

高海拔宇宙儀観潮站



### LHAASO对宇宙线能谱的测量及 CORSIKA模拟软件使用

马玲玲 LHAASO暑期学校・昆明

All mon - 1



#### ▶在地面测量宇宙线能谱的意义及困难



► LHAASO在宇宙线能谱测量中的优势
► LHAASO的全粒子能谱的测量

▶ LHAASO的成分及成分能谱的测量

▶ LHAASO的绝对能标

▶CORSIKA软件的使用

### 地面测量宇宙线的意义

▶ 能谱存在精细结构:(宇宙线能谱指数的变化)

- ▶ 膝: 3PeV (-2.7变为-3.1)
- ▶ 第二膝: 100PeV (-3.1变为-3.3)
- ▶ 踝: 5EeV (谱指数变回-2.7)
- ▶ GZK截断: 50EeV

 $F = E^{\gamma}$ 

#### "燕过留痕"

- 膝:银河系加速源对宇宙线加速能力的上限,质子的膝 最先出现,然后为氦核等更重的核子,并且不同核子的 膝的位置呈现Z依赖
- ▶ 第二膝:银河系加速源对铁核加速能力的上限

对宇宙线能谱及成分的测量有助 于解决宇宙线起源这一世纪难题



# 地面测量宇宙线的困难 间接测量通过广延大气簇射间接测量, 巨大的有效面积 能量,成分信息都已丢失,只能通过大 气簇射的特征来判断

- ▶ 不同成分之间特征的差异很小,并伴随 有巨大的统计涨落
- ▶能量和成分的重建互相依赖
- ▶受强相互作用模型的影响
- ▶ 探测器绝对能标无法标定
  - ▶ 自然界中缺少能量和成分已知束流对探 测器进行绝对能量标定



## 广延大气簇射

### 广延大气簇射 电磁级联



Astroparticle Physics 22 (2005) 387–397

高能伽马进入大气层之后和大气相互作用产生正负 电子对;

正负电子在大气的库仑场中通过轫致辐射,有辐射 出光子;

级联不断发展,直到电子的能量降低到产生轫致辐 射的阈能时,簇射发展到极大。

此后电离能损占主导地位, 簇射开始衰减

$$n_{\rm c} = \ln[E_{\circ}/\xi_{\rm c}^{\rm e}]/\ln 2,$$

$$X_{\rm max}^{\gamma} = n_{\rm c}\lambda_{\rm r}\ln 2 = \lambda_{\rm r}\ln[E_{\circ}/\xi_{\rm c}^{\rm e}]$$

### 广延大气簇射 强子级联



 $N_{\mu} = N_{\pi} = \left(N_{\rm ch}\right)^{n_{\rm c}}$ 

 $\xi_{\rm c}^{\pi} = 20 \, {\rm GeV}.$ 

$$E_{\circ} = \xi_{\rm c}^{\rm e} N_{\rm max} + \xi_{\rm c}^{\rm \pi} N_{\mu}$$
$$X_{\rm max}^{\rm p} = X_{\circ} + \lambda_{\rm r} \ln \left[ E_{\circ} / (3N_{\rm ch} \xi_{\rm c}^{\rm e}) \right]$$

 $X_{\rm max}^{\gamma} = n_{\rm c}\lambda_{\rm r}\ln 2 = \lambda_{\rm r}\ln[E_{\circ}/\xi_{\rm c}^{\rm e}]$ 

### 叠加模型 (重核产生的大气簇射的特点)

原子核(A,E) = A个能量为E/A的质子

$$N_{\mu}^{A} = N_{\mu}^{p} \left(\frac{E}{A}\right)^{\beta} \quad \beta \sim 0.85$$
$$N_{e}^{A} = N_{e}^{p} \left(\frac{E}{A}\right)^{\alpha} \quad \alpha \sim 1.05$$

