench

Strip Module

课题3: Muon Detector Upgrade Research Content, Assessment Index (研究内容, 考核指标)

and ~100k channels

China will contribute: 50% of the muon singlet layer (including readout panels) 50% of the front end electronics board (FEE) and testing

This project: 1/3 of the muon singlet layers and QA/QC of front end electronics (FEE)

Assessment index (考核指标)

- · Parameters to be achieved by all singlet layers (考核指标):

 - Time resolution: <1 ns (old operational RPC specific ations: > 1 ns)
 - Efficiency: >95%

ATLAS NEW Barrel Inner layer RPC muon chambers contain: ~1400 m² RPC singlets

Counting rate: >1 kHz/cm² (old operational RPC specifications: 300 Hz/cm²)

课题3: Muon Detector Upgrade **Research Method**

- Optimize and finalize the readout panel design
 - Such large PCB panels can only be produced in China: 1705 mm x 1072 mm
 - Panel flatness of <100 μ m
- Optimize the assembly procedures for the large size detector
- Set up proper quality control and testing
- Setup automatic procedure to test 50,000 channels of front end electronics

Project Schedule

	2024			
	第一年	第二年		第.
	E	lectronics		
Detector	RPC detector fabrication			
课题3: Muon RPC	Gas gap fabrication			
	1311001	I U K C D		
2.2 Timing Pixel	Pixel sensors and electronics			
课题2: 2.1 Strip tracker	Module Assembly			
	Strip se	ensor, ASIC		
Timing Detector	IGADS	ensor		
Granularity	Module and Detector U			
High	Electronics, flex tails			
祖師1・	High Voltage Power Supply			

High granularity Detector Assembly and Commissioning

Inner track Global integration (at RAL and CERN)

Pixel sensors and electronics 2nd round R&D

Testing

Muon RPC Detector Assembly and Commissioning

第四年

2. 任务分解和主要研究: Task Arrangement and Main Research

The team

Research Team (研究团队)

Total number of team members: 21

年龄组成 Age

课题3: 中国科学技术大学(USTC) 上海交通大学(SJTU)

课题2: 中国科学院高能物理研究所(IHEP) 中国科学技术大学(USTC) 清华大学(THU)

课题1: 中国科学院高能物理研究所(IHEP) 中国科学技术大学(USTC) 南京大学(NJU) 山东大学(SDU)

Average age 41 years old

Project Leader (项目负责人)

João Guimarães da Costa

中国科学院高能物理研究所研究员,博士生导师 Engaged in track detector research and construction (drift chamber, silicon detector) NA38 \rightarrow CDF \rightarrow ATLAS, and physics research

Since 2015, Professor of IHEP, ATLAS Group leader of IHEP 2006-2015, Assistant and Associate Professor at Harvard University In 2016, got "1000 talents" grant 国家"千人计划"高层次外国专家长期项目资助

- Since 2021, member of ATLAS Executive Board ullet
- Since 2021, ATLAS HGTD project leader
- \bullet
- Since 2016, Convener of CEPC Detector and Physics Group \bullet
- Until 2016, member of the ATLAS Muon Detector Steering Group •
- \bullet

2019-2021, ATLAS HGTD project Resource Coordinator and Deputy Project Leader

· 2019-2023, 作为项目负责人, 承担国家重点研发项目"高能环形正负电子对撞机关键技术研发和验证"

Former convener of the ATLAS Standard Model Physics Group and the Higgs to WW Physics Group

Task Leaders (课题负责人)

Zhijun Liang (Task 1 leader) 梁志均(课题1负责人) - 中国科学院高能物理研究所研究员,中国科学院"百人计划",博士生导师 2020-now: ATLAS High Granularity Timing Detector Level-2 convener: Module assembly 2021-2023: ATLAS publication committee members 2014-2015: LHC electroweak physics subgroup convener 2012-2013: ATLAS electroweak physics group convener

Xin Shi (Task 2 leader) 史欣(课题2负责人) - 中国科学院高能物理研究所副研究员,博士生导师 2022-now: ATLAS ITk Strip Barrel UK/China Cluster Manager 2018-now: CERN RD50 (Radiation Detector R&D) IHEP Team leader 2015 – now: ATLAS Inner Tracker Phase-II upgrade 2011 – 2015: CMS Pixel Detector Phase-I upgrade

Yongjie Sun (Task 3 leader) 孙勇杰(课题3负责人)

- 中国科学技术大学副教授

Since 2015: Muon RPC Phase-II Upgrade of ATLAS (LV3 coordinator) 2009-2015: End-cap Time-of-Flight system upgrade for BESIII 2008-now: Time-of-Flight system for Compressed Baryonic Matter (CBM) on FAIR at GSI (Collaboration Board) 2006-2013: Muon Telescope Detector (MTD) for RHIC/STAR, U.S.A 2004-2010: Time-of-Flight system for the STAR Experiment on RHIC at BNL, U.S.A

All hold management positions within ATLAS for the corresponding projects

ATLAS Timing Detector Management

International Cooperation (国际合作)

课题1 (HGTD):

Brazil China France Germany JINR Morocco Netherlands Portugal Russia Slovenia Slovenia Spain Sweden CERN

International Cooperation (国际合作)

课题2 (ITK):

Australia Canada China Czech Republic Denmark France Germany Italy Japan Netherlands Norway Poland Russia Slovenia South Africa Spain Sweden Switzerland United Kingdom USA CERN

International Cooperation (国际合作)

课题3 (Muon): Chile China France Germany Greece Israel Italy Japan Netherlands Russia JINR Turkey USA CERN

3. 项目实施关键节点和具体实施计划: Key Points and Project Implementation Plans

-年(2023.12 - 2024.11)

Main Milestones

- Tasks 1:
 - Develop full-scale LGAD ultrafast silicon sensors and detector modules •
 - supplies
- Task 2:
 - Test silicon microstrip sensor performance and master module production process
 - Conduct literature research on time pixel detector and analyze design requirements •
 - Test readout chip performance, prepare long silicon modules, and complete system tests.
- Task 3:
 - Design RPC air gap, fabricate key components, and test •
 - Design large-area readout board, start fabrication and testing •
 - Fabricate prototype RPC detector, test, and produce readout plates and detectors •

Outcome

Annual report, design report, test report, ATLAS review report

Create prototypes of electronics peripheral circuit boards, flexible circuit boards, and high-voltage power

第二年(2024.12 - 2025.11)

Main Milestones

- Tasks 1:
 - Develop full-scale LGAD ultrafast silicon sensors and electronic peripheral circuit boards •
 - Produce detector modules, flexible circuit board tail boards, and high-voltage power supplies •
- Task 2:
 - Test sensor and chip performance under various irradiation conditions
 - Complete design of time pixel detector sensor gain layer and prototype circuit •
 - and verify circuit functionality
- Task 3:
 - Design RPC gas chamber at BIM/BIR position •
 - Fabricate and test 300 honeycomb readout boards •
 - Produce 150 single-layer RPC detectors, test front-end electronics, and perform cosmic ray tests •

Outcome

Midterm report, design report, test report, ATLAS review report

Participate in reliability testing, produce silicon modules, test cask plates, develop time pixel sensor optics,

