Contribution ID: 23

Type: polarized neutron techniques and methods

Development and performance evaluation of 3He neutron spin filters at J-PARC

Wednesday, 26 February 2025 14:30 (30 minutes)

The ³He neutron spin filter (³He NSF) is a neutron polarization device that uses polarized ³He nuclei. It can polarize a wide range of neutron energies, including the epithermal neutron, making it a suitable polarization device for spallation neutron sources. The polarization of ³He nuclei is achieved through the Spin-Exchange Optical Pumping (SEOP) method. The SEOP method, using a high-intensity laser, slight heating (200 °C), and a small magnetic field (2 mT), enables the achievement of a very high ³He polarization with compact setup. Our group is developing and operating a ³He NSF at J-PARC. Since the first user experiment in 2017[1], we have conducted more than 80 days of operational use per year. Recently, we developed compact in-situ SEOP systems for the ³He NSF, specifically designed to fit within the limited installation space at J-PARC' s neutron beamlines. This advancement is expected to increase experimental applications. On the other hand, there is an unanswered puzzle about the ³He NSF. It concerns the relaxation mechanism of ³He nuclei. The complex behavior of ³He atoms contained in glass cells creates a barrier to the fabrication of high-performance ³He cell for the ³He NSF. We are investigating the relationship between the fabrication method and performance of the ³He cell, aiming to contribute to the understanding of the relaxation mechanism.

We have developed an evaluation system for the ³He cell. This system features the ability to directly and precisely measure magnetic fields, which are an environmental factor included in conventional evaluation methods using NMR. This capability allows for quantitative evaluation independent of the ³He cell's shape. Using this method, we evaluated multiple ³He cells and obtained consistent results.

In this presentation, we will describe an overview of the ³He NSF development at J-PARC and discuss the results of the performance evaluation of the ³He cells.

Primary author: KOBAYASHI, Ryuju (JAEA)

Co-authors: KANTA, Asai (Nagoya University); TAKASHI, Ino (KEK); TAKAYUKI, Oku (JAEA); TAKUYA, Okudaira (Nagoya University); MAO, Okuizumi (Nagoya University); SHUSUKE, Takada (Tohoku University); SHINGO, Takahashi (Ibaraki University)

Presenter: KOBAYASHI, Ryuju (JAEA)

Track Classification: Download the latest program here