#### 能量相同时,越重的核子缪子数越多, 电磁粒子数越少,Xmax的位置越高

 $X_{max}^{A} = X_{max}^{p} - \lambda_{r} lnA$ 

### 簇射中的光---切伦科夫光

产生机制,当次级粒子的速度大于光在空气中的速度时
产生契伦科夫光的阈能

$$E_{th} = \frac{m_0 c^2}{\sqrt{1 - 1/n^2}}$$

• 契伦科夫光的方向性

$$\cos\theta = 1/\beta n$$

| 簇射中的切伦科夫 |
|----------|
| 光主要产生自簇射 |
| 中的正负电子   |

| Medium               | Index of refraction (n) | Particle threshold energy in MeV <sup>a</sup> |                   |                     |
|----------------------|-------------------------|-----------------------------------------------|-------------------|---------------------|
|                      |                         | Electron <sup>b</sup>                         | Muon <sup>c</sup> | Proton <sup>d</sup> |
| Air                  | $1.00027712^{e}$        | 21.2                                          | 4380.9            | 38925.9             |
| Silica aerogelf      | 1.05                    | 1.16                                          | 240.7             | 2139.0              |
| Water                | 1.332                   | 0.263                                         | 54.3              | 482.1               |
| Glass <sup>g</sup>   | 1.47                    | 0.186                                         | 38.5              | 341.9               |
| Plastic <sup>h</sup> | 1.52                    | 0.167                                         | 34.6              | 307.6               |
| Ceramic <sup>i</sup> | 2.1                     | 0.070                                         | 14.5              | 128.7               |
| Diamond              | 2.4                     | 0.051                                         | 10.6              | 03.0                |



### LHAASO的挑战与机遇

### LAASO对宇宙线的探测

#### **CATCHING RAYS**

China's new observatory will intercept ultra-high-energy γ-ray particles and cosmic rays.





~25,000 m

### LHAASO对宇宙线能谱的测量

#### ▶ 多参数测量

#### ► KM2A:

▶ 测量簇射中的电磁粒子数和 缪子数

#### ► WFCTA:

▶ 测量簇射中带电粒子所辐射 出的契伦科夫光子



### LHAASO对宇宙线全粒子谱的测量



芯位: 320m-420m 天顶角: 10°-30°

$$A = S \int_{\theta_1}^{\theta_2} \sin \theta \cos \theta \, d\theta \int_0^{2\pi} d\varphi$$

0.16km<sup>2</sup>sr



$$E_{\circ} = \xi_{\rm c}^{\rm e} N_{\rm max} + \xi_{\rm c}^{\rm \pi} N_{\mu}$$

 $E_e$ 

\_

 $E_h$ 

#### 簇射极大时的电磁粒子数和缪子数

LHAASO的优势: 高海拔,4410米,600g/cm<sup>2,</sup>位于 簇射极大附近 多参数:实现成分弱依赖的能量重建

$$N_{\rm e\mu} = N_{\rm e} + 2.8 N_{\mu}$$







#### 分辨率: 重建能量和真实能量之间相对差异的分布宽度 重建偏差: 重建能量和真实能量之间相对差异的平均值



# 能量重建对成分模型和相互作用模型的依赖性 $log_10E = p_1 log_10N_{em} + p_0$

| Model    | $p_0$ | $p_1$ |
|----------|-------|-------|
| Gaisser  | 2.799 | 0.992 |
| Horandel | 2.798 | 0.992 |
| GST      | 2.802 | 0.992 |
| GSF      | 2.797 | 0.992 |

#### 不同成分模型所得到的能量重建参数

| Model       | $p_0$ | $p_1$ |
|-------------|-------|-------|
| QGSJETII-04 | 2.799 | 0.992 |
| EPOS-LHC    | 2.789 | 0.992 |
| SIBYLL-2.3d | 2.784 | 0.995 |

#### 不同相互作用模型所得到的能量重建参数



 $\log_{10}(E/\text{GeV}) = 2.791 + 0.993 \cdot \log_{10}(N_{e\mu})$ 





- 强相互作用引入的系统误差 +-2.5%
- 气压变化引入的系统误差 +-3%

#### Phys. Rev. Lett. 132, 131002 (2024)



$$J(E) = \Phi_0 \cdot (E)^{\gamma_1} \left( 1 + \left(\frac{E}{E_b}\right)^s \right)^{(\gamma_2 - \gamma_1)/s}$$

 $E_b = 3.67 \pm 0.05 \pm 0.15 \text{ PeV}$   $\gamma_1 = -2.7413 \pm 0.0004 \pm 0.0050$   $\gamma_2 = -3.128 \pm 0.005 \pm 0.027$  $s = 4.2 \pm 0.1 \pm 0.5$ 



#### 没有成分依赖的能量重建的优势

#### 在极端成分模型(纯质子及纯铁核)假 设下,LHAASO所得到的差异为12%

#### Asgamma为300%, IceTop为200%



# 利用LHAASO-KM2A测量平均对数质量 </br>

#### 叠加模型

▶ 原子核(A,E) = A个能量为E/A的质子

$$N_{\mu} \propto A \cdot \left(\frac{E}{A}\right)^{\beta} \longrightarrow \langle \ln(N_{\mu}) \rangle = x_0 + x_1 \cdot \langle \ln(A) \rangle$$