第三年(2025.12 - 2026.11)

Main Milestones

Tasks 1:

- Production and development of detector modules and flexible circuit boards
- Testing electronic peripheral circuit boards
- Production and development of high-voltage power supplies •

• Task 2:

- Make long silicon microstrip module and load Chinese group's detector at Rutherford Lab •
- Develop first version of time pixel sensor film and prototype circuit program •
- sensor and verify prototype circuit performance

• Task 3:

- Complete cosmic ray test of 150 single-layer RPCs •
- Participate in assembly and testing of three-layer detector chamber •
- •

Outcome

Annual report, test report, ATLAS review report

Build short microstrip module, test in Rutherford Laboratory, and integrate into barrel detector. Test time pixel

Improve air gap production process, ensure stability, and participate in CERN site assembly and debugging

第四年 (2026.12 - 2027.11)

Main Milestones

- Tasks 1:
 - Complete production and development of detector units with multiple modules
 - Assemble electronic circuit boards at CERN
 - Install high-granularity detector disk and all detectors at CERN, start joint commissioning •
- Task 2:
 - Produce short silicon strip module for barrel detector sealing, evaluate time pixel sensor Version 1 and test • electronics Version 1
 - Produce short silicon microstrip modules, participate in track detector test at CERN, design and simulate • second version of time pixel detector sensor and circuit
- Task 3:
 - Participate in on-site installation and commissioning of detector, establish testing platform at CERN Continue on-site installation and commissioning, promptly address and repair any issues
 - •

Outcome

Annual report, design report, test report, ATLAS review report

第五年 (2027.12 - 2028.11)

Main Milestones

- Tasks 1:
 - finalize project report
- Task 2:
 - document, and summarize experience
- Task 3:
 - and acceptance

Outcome

Final report, detector performance test report

Conduct overall detector debugging and joint commissioning at CERN for high-particle detectors, and

Participate in joint testing of track detector, test time pixel sensor and electronics, write technical design

Complete on-site installation, commissioning, and testing of detector, and prepare for project completion

4. 项目组织管理机制: **Project Management Organization**

- **MOST Project Responsibility Expert**
- Ma Yugang (Shanghai Institute of Applied Physics, CAS)
- **Expert Team (9 people)**
- Li Ji (Institute of High Energy Physics, CAS)
- Xiang Dao (Shanghai Jiao Tong University)
- Li Qiang (Peking University) •
- Li Zhankui (Institute of Modern Physics, CAS)
- Liu Jianbei (University of Science and Technology of China) •
- Sun Xiangming (Central China Normal University)
- Zhou Daicui (Central China Normal University)
- Heng Yuekun (Institute of High Energy Physics, CAS) •
- **Ouyang Qun (Institute of High Energy Physics, CAS)** •

(Excused today)

(Chair) (MOST expert team)

Project leader — Management responsibilities

- Edit and sign project task book, review project task book;
- Establish a project management office and a project expert group based on the project leading institute; •
- Formulate the project research plan, make sure the academic direction and research focus of the project; •
- Carry out academic and technical communication and integration among tasks, and promote data sharing;
- Review the annual summary, technical report and other materials, compile and report project information, \bullet achievements and other progress reports;
- Develop project publicity plans and programs to enhance the impact of the project; •
- Formulate the project (task) implementation management system, formulate the approval system of funding allocation process;
- Propose major adjustment suggestions for projects (tasks), including adjustment or change of research objectives, contents, personnel and funding;
- Compile the mid-term assessment and annual report of the project, and cooperate with the completion of the midterm assessment and acceptance of the tasks;
- **Cooperate with MOST to complete the project assessment and acceptance;**
- **Complete other tasks entrusted by MOST**

- **Project office**
- Contact person: Zhaoru Zhang
- **Academic assistant:** Zhijun Liang (Associate professor) •
- Financial assistant: Zhaoru Zhang
- **Contact person of Task 1:** Zhijun Liang (task leader) •
 - Financial assistant: Ran Lou
- **Contact person of Task 2:** Xin Shi (task leader) •
 - Financial assistant: Ran Lou
- **Contact person of Task 1: Yongjie Sun (task leader)** •
 - Financial assistant: Gongxiu Dong
- **Project implementation scheme is finalized**

- Members of this project have good experience in large scale projects (ATLAS, CMS, RHIC, BES, JUNO, CEPC) and International Collaborations
- Extensive experience with international publications, international conferences, paper reviews, scientific • analysis and results verification, scientific research integrity, etc...
- The project is well integrated in the overall goals of the ATLAS Collaboration and the wider HEP international community
 - All members are part of the ATLAS Collaboration and several hold relevant leadership positions within the • international structure of the Collaboration \rightarrow hence have full support from a wider range of resources
- In strict compliance with the relevant policies, regulations and requirements of the Ministry of Science and Technology, the project will be responsible for organizing academic exchanges, urging task leaders and project members to complete research work on schedule, and actively cooperate with the Ministry of Science and Technology to report project progress and work inspection on time

funds (afternoon discussion)

Provisions for fund management have been formulated, and the project office will supervise the regular use of

- **Communication and Inspection Mechanisms**
 - **Exchange mechanism:** •
 - Strong integration in the ATLAS global activities, meetings and workshops
 - Regular international meetings being held weekly on diverse topics •
 - Weekly internal task-level meetings to coordinate evolution of project
 - (e.g. international meeting on ASIC design every monday)
 - Monthly videoconference meetings on the global project
 - Special meetings •
 - Conduct academic exchanges (e.g. ATLAS HGTD Workshop at IHEP next week) Annual meetings: including mid-term meeting and projection completion meeting
 - **Documentation archiving:** •
 - **ATLAS Collaboration provides excellent tools for documentation archiving:**
 - Indico: Meetings and minutes •
 - EDMS database: Specifications and long-term technical documentation archiving
 - CDS: Internal reports and technical working reports archiving \bullet
 - Establish a project shared web area in IHEP for sharing and archiving documentation locally

Risk Analysis (风险分析)

The project is challenging and a key contribution to the ATLAS upgrade

- The overall risk of the project is low

 - The project team has rich experience in research and development The research unit is supported by multiple detector research and development platforms
- The two main risks (两个最主要的风险)
 - 风险1: Degradation of international relations prevent access to some advanced technologies from abroad (e.g. ASICs)
 - Mitigation: Collaborate with international colleagues to execute some of the tasks abroad (e.g. tracker modules construction at RAL)
 - 风险2: Delay of LHC Upgrade Project the ATLAS upgrade is organized in a large international collaboration involving many institutions with interconnected work with centralized overall planning, so delays can occur due to issues outside our control
 - Mitigation: Work with ATLAS management to minimize impact to the project. The large international team will ensure that the project is feasible even if delays occur.