Phys. Rev. Lett. 132, 131002 (2024)



$$J(E) = \Phi_0 \cdot (E)^{\gamma_1} \left( 1 + \left(\frac{E}{E_b}\right)^s \right)^{(\gamma_2 - \gamma_1)/s}$$

#### ▶膝前, <InA>与能量的关系, 服从 谱指数-0.12

#### ▶膝后,谱指数变为了0.497

≻暗示膝为轻成分的膝,膝前谱指数 为: -2.74 - (-0.12) = -2.62

## 利用KM2A,WFCTA测量 宇宙线轻成分能谱

### 事例筛选条件

- WFCTA指向45°
- 300m<Rp<100m
- $|MeanX(Y)| < 5^{\circ}$
- Npix>10 & & NtrigE>20
- NhitM>0 && NpE1>0









### 有效面积



KM2A,WFCTA联合能量重建 ▶ 天顶角45°对应的大气厚度为850g/cm2

- ▶ 此时,膝区宇宙线已过簇射极大
- Ne! = Nemax
- ▶ 绝大多数切伦科夫光产生于簇射极大时的 正负电子



#### ▶ Nc正比于Nemax

### KM2A,WFCTA联合能量重建



# 不依赖于能量的成分鉴别参数

▶ 原子核(A,E) = A个能量为E/A的质子  $N_{\mu}^{A} = N_{\mu}^{p} \left(\frac{E}{A}\right)^{\beta}$  $N_e^A = N_e^p \left(\frac{E}{A}\right)^{\alpha}$ **y~0.86** 





### 挑选轻成分的能力



P: 挑选出样本,真正轻成分的比例,纯度

 $\epsilon$ : 挑选轻成分的效率







$$F = \frac{dN}{A \cdot T \cdot dE} \cdot \frac{P}{\epsilon}$$

### 成分模型不确定引入的系统误差

#### 成分中模型中质子氦核的比例,会影 响挑选效率

在现在流行的模型基础上增加质子的 比例(50%)或者增加氦核的比例(50%), 所得结果的差异为15%

用纯质子或者纯氦核的极端模型所的 结果的差异为23%



# 利用KM2A,WFCTA测量 宇宙线质子能谱







能量重建偏差: <2%

能量分辨率: <15%
## 对其他重成的能量重建

# 对其他重成分能量重建偏小,由于能谱的急剧下降,使得其他重成分的污染变小,相应的增加了对质子的挑选能力。



# 挑选质子最大的困难

### ▶如何压低氦核的污染

### ▶更强的成分挑选能力





### 叠加模型 原子核(A,E) = A个能量为E/A的质子 $X^A_{max} = X^p_{max} - \lambda_r lnA$









#### Selection Efficiency versus Purity of the Proton Sample (20%) $N * \frac{purity}{\eta} = N * \frac{N_P^{sele}}{\Sigma N_i^{sele}}$ $N_P^{sele}$ N<sup>sele</sup> $\eta =$ Nall N<sup>all</sup>

2.5







### 成分模型的系统误差





# LHAASO探测器的绝对能标

### ▶ 能量估计参数和真实能量的关系需要进行标定

### ▶ 缺少成分和能量已知的宇宙线束流







### ▶ 观测月影与月球真实位置的偏移

### $\Delta = z * 1.59^{\circ}/E(TeV)$

Shift of the Moon  $\Delta$ 

z of cosmic rays used to measure the Moon shadow The median energy of cosmic rays can be obtained Moon

# 利用月影偏移量,在35TeV一下对WCDA的绝对能量进行了标定



对于更高能量标定非常困难  $\triangleright$  Proton:  $\triangle = 0.032@50TeV$ , **∆= 0.016@100TeV** ► Helium: △=0.064@50TeV, ∆= <u>0.032@100TeV</u> 100TeV时,月影的偏移量接近探测器 的指向精度 统计量低,测量月影位置的统计误差大





11%

6%

285%



Number of Excess Events

40

-30

-20

-10

-10

-20

Number of Ecess Events

10

Number of Elicess Events





# ▶ LHAASO以最高的精度测量了全粒子的膝区能谱,及平均对数 质量

# ▶ LHAASO具备强大的成分鉴别能力,能够实现对质子能谱和轻成分能谱的测量

LHAASO巨大的有效面积和成分鉴别能力,能够实现在 100~200TeV的绝对能量标定

# CORSIKA软件的使用

# EAS模拟思路

▶ 假设未知: ▶宇宙线流强、成份、 ▶相互作用模型、 ▶ 模拟物理过程: ▶ shower在大气中的发展过程 (大气模型) ▶EAS次级粒子到达探测器后的探测器响应 ▶ 分析模拟数据: ▶模拟数据重建 ▶ 和实验数据对比:

### **COsmic Ray Simulation for KAscade**

- ▶ KASCADE实验组开发的EAS模拟软件,现已广泛应用与宇宙线模拟领域
- ▶ 随机数产生器 (RM48)
  - Sequence length: 2<sup>144</sup>
  - ▶ 在运行CORSIKA程序时应设置随机种子,如随机种子相同,得到的模拟结果相同
- ▶ 相互作用模型
  - ▶ 高能强相互作用模型: QGSJET, EPOS-LHC, SIBYLL, DPMJET,
  - ▶ 低能强相互作用模型: FLUKA, GHEISHA
  - ▶ 电磁相互作用模型: EGS4
- ▶ 大气模型
  - ▶ 多种模型选择(参见guide)
  - ▶ 常用美国标准大气模型
  - ▶ 也可以建立自己的大气模型

## CORSIKA的坐标系定义

#### ▶ 坐标系定义

▶ X轴: 地磁北极; Y轴: 向西; Z轴: 向上

#### ▶ 方位角定义:

▶ 事例方位角0°时指向X轴正方向

▶ 事例方位角90°时指向Y轴正方向

### 一定要保证探测器的坐标 系定义和CORSIKA一致。



# CORSIKA中的单位

|                                                                  |                                                      |                   | FLUKA   |                    | DPMJET |                   |  |  |
|------------------------------------------------------------------|------------------------------------------------------|-------------------|---------|--------------------|--------|-------------------|--|--|
|                                                                  | CORSIKA                                              | EGS4              | GHEISHA | SIBYLL             | EPOS   | CONEX             |  |  |
|                                                                  |                                                      |                   | UrQMD   |                    | NEXUS  |                   |  |  |
|                                                                  |                                                      |                   | HERWIG  |                    | QGSJET |                   |  |  |
| Quantity                                                         |                                                      |                   | PYTHIA  |                    | VENUS  |                   |  |  |
| length                                                           | cm                                                   | cm                |         |                    |        | m                 |  |  |
| energy                                                           | GeV                                                  | MeV               | GeV     | GeV <sup>3</sup> ) | GeV    | GeV               |  |  |
| mass                                                             | GeV                                                  | MeV               | GeV     | GeV                | GeV    | GeV               |  |  |
| time                                                             | sec <sup>1</sup> )                                   | sec               |         |                    |        | sec               |  |  |
| magn. field                                                      | $\mu T$                                              |                   |         |                    |        | 4)                |  |  |
| density                                                          | g/cm <sup>3</sup>                                    | g/cm <sup>3</sup> |         |                    |        | g/cm <sup>3</sup> |  |  |
| mass overburden                                                  | g/cm <sup>2</sup>                                    |                   |         |                    |        | g/cm <sup>2</sup> |  |  |
| angle                                                            | rad <sup>2</sup> )                                   | rad               |         |                    |        | rad               |  |  |
| wavelength                                                       | nm                                                   |                   |         |                    |        |                   |  |  |
|                                                                  | <sup>1</sup> ) For output files also nsec is used.   |                   |         |                    |        |                   |  |  |
| <sup>2</sup> ) For in- and output files also $^{\circ}$ is used. |                                                      |                   |         |                    |        |                   |  |  |
|                                                                  | <sup>3</sup> ) In some subroutines also TeV is used. |                   |         |                    |        |                   |  |  |
|                                                                  | <sup>4</sup> ) No Earth magnetic field considered.   |                   |         |                    |        |                   |  |  |

# CORSIKA中的粒子

| Identification | Particle       | Identification | Particle                    |
|----------------|----------------|----------------|-----------------------------|
| 1              | $\gamma$       | 51             | $ ho^{\circ}$               |
| 2              | $e^+$          | 52             | $\rho^+$                    |
| 3              | $e^-$          | 53             | $\rho^{-}$                  |
|                |                | 54             | $\Delta^{++}$               |
| 5              | $\mu^+$        | 55             | $\Delta^+$                  |
| 6              | $\mu^-$        | 56             | $\Delta^{\circ}$            |
| 7              | $\pi^{\circ}$  | 57             | $\Delta^{-}$                |
| 8              | $\pi^+$        | 58             | $\overline{\Delta}^{}$      |
| 9              | $\pi^{-}$      | 59             | $\overline{\Delta}^{-}$     |
| 10             | $K_L^{\circ}$  | 60             | $\overline{\Delta}^{\circ}$ |
| 11             | $K^+$          | 61             | $\overline{\Delta}^+$       |
| 12             | $K^-$          | 62             | $K^{*\circ}$                |
| 13             | n              | 63             | $K^{*+}$                    |
| 14             | p              | 64             | $K^{*-}$                    |
| 15             | $\overline{p}$ | 65             | $\overline{K^*}^{\circ}$    |
| 16             | $K_S^{\circ}$  | 66             | $ u_e$                      |
| 17             | $\eta$         | 67             | $\overline{ u}_e$           |
| 18             | Λ              | 68             | $ u_{\mu}$                  |