5. 成果呈现形式及测试方法: Achievement Presentation and Assessment Methods

Expected achievements and Innovations (预期成果与创新点)

第一个用于对撞机实验的硅基高精度时间探测器

First silicon-based timing detector in particle physics •

ATLAS内径迹探测器是最大硅基径迹探测器之一

- ATLAS Inner Tracker will be one of the largest silicon-based tracking detector •
 - generation of the ATLAS pixel detector

ATLAS的窄气隙RPC将是此类探测器首次大规模运行

 The thin-gap RPC in ATLAS will be the first large-scale operation of such detectors Built with the largest PCBs only available in China •

Results from this research can be used for future generation detectors 47

Built with the most radiation resistant silicon timing sensors only available in China

Research on the new timing pixel detector has the potential to be used for the next

Social and economical benefits (预期经济社会效益)

- - imaging, X-ray imaging, medical imaging, aerospace exploration, etc.
- reactor monitoring, nuclear waste characterization, underground surveys, etc.
- manufacturers to master key technologies.
- Outcome is crucial to the completion of the ATLAS Upgrade and future physics

 The high granularity time detector and inner track detector developed in this project are the most advanced semiconductors in the field of particle physics detectors. They can be widely applied in nuclear physics experiments, synchrotron radiation

 Large RPCs can be used in medical imaging and Tomography / Muography in many fields, such as archaeology, civil engineering, mining exploration, geology, nuclear

Conduct research on advanced detector technology to promote relevant domestic

Achievement Presentation and Assessment Methods

	Assessment indicators				Assessment me	
	Indicator Indicator at the of project initia		Midterm indicator	Final assessment indicator	and evaluat methods	
Task 1: HGTD	Time resolution	Small-area prototype silicon sensors: better than 50 ps	Official silicon sensors for ATLAS upgrade: 30-50 ps	Final detector module: 30-50 ps	Test reports, projec reviews.	
Task 2:	Spatial resolution of silicon microstrip track detectors	Prototype module: 25 microns	Pre-production module: 25 microns	Full detector: 25 microns	Test reports, projec [.] reviews.	
Inner tracker	Silicon pixel detector time resolution	Better than 10 ns	Better than 1 ns	Better than 100 ps	Simulation verificat aboratory testing, reports	

In addition: ATLAS organizes peer-reviews, with external reviewers, at each step of each upgrade project. Such reports, will provide an additional basis for each task progress and achievement assessment

Achievement Presentation and Assessment Methods

		Assessment indicators			Assessment me
	Indicator	Indicator at the time of project initiation	Midterm indicator	Final assessment indicator	and evaluati methods
	Counting rate	Prototype detector: 1 kHz/cm2	Pre-production detector: 1 kHz/cm2	RPC mounted to ATLAS: >1 kHz/cm2	Experimental test of acceptance by ATLA
Task 3: Muon Detector	Probing efficiency	RPC Prototype: > 95%	Pre-production detectors: >95%	RPC mounted to ATLAS: > 95%.	Experimental test o acceptance by ATLA
	Time Resolution	Prototype detector: 1 ns	Pre-production detector: 1 ns	RPC installed into the ATLAS experiment < 1 ns	Experimental test o acceptance by ATLA

In addition: ATLAS organizes peer-reviews, with external reviewers, at each step of each upgrade project. Such reports, will provide an additional basis for each task progress and achievement assessment

Assessment Indicators of Science and Technology Report

Conclusions - 结语

This project is crucial to the completion of the ATLAS Upgrade and future physics outcome

It will promote Chinese industry on frontier technologies driving development

- been formulated
- The research work has already started for all three tasks
- The project has very good foundations:
 - The institutions have good support and infrastructure for the project •
 - The staff ranks at high level and has strong experience in detector research •

The management system has been established and the implementation plan has

Extra Slides

Assessment Indicators (考核指标)

对应的	考核指标			考核方式考核方式			「式」 考核指标			考核	
课题	指标 名称	立项时已有 指标值/状 态	中期指标值/ 状态	完成时指标 值/状态	(万法) 及评价手 段	课题	指标 名称	立项时已有 指标值/状 态	中期指标值/ 状态	完成时指标 值/状态	(ブ 及i 段
课题 1: ATLAS 实验高粒度时 间探测器升级 HGTD	时间分辨率	小面积原型 硅传感器时 间分辨率好 于 50 皮秒	为 ATLAS 升级 研制出正式的 硅传感器,时 间分辨率达到	探测器模块 时间分辨率 达到 30-50 皮秒	 案测器模块 j 订 报 j 试 报 告、同行 评审。 器升级 器升级 MUONS 	计数率	原型探测器 1 kHz/cm2 RPC 样	预生产探测器 1 kHz/cm2	安裝到 ATLAS 实验 的 RPC: >1 kHz/cm2	实验 或由 ATL 收 实验	
课题 2: ATLAS	硅微条径迹	原型模块	30-50 皮秒 预生产模块	径迹探测器		Muons	探测效率 	机>95%	预生产探测 器>95%	安装到 ATLAS 实验 的 RPC >95%	或由 ATL 收
实验内径迹探 测器升级:	休 测 希 空 间 分辨率 硅像素探测	25 城木 好于 10ns	25 减不 好于 1ns	25 城木 好于 100ps	音、问行 评审。 仿真验证		时间分辨	原型探测器 1 ns	预生产探测器 1 ns	安装到 ATLAS 实验 的 RPC <1	实验 或由 ATL
Tracker	器时间分辨 率				和 实验室 测试,测试 试报告					ns	收

Guidance:"大科学装置前沿研究"重点专项2023年度项目申报指南

1.3. ATLAS探测器升级

Research content: According to the cooperation agreement with ATLAS, complete the research, development, manufacturing and installation of silicon track detector, muon spectrometer and high Granularity time detector. In view of the upgrade of LHC's high energy and high brightness, the Particle detector system of ATLAS experiment was modified, and the development, construction and operation of related detectors were carried out to improve the sensitivity of ATLAS experiment to physical processes. Mainly including: construction of silicon track detector modules, integration and operation of track detector systems; Development and operation of muon spectrometer resistive plate detector and related electronics; R&D and construction of high Granularity time detector; The development of a new generation of silicon pixel detectors with time information.

Assessment indicator:

HGTD: develop silicon sensor, front-end electronics, detector module assembly, etc., and develop a detector module and front-end readout circuit board with high time resolution, whose time resolution is better than 50 picoseconds.

ITK: The spatial resolution of the silicon microstrip track detector reaches 25 micrometers. A new generation of silicon pixel detectors with time information: Develop radiation resistant sensors and front-end electronics with a time resolution of less than 100 picoseconds.

RPC detector: The counting rate reaches 1kHz/cm2, the detection efficiency is higher than 95%, and the time resolution is better than 1ns.