### CORSIKA中有200多 种粒子,其它的可以 参考COSIKA手册

核子: A\*100+Z 如铁核: 5626

### 常用Corsika选项及关键字

| 高能相互作用 | 模型选项                   |                  |               |        |   |   |
|--------|------------------------|------------------|---------------|--------|---|---|
| Option | key words              | 低能相互作用           | 模型选项          |        |   |   |
| DPMJET | DPMJET T 0<br>DPJSIG T | Option<br>FLUKA, | GHEISHA       |        |   |   |
|        |                        | 电磁相互作用           |               |        |   |   |
| EPOS   | EPOS T O<br>EPOSIG T   | NKG<br>EGS4      | RADNKG 200.E2 | ELMFLG | T | T |
| QGSJET | QGSJET T 0<br>QGSSIG T |                  |               |        |   |   |
| SIBYLL | SIBYLL T O<br>SIBSIG T |                  |               |        |   |   |

## Cherenkov选项及关键字

- ▶ Cherenkov光子波长选项 CERWLEN
  - ▶ 如选用此选项契伦科夫光子波长依赖于大气的折射系数。但是对极端相对论粒子来说此选项影响较小,只有对阈能附近的粒子影响较大。
- ▶ 大气吸收选项 CEFFIC
  - ▶ 如不选此选项CORSIKA则不会考虑大气吸收。
- ▶ 关键字:
  - ▶ CWAVLG WAVLGL WAVLGU 波长范围
    - ▶ Defaults = 300., 450.
    - ▶ Limits are: 100. < WAVLGL < WAVLGU < 700.
  - ► CERSIZ CERSIZ
    - ▶ Default = 0. (如果是0,会选择适合HEGRA-array的size)
    - ► Limit is: CERSIZ >= 0.
  - ▶ CERQEF CERQEF CERATA CERMIR (需要选用CEFFIC选项)
    - Defaults = F, F, F
    - ▶ CERQEF: If .true.,考虑探测器的量子效率,调用quanteff.dat 文件
    - ▶ CERATA: If .true., 考虑大气对光子的吸收, 调用 atmabs.dat 文件
    - ▶ CERMIR: If .true.,考虑反射镜的反射率,调用mirreff.dat 文件
    - ▶ 可根据探测器自身的特点修改这三个文件

#### CERARY NCERX NCERY DCERX DCERY ACERX ACERY

- Format = (A6, 2I, 4F), Defaults = 27, 27, 1500., 1500., 100., 100.
- ▶ NCERX:x方向望远镜的个数.
- ▶ NCERY:y方向望远镜的个数.
- ▶ DCERX:x方向望远镜之间的间距.
- ▶ DCERY:y方向望远镜之间的间距
- ▶ ACERX:x方向望远镜的边长.
- ▶ ACERY:y方向望远镜的边长
- CSCAT ICERML XSCATT YSCATT
  - Format = (A5, I, 2F), Defaults = 1, 0., 0.
  - ▶ ICERML:对事例重复利用的次数.
  - ▶ XSCATT:x方向投点范围 XSCATT<x<XSCATT
  - ▶ YSCATT: y方向投点范围 YSCATT<y<YSCATT



### THIN选项

- ▶ 当所要模拟的事例能量高于10<sup>16</sup>eV时,需要很长时间和存储空间。为了节省时间和存储空间 CORSIKA提供了THIN选项。
- ▶ 关键字

#### ► THIN EFRCTHN WMAX RMAX

- ▶ EFRACTHN: 当次级粒子的能量小于EFRCTHN\*EO(原初宇宙线的能量)时,THIN开始发挥作用。用其 中一个次级粒子来代表一束粒子来做追踪,相应给出这个粒子的权重。WMAX为最大权重,当权重超 出此值时,将不进行THIN。
- ▶ RMAX: 为了节省磁盘空间,对于靠近芯位的次级粒子可以有选择的存储。选择按照prob ∝(r/rmax)<sup>4</sup>, 相应的权重再乘以1/prob.