1. 粒子物理

Chinese CORE contribution to **ATLAS Phase-II Detector Upgrade**

ATLAS	ITk	HGTD	Muons	NSW (phase I)	Total (kC
kCHF	2043	2100	1028	733	5904
%	3.4%	21%	3.6%	6.5%	2.3%

Focus on key projects to make a sizable contribution with limited resources Chinese contribution to upgrades of the order of ~2.3% of total cost Percentage of Chinese authorship on physics analysis papers ~4.3%

Risk Analysis

- Delay of LHC Project
 - Type: policy
 - Risk Level: middle
 - project
- ASICs for ITk not able to import to China
 - Type: policy
 - Risk level: middle
 - Mitigation plan: send people to RAL in UK to complete the module assembly task
- Timing pixel front end electronics not able to import to China
 - Type: policy
 - Risk level: middle
 - China

Mitigation plan: keep communication with CERN and ATLAS, reduce the uncertainty of LHC to this

• Mitigation plan: send people to US or CERN to continue the study. Investigate technology based on

Detailed schedule

Timing Detector Detailed Schedule

ID	Task Name	Text1	Duration	Start	Finish	Q4 (
0	1) 高粒度时间探测器	1) High granularity time detector	1305 days	2024/1/1	2028/12/29	
1	1.1) 传感器	1.1) sensor	502 days	2024/1/1	2025/12/2	
2	1.1.1)预生产研制(第一批)	1.1.1) pre production development (the first batch)	45 days	2024/1/1	2024/3/1	
3	1.1.2)预生产研制(第二批	1.1.2) pre production	43 days	2024/3/4	2024/5/1	
4) 1.1.3)预生产传感器性能测	development (the second batch) 1.1.3) pre production sensor	43 days	2024/3/4	2024/5/1	
5	1.1.4)预生产传感器评审	1.1.4) pre production sensor	22 days	2024/5/2	2024/6/1	
6	(PRR) 1.1.5)正式生产研制(第一	review (PRR) 1.1.5) formal production and	130 days	2024/6/3	2024/12/1	
7	批) 1.1.6)正式生产研制(第二)	development (the first batch) 1.1.6) formal production and	130 days	2024/12/2	2025/6/1	
8	<u>1.1.7</u>)正式生产传感器性能	development (the second batch) 1.1.7) performance test of	130 days	2024/12/2	2025/6/1	_
9	测试(第一批) 1.1.8)正式生产传感器性能	formally produced sensors (the 1.1.8) performance test of	132 days	2025/6/2	2025/12/2	_
10	测试(第二批) 1.2)探测器模块	formally produced sensors (the 1.2) detector module	886 days	2024/3/1	2027/7/23	
11	1.2.1)原型模块评审(FDR)	1.2.1) prototype module review (F	11 days	2024/3/1	2024/3/15	
12	1.2.2)预生产研制	1.2.2) pre production developmen	271 days	2024/3/18	2025/3/31	
13	1.2.3)预生产的模块评审 (PRR)	1.2.3) pre production module review (PRR)	44 days	2025/4/1	2025/5/30	
14	1.2. 4)模块正式研制(第一批)	1.2.4) formal development of modules (the first batch)	150 days	2025/6/2	2025/12/26	
15	1.2.5)模块正式研制(第二 批)	1.2.5) formal development of modules (the second batch)	260 days	2025/12/29	2026/12/25	
16	1.2.6)多模块探测器单元研制(第一批)	1.2.6) development of multi module detector unit (the first	108 days	2025/12/29	2026/5/27	
17	1.2.7)多模块探测器单元研制(第二批)	1.2.7) development of multi module detector unit (the second	108 days	2026/12/28	2027/5/26	
18	1.2.8)探测器模块性能测量 (第一批)	1.2.8) performance measurement of detector module (the first	152 days	2026/5/28	2026/12/25	
19	1.2.9)探测器模块性能测量 (第二批)	1.2.9) performance measurement of detector module (the second	42 days	2027/5/27	2027/7/23	
20	1.3) 柔性电路尾板	1.3) flexible circuit tail board	532 davs	2024/3/18	2026/3/31	
21	1.3.1)预生产研制	1.3.1) pre production development	165 days	2024/3/18	2024/11/1	
22	1.3.2)预生产柔性板测试	1.3.2) pre production flexible plate test	42 days	2024/11/4	2024/12/31	
23	1.3.3)预生产的评审(PRR)	1.3.3) pre production review (PRR)	29 days	2025/1/1	2025/2/10	_
24	1.3.3)正式生产研制	1.3.3) formal production and development	274 days	2025/2/11	2026/2/27	
25	1.3.4)正式生产柔性板测试	1.3.4) formal production flexible	22 days	2026/3/2	2026/3/31	
26	1.4) 外围电子学电路板	1.4) peripheral electronics circuit board	550 days	2024/2/1	2026/3/11	
27		1 4 1) prototype module review (E	22 dave	2024/2/1	2024/2/1	- I I
 28	142)	1 4 2) pre production development	125 dave	2024/2/1	2024/2/22	-
29	1.4.3)预生产的模块评审 (PRR)	1.4.3) pre production module	23 days	2024/8/26	2024/9/25	
30	1.4.4)正式生产研制	1.4.4) formal production and development	180 days	2024/9/26	2025/6/4	
31	145)由路板测试	1 4 5) circuit board test	200 davs	2025/6/5	2026/2/11	
32	15) 京正由湄	1.5) high voltage nower supply	783 dave	2023/0/3 2024/1/1	2026/12/30	-
33	151)	1.5.1) pre production development	220 dave	2024/1/1	2024/11/1	_
3V	1.3.1/ 贝工/ 別 刚 1.5.1/ 氯什 支 码 亚 曼 (555)	1.5.2) pre production review (PPP)	71 dave	2024/1/1	2024/11/1	_
34 35	 1.5.2) 测生产的评申(PRR) 1.5.3) 正式生产研制 	1.5.3) formal production and	492 davs	2024/11/4 2025/2/11	2025/2/10 2026/12/30	_
36	16) 探测竖数休联调	development	657 dave	2026/5/28	2028/12/1	_
37	1.0/ 1/2011 11 12 14 17 19 19 19 19 19 19 19 19 19 19 19 19 19	of detector	127 days			_
31	1.6.1)	(the first batch)	137 days	2026/5/28	2026/12/4	
38	1.6.2)	1.0.∠) detector unit installation (the second batch)	137 days	2027/5/27	2027/12/3	
39	1.6.3)	of detector	∠uu days	2028/2/28	2028/12/1	
40	1.7)项目文档	1.7) project documents	803 days	2025/12/3	2028/12/29	_
41	1.7.1)项目中期测试报告	1.7.1) Interim test report of the proj	22 days	2025/12/3	2026/1/1	_
42	171)项目结题报告	1.7.1) project conclusion report	21 davs	2028/12/1	2028/12/29	

Silicon Tracker Detailed Schedule

ID	Task Name	Text1	Duration	Start
0	硅径迹探测器	Silicon track detector	1305 days	2024/1/1
1	 1) 硅微条探测器 	1) Silicon micro strip detector	1305 days	2024/1/1
2	 1.1) 传感器与读出芯片 	1.1) sensor and readout chip	523 days	2024/1/1
3	1.1.1〉传感器与读出芯片关键性能 测试	1.1.1) key performance test of sensor and readout chip	262 days	2024/1/1
4	1.1.2)传感器、芯片在不同辐照条 件下的性能表现	1.1.2) performance of sensors and chips under different irradiation conditions	108 days	2025/1/1
5	1.1.3)参与批量生产阶段可掌性测 试	1.1.3) participate in reliability test in batch production stage	153 days	2025/6/2
6	1.2) 硅微条探测器研制	1.2) development of silicon micro strip detector	780 days	2024/1/1
7	1.2.1) 模块站点考核	1.2.1) module site assessment	65 days	2024/1/1
8	1.2.2) 制备长硅微条模块	1.2.2) preparation of long silicon micro strip module	305 days	2024/4/1
9	1.2.3) 制备短硅微条模块	1.2.3) preparation of short silicon micro strip module	410 days	2025/6/2
10	 1.3)系统集成 	1.3) system integration	1305 days	2024/1/1
11	1.3.1) 多桶板小系统联调测试	 1.3.1) joint commissioning test of multi barrel small system 	240 days	2024/1/1
12	1.3.2) 搭建桶板接收测试系统	1.3.2) build a barrel receiving test system	240 days	2024/1/1
13	1.3.3) 接收、测试运往 CERN 的首批 桶板	1.3.3) receive and test the first batch of barrels shipped to CERN	43 days	2025/1/1
14	1.3.4) 中国生产的硅探测器模块加载 到 RAL 的桶板上	 1.3.4) the silicon detector module made in China is loaded on the barrel of ral 	261 days	2025/1/1
15	1.3.5) 完成测试后运往 CERN 安装点	1.3.5) transport to CERN installation site after testing	261 days	2026/1/1
16	1.3.6) 封闭桶部探测器, 联调测试	 1.3.6) closed barrel detector, joint commissioning test 	261 days	2027/1/1
17	1.3.7) 早期运行	1.3.7) early operation	260 days	2028/1/3
18	2)时间像素探测器	2) Time pixel detector	1305 days	2024/1/1
19	2.1) 传感器	2.1) sensor	1305 days	2024/1/1
20	2.1.1) 整体架构设计	2.1.1) overall architecture design	262 days	2024/1/1
21	2.1.2)第一版设计	2.1.2) first edition design	261 days	2025/1/1
22	2.1.3) 第一版测试	2.1.3) first version test	261 days	2026/1/1
23	2.1.4) 第二版设计	2.1.4) second edition design	261 days	2027/1/1
24	2.1.5) 住能评价	2.1.5) performance evaluation	260 days	2028/1/3
25	2.2) 电丁字	2.2) Electronics	1305 days	2024/1/1
26	2.2.1) 整体采档设订 2.2.1) 整体采档设订	2.2.1) overall architecture design	262 days	2024/1/1
21	2.2.2) 第一版原亚短证电路设计	2.2.2) design of the first version prototype verification circuit	261 days	2025/1/1
28	2.2.3)第一版原型验证电路性能的仿 真验证	2.2.3) simulation verification of circuit performance in the first version of prototype verification	261 days	2026/1/1
29	2.2.4》第一版性能评估测试	2.2.4) first edition performance evaluation test	129 days	2027/1/1
30	2.2.5) 第二版电路设计和仿真	2.2.5) circuit design and Simulation of the second edition	132 days	2027/7/1
31	2.2.6) 完成电子学性能评估测试	2.2.6) complete the electronic performance evaluation test	260 days	2028/1/3
32	 3)項目文档 	3) Project documentation	804 days	2025/12/2
33	3.1)项目中期测试报告	3.1) Interim test report of the project	22 days	2025/12/2
34	3.2)项目结题报告	3.2) project conclusion report	21 days	2028/12/1

Schedule – Strip Detector

- 2024: Finish the sensor and ASICs key evaluation test; pass the site qualification, start producing long strip module; complete multi-stave small system test at RAL, start system integration such as stave reception at CERN
- 2025: Evaluate the performance of strip sensor and ASICs after irradiation, participate in the reliability test during production; produce long strip module; receive, test and ship the barrel stave to CERN, complete the workflow.
- 2026: Complete the long strip module production, start the short strip module production; modules make in China will be loaded on stave at RAL and send to CERN to integrate onto barrel strip tracker
- 2027: Complete the short strip module production; barrel strip tracker test with different stage.
- 2028: Complete the strip tracker system test, participate the early run.

Schedule – Timing Pixel Detector

- 2024: Complete literature survey, clarify the design specifications and technical path, finish the framework and functional module design of sensor and front-end electronics.
- 2025: Complete design of the first sensor, finish the prototype design of the first front-end electronics.
- 2026: Complete the first sensor test, validate the simulation of the first front-end electronics
- 2027: Complete the second sensor design, evaluate the first front-end electronics, improve the circuit structure and parameters, design the second version of electronics.
- 2028: Complete the sensor and front-end electronics evaluation, release document.

Muon Detector Detailed Schedule

ID	Task Name	Text1	Duration	Sta
0	缪子探测器	Muon detector	1305 days	202
1	 1) 气隙制作和工艺控制 	1) Air gap fabrication and process control	784 days	202
2	 1.1) 气室边框集片等机械结构加工和测试 	1.1) machining and testing of mechanical strue	cti65 days	202
3	1.1.1) 边框加工和测试	1.1.1) frame processing and testing	65 days	202
4	1.1.2) 垫片加工和测试	1.1.2) gasket processing and testing	65 days	202
5	1.2)小面积气隙制作和测试	1.2) fabrication and test of small air gap	88 days	202
6	1.2.1) 自动垫片点胶装置调试	1.2.1) commissioning of automatic gasket dispe	en 22 days	202
7	1.2.2) 小面积气隙制作和工艺优化	1.2.2) small area air gap fabrication and proces	s (43 days	202
8	1.2.3)小面积气隙性能测试	1.2.3) small area air gap performance test	23 days	202
9	 1.3)大面积气隙制作和测试 	1.3) large area air gap fabrication and testing	393 days	202
10	1.3.1) 大面积气隙制作程序优化	1.3.1) optimization of large area air gap fabrica	tic23 days	202
11	1.3.2) 大面积气隙制作	1.3.2) large area air gap fabrication	43 days	202
12	1.3.3) 大面积气隙测试	1.3.3) large area air gap test	66 days	202
13	1.3.4)大面积气隙老化锻炼	1.3.4) large area air gap aging exercise	261 days	202
14	 1.4) BIM/BIR位置气隙设计和制作 	1.4) bim/bir position air gap design and fabric	at 522 days	202
15	1.4.1) BIM/BIR气隙设计	1.4.1) bim/bir air gap design	261 days	202
16	1.4.2) BIM/BIR气隙制作	1.4.2) bim/bir air gap fabrication	173 days	202
17	1.4.3) BIM/BIR气隙测试	1.4.3) bim/bir air gap test	175 days	202
18	2) 单层RPC探测器的设计、制作和性能测试	2) Design, fabrication and performance test of	s 567 days	202
19	2.1) 大面积蜂窝板设计、制作和测试	2.1) design, fabrication and testing of large are	ea 435 days	202
20	2.1.1) 大面积蜂窝板设计和工程确认	2.1.1) large area honeycomb panel design and	er 44 days	202
21	2.1.2) 大面积蜂窝板材料采购	2.1.2) procurement of large area honeycomb p	ar43 days	202
22	2.1.3) 大面积蜂窝板制作(前50%)	2.1.3) large area honeycomb panel production	(t 175 days	202
23	2.1.4) 大面积蜂窝板制作(后50%)	2.1.4) large area honeycomb panel production	(t 173 days	202
24	2.1.5) 大面积蜂窝板质量检测	2.1.5) quality inspection of large area honeycor	ml145 days	202
25	2.2)前端电子学制作和测试	2.2) front end electronics fabrication and testi	ng435 days	202
26	2.2.1) 批量测试方法研究	2.2.1) research on batch test method	87 days	202
27	2.2.2) 前放板材料订货	2.2.2) material ordering for front placing plate	43 days	202
28	2.2.3)前放板制作(前50%)	2.2.3) production of front plate (top 50%)	175 days	202
29	2.2.4)前放板制作(后50%)	2.2.4) fabrication of front plate (rear 50%)	173 days	202
30	2.2.5)前放板性能测试	2.2.5) performance test of front plate	305 days	202
31	2.3) 单层探测器设计、制作	2.3) design and fabrication of single-layer determined and fabrication of single-layer determined and the second s	ect567 days	202
32	2.3.1) 单层探测器设计工程确认	2.3.1) single layer detector design engineering	co130 days	202
33	2.3.2) 单层探测器制作(前150个)	2.3.2) fabrication of single-layer detectors (top	1:132 days	202
34	2.3.3)单层探测器制作(后150个)	2.3.3) fabrication of single-layer detectors (the	la 218 days	202
35	2.4) 单层探测器性能测试	2.4) single layer detector performance test	523 days	202
36	2.4.1)大规模RPC测试平台搭建	2.4.1) construction of large-scale RPC test platf	or 175 days	202
37	2.4.2) 单层探测器性能测试	2.4.2) single layer detector performance test	348 days	202
38	3)探测器组装、调试、试运行	Detector assembly, commissioning and trial	c1086 days	202
39	3.1) 三层探测器的测试、故障排除(@MPI)	 3.1) test and troubleshooting of three-layer de 	te 433 days	202
40	3.2) 现场组装和调试 (CERN)	3.2) site assembly and commissioning (CERN)	782 days	202
41	3.3) 无束流状态试运行 (CERN)	3.3) no beam test run (CERN)	130 days	202
42	 4)项目文档 	4) Project documentation	805 days	202
43	4.1)项目中期测试报告	4.1) Interim test report of the project	22 days	202
44	4.2) 项目结题报告	4.2) project conclusion report	21 days	202