#### ► THINH THINPAT WEITRAT

- ► THINEM THINPAT WEITRAT
  - THINRAT =  $E_{them}/E_{thhadr}$  and WEITRAT = WMAX<sub>em</sub>/WMAX<sub>hadr</sub>

► THINH 与THINEM只能选择其中之一。如选择THINH, THIN关键字中的EFRACTHN指的是电磁粒子的能量阈值,如选择THINEM, THIN关键字中的EFRACTHN指的是强子的能量阈值。

- ▶ RUNNR NRRUN 用作输出文件的文件名
- ▶ EVTNR SHOWNO 所模拟的第一个事例的编号
- ▶ SEED ISEED (1,2,3) 随机种子
- ▶ NSHOW NSHOW 本次模拟的事例数
- ▶ PRMPAR PRMPAR 模拟事例的成份
- ▶ ERANGE LLIMIT ULIMIT 模拟事例的能量范围(GEV)
- ▶ ESLOPE PSLOPE 谱指数
- ▶ THETAP THETPR(1) THETPR(2) 天顶角范围
- ▶ PHIP PHIPR(1) PHIPR(2) 方位角范围
- ▶ ATMOD MODATM 大气模型(30个模型可选参见手册)
- ▶ MAGNET BX EX 地磁场强度 (水平磁场,垂直磁场)
- ▶ ELMFLG TNKG FEGS 电磁相互作用
  - ▶ TNKG: (T)利用NKG函数计算电磁级联
  - ▶ FEGS: (T)利用EGS4模型计算电磁级联(需提供随机种子)
  - ▶ 如果选择了Cherenkov选项,则程序会自动选择EGS4

其 他 常 用 关 键 

▶ STEPFC STEPTC 电子多次散射长度 Format = (A6, F), Default = 1. ▶ Limits are: 0. < STEPFC < 10.0 ▶ 如果此参数值增大能有效的减少模拟时间,但是会使 电子的分布宽度变窄。 ▶ STEPFC = 10., CPU可以节省1.7倍的时间 ▶ STEPFC = 0.1, CPU需要增加5倍的时间 ▶ RADNKG RADNKG NKG函数的作用范围(外圈半径) Format = (A6, F), Default = 200.E2  $\blacktriangleright$  Limit is: RADNKG > 100. ▶ 内圈半径为100cm

#### ECUTS ELCUT(i), i=1... 4 Format = (A5, 4F), Defaults = 0.3, 0.3, 0.003, 0.003 Limits are: ELCUT(1)>=0.05; ELCUT(2)>=0.01; ELCUT(3), ELCUT(4) >= 0.00005 ELCUT(3)<0.08 同时作为NKG函数计算的阈值 Hadron, Muon, electron, photon 根据探测器的阈值选择

#### LONGI LLONGI THSTEP FLGFIT FLONGOUT Format = (A5, L, F, 2L), Defaults = F, 20.0, F, F LLONGI : If .true., 在簇射发展过程中,每个阶段的光子数,电子数,契 伦科夫光子数等都会记录下,并且各种粒子所沉积的能量也会记录下来 THSTEP: 记录纵向发展的步长(g/cm<sup>2</sup>) FLGFIT: if .true., 对纵向发展曲线进行拟合, FLONGOUT: If .true., 写入到一个独立的文件, DATnnnnn.long, if .false: 写入DATnnnnn文件中LONG的subblock内

其 他 常 用 关 键字 ▶ MUMULT FMOLI muon的多次散射 Format = (A6, L), Default = T ▶ FMOLI: If .false. Muon的多次散射利用高斯近似来计算, If .true: 对于大步长散射采用莫里尔理论, 对于小步长又添加了很多单次库伦散射。 ▶ OBSLEV OBSLEV(i) 观测面的海拔高度 Format = (A6, F), Default = 110.E2▶ MAXPRT MAXPRT 输出详细信息的事例数 Format = (A6, I), Default = 10 ▶ DIRECT DSN 输出文件的路径, 路径一定要以"/"结束