Detailed Budget

课题1: High Granularity Timing Detector Budget

Content	Budget (10k RMB)
1. Equipment	70
2 Operation	734
2.1 LGAD	267
2.2 flexible cable	105
2.3 high voltage	70
2.4 PEB boards	200
2.5 modules	68
2.3 Travel, meeting, collaboration	24
3 Labor	128
Indirect	203
Total	1135

Description

Work stations, LCR meters, HV/LV power supply ...

150 LGAD sensors wafers

7500 flexible cable

750 channels of HV modules

160 PEB boards with components and testing

Wire-bonding, 1000 hybrids

Travels, meeting

Postdocs, graduate students

课题2: Silicon Inner Tracker Budget

Content	Budget (10k RMB)	D
1. Equipment	0	
2 Operation	415	
2.1 Material	356	
2.1.1 Strip Barrel Detector	286	∧ h
2.1.2 Timing Pixel Detector	70	C
2.2 Test and machining	39	To m
2.3 Travel, meeting, collaboration	15	S
2.4 Publication, Patents	5	Ρ
3 Labor	60	Ρ
Indirect	125	
Total	600	

Description

lo equipment

- Aaterial for making 200 strip modules, including sensors, ASICs, ybrid readout flexes, glues
- One readout electronics prototype, two sensors prototypes
- Tooling for strip detector module, Al bonding wires, testing naterial for timing pixel sensor and readout
- upport research activities
- Publications, patents, etc.
- Postdocs, graduate students, financial service

课题3: Muon Detector (RPC) Budget

Content	Budget (10k RMB)	C
1. Equipment	0	٢
2 Operation	328	
2.1 Material	209	
2.1.1 RPC gas gaps	67.5	Ν
2.1.2 BIS readout panel	112	٨
2.1.3 Cosmic test station and DAQ	17	S
2.1.4 RPC working gas	12.5	(
2.2 Test and machining	22	T i
2.3 Detector shipment	48	S
2.4 Travel, meeting, collaboration	9	S
2.5 ATLAS M&O	40	S
3 Labor	30	P
Indirect	107	
Total	465	

- Description
- lo equipment

- Material for making 90m² RPC gas gap
- Aaterial for making 160 readout panels
- Support structure, DCT boards and cables for the test station
- Gases for RPC test: Freon, iso-butane, SF₆, Ar
- Fest of the impedance, surface characters, electronics with the instr n commom pool
- Shipment of the detectors to MPI, 8 x 6 times
- Support research activities
- Support the ATLAS Common Fund for 1 key member
- Postdocs, graduate students

ruments

Timing Detector Detailed Information

Motivation

Pileup is a major challenges at high luminosity

- Additional fake jets
- Affects reconstruction of physics objects

Motivation

Pileup is a major challenges at high luminosity

- Additional fake jets
- Affects reconstruction of physics objects

Motivation

Pileup is a major challenges at high luminosity

At v = c, 1 mm corresponds to 3 ps \Rightarrow Gain is not from time-of-flight information, but from knowing times of each vertex collision

- Additional fake jets
- Affects reconstruction of physics objects

The High Granularity Timing Detector

inner ring replaced at 2000 fb⁻¹
High Granularity Timing Detector (HGTD)

- HGTD aim to reduce pileup contribution at HL-LHC
 - Timing resolution is required to be better than 30 ps (start) 50 ps (end) ps per track
- 6.4 m² area silicon detector and ~ 3.6 × 10⁶ channe
- High Granularity: Pixel pad size: 1.3 mm × 1.3 mm
- Radiation hardness : 2.5x10¹⁵ N_{eq} /cm² and 2 Mgy
- Chinese team is making key contributions:
 - >88% LGAD sensor (IHEP + USTC) 15%
 - 45% detector assembly (IHEP + USTC) 10%
 - 100% front-end electronics board (IHEP +NJU) 100%
 - ~33% flex tail (SDU) 33%
 - 50% ASIC testing (IHEP)
 - 16% high-voltage electronic systems (IHEP+ SDU) 16%
 - Software and performance (USTC)

1

ATLAS China team in HGTD management

- ATLAS China team played a leading role in HGTD
 - Joao (IHEP) is project leader, Level-1 management role in ATLAS
 - The first project leader in ATLAS China team
 - 5 Level-2 conveners (Module, Sensor, Electronics, Risk, Simulation)
 - 2 Level-3 conveners (PEB, high-voltage)
 - 1 Speaker committee

-74

LGAD sensor after Irradiation

- IHEP-IME/FBK/USTC-IME LGAD with carbon-enriched doping
 - Significantly lower acceptor removal ratio, more radiation hard
- After 2.5×10^{15} n_{ea}/cm², LGADs were operated at voltages below 550 V

 - Test beams at CERN and DESY, confirm the feasibility of LGAD timing detector for HL-LHC IHEP and USTC made leading contribution to radiation hard LGAD sensors

75

LGAD sensors pre-production

- Lots of prototypes R&D in LGAD in last few years, active vendors includes:
- HGTD just finalized the CERN tendering. The preliminary production plan:
 - IHEP-IME: 78% (54% from CERN tendering+24% in-kind contribution)
 - CNM: 12% in-kind contribution
 - USTC-IME: 10% in-kind contribution

• IHEP-IME (China), USTC-IME (China), IHEP-NDL(China), FBK (Italy), CNM (Spain), HPK (Japan) ...