| RUNNR  | 1                        | number of run   |
|--------|--------------------------|-----------------|
| EVTNR  | 100400                   | no of first sho |
| SEED   | 100401 0 0               | seed for hadron |
| SEED   | 100402 0 0               | seed for EGS4 p |
| SEED   | 100403 0 0               | seed for Cheren |
| NSHOW  | 10                       | no of showers t |
| PRMPAR | 5626                     | primary particl |
| ERANGE | 2.00E4 4.00E4            | energy range of |
| ESLOPE | -2.7                     | slope of energy |
| THETAP | 0. 10.                   | range zenith an |
| PHIP   | -180. 180.               | range azimuth a |
| QGSJET | т о                      | QGSJET for high |
| QGSSIG | Т                        | QGSJET cross-se |
| HADFLG | 0 0 0 0 0 2              | HDPM interact.f |
| ELMFLG | ТТ                       | elmag. interact |
| STEPFC | 1.                       | multiple scatte |
| RADNKG | 200.E2                   | outer radius (c |
| MAGNET | 20.4 43.23               | magnetic field  |
| ECUTS  | .3 .3 .015 .015          | energy cuts: ha |
| LONGI  | Т 20. Т Т                | longitud, steps |
| MUMULT | Т                        | muon multiple s |
| MUADDI | Т                        | additional muon |
| OBSLEV | 110.E2                   | observation lev |
| ARRANG | 18.25                    | angle between n |
| MAXPRT | 10                       | max. no of prin |
| ECTMAP | 1.E2                     | printout gamma  |
| DIRECT | /home/user/corsika/run/  | directory of pa |
| CERARY | 10 8 1200. 1500. 80. 50. | Cherenkov detec |
| CWAVLG | 300. 450.                | Cherenkov wavel |
| CERSIZ | 5.                       | bunch size Cher |
| CERFIL | F                        | Cherenkov outpu |
| CSCAT  | 5 1000. 1000.            | scatter Cherenk |
| DATBAS | Т                        | write data base |
| USER   | you                      | user name for d |
| HOST   | your_host                | host name for d |
| DEBUG  | F 6 F 99999999           | debug flag, log |
| EXIT   |                          |                 |

wer event nic part art ıkov part co simulate le code (iron) primary (GeV) spectrum ngle (deg) angle (deg) energy & debug level ections enabled lags & fragmentation fla ion flags NKG, EGS4 ering step length factor cm) of NKG elect. distrib central Europe (/uT) adr. muon elec. phot. (Ge size(g/cm^2), fit, out cattering by Moliere information vel (cm) north to array-grid (deg) nted events factor cut article output ctor grid (cm) length band (nm) renkov photons it file cov events (cm) file data base file lata base file . unit, delayed debug

# 编译CORSIKA (./coconut)

#### STEP 1: 选择编译机器的位数

Compile in 32 or 64bit mode ?

- 1 Force 32bit mode [CACHED]
- 2 Use compiler default ('-m64' on a 64bit machine)

#### STEP 2: 选择高能相互作用模型

Which high energy hadronic interaction model do you want to use

- 1 DPMJET 2.55
- 2 EPOS LHC
- 3 NEXUS 3.97
- 4 QGSJET 01C (enlarged commons)
- 5 QGSJETII-04 [CACHED]
- 6 SIBYLL 2.1
- 7 VENUS 4.12

#### STEP 3: 选择低能相互作用模型

Which low energy hadronic interaction model do you want to use ?

- 1 GHEISHA 2002d (double precision)
- 2 FLUKA [CACHED]
- 3 URQMD 1.3cr

#### STEP 4: 选择探测器几何

Which detector geometry do you have ?

- 1 horizontal flat detector array [CACHED]
- 2 non-flat (volume) detector geometry
- 3 vertical string detector geometry

#### STEP 5: 其它选项

Which additional CORSIKA program options do you need ? 1 - Cherenkov version for rectangular detector grid 2 - Cherenkov version for telescope system (using bernlohr IACT C-routines) 3 - apply atm. absorption, mirror reflectivity & quantum eff. 4 - external atmosphere functions (table interpolation) (using bernlohr C-routines) 5 - THINning version 6 - NEUTRINO version 7 - shower PLOT version (PLOTSH) (only for single events) 72 - shower PLOT(C) version (PLOTSH2) (only for single events) 8 - interaction test version (only for 1st interaction) 9 - SLANT depth instead of vertical depth for longi-distribution a - CURVED atmosphere version b - UPWARD particles version c - view-cone version d - ANAlysis HISTos & THIN (instead of particle file) e - Auger-info file instead of dbase file f - Auger-histo file & THIN g - Auger Cherenkov longitudinal distribution h - PRESHOWER version for EeV gammas i - MUPROD to write decaying muons j - COMPACT particle output file k - annitest cross-section version (obsolete) 1 - LPM-effect without thinning m - STACK INput of secondaries, no primary particle n - primary neutrino version with HERWIG (NUPRIM) p - PARALLEL treatment of subshowers q - CHARMed particle/tau lepton version with PYTHIA gt - TAU LEPton version with PYTHIA s - preHISTORY of muons: mother and grandmother u - TRAJECTory version to follow motion of source on the sky

#### STEP 6: Cherenkov选项 纵向发展

Cherenkov light vertical (longitudinal) distribution option ?

- 1 Photons counted only in the step where emitted
- 2 Photons counted in every step down to the observation level (compatible with old versions but inefficient)
- 3 No Cherenkov light distribution at all [CACHED]

#### STEP 7: Cherenkov发射角与波长的关系

Do you want Cherenkov light emission angle wavelength dependence ?