Pre-production LGAD sensors from China

- 15x15 array sensors and test structure
- 52 sensors on one 8inch wafer

HGTD module assembly

- IHEP is contributing 50% of HGTD hybrids
 - Bump bonding to hybridized LGAD and ASIC
 - IHEP made full size hybrids with ALTIROC chip
- 6 module assembly site at HGTD project
 - IHEP, USTC, Mainz, France, IFAE, Morocco
 - IHEP is largest site, 34% of module assembly China
 - USTC is responsible for 11% of assembly
 - IHEP/USTC developed gantry system
 - Automatic glue dispending, assembly

Gantry @ IHEP

45%

Hybrids in X ray image

Hybrids **Profile view**

77

Peripheral Electronics Boards, flex tail, HV power supply

> IHEP and NJU developed Peripheral Electronics Boards prototype > SDU developed long flex tail prototype (75cm) > IHEP developed high voltage power supply prototype

Silicon Tracker Detailed Information

Subtask 2: Inner Tracker (ITk) Upgrade

z [mm]

2.1 ITk Strip Barrel Detector

Radiation hard sensor and ASIC study
Strip detector module production
Complex silicon tracker system integration

2.2 Timing Pixel Detector

Pixelated LGAD sensor R&D
Fast front-end electronics R&D

2.1 ITk Strip Barrel Detector

Deliverables

- lacksquare

Contents

Complete strip barrel detector with 25µm spacial resolution Provide strip module spacial resolution evaluation report

Radiation hard sensor and readout ASIC study High performance strip detector module production Complex silicon detector system integration

2.2 Timing Pixel Detector

- \bullet

Contents

- ullet
- lacksquare

Complete timing pixel sensor prototype with timing test report Advance fast front-end pixel electronics key technology

Pixelated LGAD sensor fabrication and timing evaluation Fast front-end electronics data buffering, readout, transmission

Innovation Point

- ATLAS Inner Tracker will be the large charged tracking detector for the energy and luminosity frontier.
 - High tracking reconstruction efficiency and pattern recognition while keeping the material budget low
 - The radiation hardness and complexity of the system represents the large scientific instrument of this kind
- The new timing pixel detector has the potential to be used for the next generation of the ATLAS pixel detector to explore new physics

Sensor Irradiation Study

- Sensor characterization at IHEP

 - CCE (Charge Collection Efficiency)

ASICs Irradiation Study

- Three types of ASIC on strip module • ABCStar : Strips readout front-end chip)

 - HCCStar : Interface between hybrid and stave
 - AMACStar: Monitor and control voltage, current, temp
- Contributed to design and verification of ABCStar
- ASICs TID studied with X-ray machine at IHEP
- Carry SEE test for ASICs at CSNS

Strip Barrel Module Assembly

- China plan to deliver 10% strip barrel modules
 - For this project 200 modules
- Assemble detector modules precisely metrology and glue robot machines
- Thermal cycle modules 10x from -35°C to +40°C
 - Mimic the experimental situation at ATLAS

Barrel Tracker System Integration

- Strip barrel stave loading
 - Mount 28 modules (14 each side) on the stave
 - Modules on each side rotated by +/-26 mrad
 - Thermal cycle the stave after loading

- Barrel tracker system integration
 - Tracker with four concentric carbon cylinders
 - Four barrel layers consists 392 staves
 - Perform power, cooling, data acquisition, system test

Inner Tracker (ITk) Strips Silicon Tracker

- - 1000+ strip modules, 10m² sensor area 500 modules done at RAL + 500 modules at IHEP
 - ulletullet
- - Design and verification of **ABCStar** chip \bullet
 - Sensor and ASICs Irradiation @CSNS •

China-ITk will deliver 10% strip barrel modules

Contributions to strip sensor and ASICs

Will contribute to strip barrel system integration, installation and commissioning

RAL Site Module Production and Stave Loading

- Two FTEs from IHEP based at RAL (one postdoc + one student)
- Contributed to RAL site module production and stave loading
- Contributed to beam test and analysis
- Active on tools design tweak, wire bond oscillation test, etc
- IHEP postdoc instrumental in study of recent "cold noise" problem
- Will be involved in the tracker system integration in the future

Radiation Hard Strip Sensor & ASIC Study

- Carried proton irradiation of ITk strip mini-sensor @CSNS for quality assurance (QA) site
- Sensor irradiation characterization @IHEP

- Contributed to design and verification of ABCStarV0
- ASICs TID studied with X-ray machine at IHEP
- Carried SEE test at CSNS for ABCStarV1, HCC and AMAC

Timing Pixel Sensors R&D

Anode

- Pixeled LGAD sensor will be designed and fabricated
- TCAD simulation and design
 - sensors geometry structure, substrate properties, process parameters
 - Sensor Layout and fabrication:
- Mask design and controllable fabrication process
- Electrical system for timing information, Beta source testing Timing resolution before and after irradiation be less than
- 100ps

Timing Pixel Readout Electronics

- Timing Pixel Readout Module design
 - Analog front end design: Amplification and discrimination combined with high-precision TDC to extract time information (By international cooperation)
 - Strategy and architecture design for TDC data buffering and fast readout
- Readout system prototype design
 - Pixel Readout Module provides power supply and bias for the AFE array and DSP
 - Readout Board is responsible for the data collection, data transmission, and configuration
 - Interface card connects the Pixel Readout Module and Readout Board

Muon Detector Detailed Information

Task 3: Participating units and personnel

- Lead unit: University of Science and Technology of China, project leader: Sun Yongjie
- Participating unit: Shanghai Jiaotong University, head of the unit: Guo Jun
- Participants: 12 people
- University of Science and Technology of China: 9 people, including: 4 deputy seniors and 5 others
- Shanghai Jiaotong University: 3 people, including: 1 deputy senior, 2 others
- 分工:

 - 探测器与电子学的制作和测试: 共同集中人力, 在中科大完成, 尽量避免大面积探测器的运输专场。
 - 探测器的现场安装和调试:则由两家单位按合适比例共同承担
- Division of labor:
 - the maximum extent, and ensure that the research of each key technology is completed on time.
 - China, and try to avoid the transportation of large-area detectors.

•关键技术研究部分:根据已有基础条件和专长合理分工,最大程度发挥各单位的研究力量,保证各关键技术研究按时完成。

• Key technology research part: According to the existing basic conditions and expertise, give full play to the research force of each unit to

Production and testing of detectors and electronics: gather manpower together, complete it at the University of Science and Technology of

• On-site installation and commissioning of the detector: it shall be jointly undertaken by the two units in an appropriate proportion.

Task 3: Organizational management and safeguards CATLAS

- The person in charge of the project organizes and coordinates the development and various research work under the leadership of the project leader.
- the year.
- smoothness of the project. Implement and achieve the goal.

• This topic implements the overall responsibility system of the person in charge of the project.

implementation of various research work of the project. The project leader designates the specific person in charge of all aspects according to the research content of the project. They maintain close communication and exchange with the project leader and carry out

• The project will regularly organize regular meetings of the research group to discuss and solve specific technical problems; hold a second research group seminar every year to discuss the important issues in the implementation of the project; hold a year-end summary meeting every year to check the progress of the project and arrange the specific work of

• The project will strictly implement the policy requirements of the State and the Ministry of Science and Technology for the "National Key Research Plan". The participating units of the project and the countries where the participating units are located and the key laboratories of the Ministry of Education will support human resources, laboratory sites and related conditions such as researchers, support personnel and graduate students to ensure the

Task 3: Risk analysis and countermeasures

- The risk of adjusting the progress of large-scale international cooperation: there are many participating units, and the tasks undertaken by each unit are intertwined and supported by each other; and are affected by the entire ATLAS experiment and HL-LHC upgrade plan.
 - Response measures: Actively participate in the communication and discussion related to the upgrade project, keep abreast of the latest developments of each task, reasonably adjust the specific work arrangement, and ensure that each task is completed on time.
- Risk of long-distance transportation of large-area detectors: Each unit undertakes different assembly steps, involving the detector transportation chain of Italy, China, Germany and Switzerland.
 - Countermeasures: Reasonable design of detector support, packaging and protection structure to avoid damage to detector transportation

RPC Detailed Construction Scheme

Strip PCB Paper honeycomb **GND PCB**

Bakelite

Spacers

Bakelite

Thin-gap RPC for Muon trigger

- area, ~100k channels in total.
- USTC-SJTU-SDU cluster will contribute ~½ of the readout panel production, ½ of RPC singlet assembly, $\frac{1}{2}$ of FEE board construction and correlating QA&QC.(\rightarrow 2026.6)
- R&D carried out with various improvements: honeycomb panel, double-end readout method, signal attenuation study, etc.
- 4 prototypes has been constructed. Get ready for mass production, Quality Control and Assurance for ~300 Large size RPC singlets.

• Thin-gap RPC will be installed in the ATLAS Barrel Inner region to cope with HL-LHC: ~1400 m²

Thin-gap RPC for Muon trigger

production for preparation and ctivities Π R&D

Normalized

BIS type RPC

- BIS-1 is the largest RPC in the phase-2 upgrade.
- Both BIS-1 and BIS 2-6 types are very wide, which is out of the capability of normal photo-etching facilities.
- A Chinese factory is the only supplier in the world for such large PCBs.
- The production of such large honeycomb readout panels is also time and space consuming.
- The flatness of the readout panel is strict, to ensure the flatness of the gas volume.

BIS-1: 1705 mm x 1072 mm ± 1 mm (96 panels) BIS 2-6: 1705 mm x 890 mm ± 1 mm (480 panels)

Work basis and background

- USTC take charge of the tast#3, the ATLAS muon detector upgrade, is one of the national key institutes in the field of the particle detector and related electronics.
- USTC has take part in BEPC-BES, LHAASO, HIRFL-CEE, etc. for detector and electronics R&D.
- USTC has made great progress on the thin-gap RPC in the last MOST project.

Production of the large readout panel

Large-scale cosmic ray trigger system

The up-to-date RPC production time line

	2023																	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	No	ov	Dec	Ja	in	Fel	о	Ma
Milestones																		
HPL					13%			25%				50			0%			
gas gaps BIL								13%			25%			40%				e
gas gaps BIS								13%			25%			40% 55%		% 70%		
BIS Strip PCB production									4%			229	6 3	9%		569	%	
BIS Singlet construction									(1)	8%	3%		27%		4()%	53	%
BIS Singlet integration																		
BIL Strip PCB								2%			11%			25%				409
BILSinglet construction									1	L%			1	2%				29%
BIL Singlet integration																		
FE PCBs																		

- \bullet
- ulletof all the products.
- In total, the work related to 288 BIS singlets. \bullet
- \bullet ASIC is delayed again. This also makes the time for the QA&QC on the singlets very tight.)
- The table doesn't contain the QA&QC on the chambers, which needs also manpower contributions from China.
- From 2026 to 2028, the main work will be the installation and commissioning at CERN. \bullet

This table shows the up-to-date RPC production time line with the first priority, which contains the core part of the production.

The main task for China-cluster is the BIS part (which covers all of 8 small sectors), including the strip PCB production, the honeycomb readout panel production, (half of) the FEE board production, the singlet construction and integration, and the QA&QC

(From the time line, we can also find the "singlet integration" time is very limited. This is due to the fact that the delivery of the FEE

Nov

102

Work sharing (under discussion)

PRIORITY			Number	GTE	INFN	MPI
1		gas gap	312	100%		
	BIL (excluding s7)	strip panel	624		100%	
		singlet	312		100%	
		triplet	104		100%	
		gas gap 5-9 S7	30	backup		
1		gas gap(1-4+10)S7	30	100%		
	BIL s7	strip panel	120		50%	
		singlet	60		50%	
		triplet	20		50%	
2		gas gap S9@E=O	18	backup		
	S9 @ Eta=0	strip panel	36			
		singlet	18			
		triplet	6			
		gas gap	288	100%		
1	BIS1-6	strip panel	576	The		
1		singlet	288	ine	core pa	art: –
		triplet	96			10
2		gas gap	240	backup		10
	BOR/BOM	strip panel	480	_	50%	
		singlet	240		25%	2
		triplet	80		25%	2
3		gas gap	24	100%		
	BIS7C	strip panel	48			
		singlet	24		100%	
		triplet	8		100%	
3		gas gap	24	backup		
	BIS8C	strip panel	48			
		singlet	24			
		triplet	8			
3	BIS78A	electronics replaceme	48		50%	
		triplet	16		50%	
			Number	GTE	INFN	MPI
	Total Singlets assi	gned to be built	942	624	402	
	Total Chambers assi	gned to be built	314		134	1
	Total Singlets unas	signed	24		24	
	Total Chambers unas	signed	8		8	
	Total refurbishing	unassigned	16		16	

- Stations 5-9@S7 are not critical in installation sequence
- > 30 gas gaps to be assigned to USTC-cluster.
- (very likely,) ½ of the strip panel production, single assembly and triplet assembly
- Eta=0@S9 has priority-2 in installation sequence
- ➤ 18 gas gaps to be assigned to USTC-cluster.
- And also the strip panel production, single assembly and triplet assembly

> BIS8C has priority-3 in installation sequence
 > 24 gas gaps to be assigned to USTC-cluster.
 > And also the single assembly and triplet assembly

Risk

- The ATLAS upgrade is organized in a large collaboration. The plan and the scheme of the upgrade are decided by the collaboration.
- →Take in-depth cooperation with the collaboration and other institutes.
- →Be aware of the plan and scheme at all the time.
- →Take responsive actions in case of new situation.
- →Keep the responsible work in healthy condition.