- 1 Emission angle is wavelength independent [DEFAULT]
- 2 Emission angle depending on wavelength

#### STEP 8: 选择结束,检查各种选项

#### corsika 会记录上一次编译时的选项,如不需要则要删除

Your final selection to build CORSIKA is:

options: QGSJETII FLUKA FLUKADIR HORIZONTAL TIMEAUTO M32 selection: CERENKOV INTCLONG CERWLEN CEFFIC

#### STEP 8: 编译

Configuration is finished. How do you want to proceed ?

- f Compiling and remove temporary files [DEFAULT]
- k Compile and keep extracted CORSIKA source code
- n Just extract source code. Do not compile!

# Corsika运行及输出文件

▶ 运行

- corsika73700Linux\_QGSII\_fluka <\*\*\*\*\*.input</p>
- ▶ 输出文件格式: 二进制, root
- ▶ 输出文件名: CERnnnnn, DATnnnnn, DATnnnnnn.long
- ▶ 二进制文件有许多block组成
- ▶ 每个block包含21个sub-block。
- ▶ sub-block 包含273 word,每个word长度为4bites
  - 如sub-block第一个word为 RUNH,则为 RUN header sub-block,记录了本次模拟最基本的信息(table 7)

21个,每个

含有273个

字节

- 如sub-block第一个word为 EVTH,则为 event header sub-block,记录了模拟事例的信息(table 8)
- ▶ 如sub-block第一个word为LONG,则为Long sub-block,记录了事例的纵向 发展信息(table12)
- ▶ 如sub-block第一个word为 EVTE,则为Event end sub-block,记录了事例模拟结束时的信息
- ▶ 如sub-block第一个word为 RUNE,则为run end sub-block,记录了模拟结束时的信息
- ▶ 在data 所在的sub-block中,每个sub-block有39sub-sub-block组成,每个sub-subblock包含7个word。簇射中次级粒子的信息就存储于此。(table 10,11)
- ▶ 如选择了thin选项,每个sub-sub-block包含8个word,而每个sub-block的长度变为:31

## Runheader sub-block

| Run header st | ub-block: (once per run)                   |  |
|---------------|--------------------------------------------|--|
| No. of word   | Contents of word (as real numbers R*4)     |  |
| 1             | 'RUNH'                                     |  |
| 2             | run number                                 |  |
| 3             | date of begin run ( yymmdd )               |  |
| 4             | version of program                         |  |
| 5             | number of observation levels (maximum 10)  |  |
| 5+i           | height of observation level <i>i</i> in cm |  |
| 16            | slope of energy spectrum                   |  |
| 17            | lower limit of energy range                |  |
| 18            | upper limit of energy range                |  |
| 19            | flag for EGS4 treatment of em. component   |  |
| 20            | flag for NKG treatment of em. component    |  |
| 21            | kin. energy cutoff for hadrons in GeV      |  |
| 22            | kin. energy cutoff for muons in GeV        |  |
| 23            | kin. energy cutoff for electrons in GeV    |  |
| 24            | energy cutoff for photons in GeV           |  |

runheader

## EventHeader sub-block

| Event header sub-block: (once per event) |                                                                    |  |  |  |
|------------------------------------------|--------------------------------------------------------------------|--|--|--|
| No. of word                              | Contents of word (as real numbers R*4)                             |  |  |  |
| 1                                        | 'EVTH'                                                             |  |  |  |
| 2                                        | event number                                                       |  |  |  |
| 3                                        | particle id (particle code or $A \times 100 + Z$ for nuclei)       |  |  |  |
| 4                                        | total energy in GeV                                                |  |  |  |
| 5                                        | starting altitude in g/cm <sup>2</sup>                             |  |  |  |
| 6                                        | number of first target if fixed                                    |  |  |  |
| 7                                        | z coordinate (height) of first interaction in cm                   |  |  |  |
|                                          | (negative, if tracking starts at margin of atmosphere, see TSTART) |  |  |  |
| 8                                        | px momentum in x direction in GeV/c                                |  |  |  |
| 9                                        | py momentum in y direction in GeV/c                                |  |  |  |
| 10                                       | pz momentum in -z direction in GeV/c                               |  |  |  |
|                                          | (pz is positive for downward going particles)                      |  |  |  |
| 11                                       | zenith angle $\theta$ in radian                                    |  |  |  |
| 12                                       | azimuth angle $\phi$ in radian                                     |  |  |  |

Run header Event header

## Particle data sub-block

| Particle data sub-block : (up to 39 particles, 7 words each) |                                                                                         |  |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|
| No. of word                                                  | No. of word Contents of word (as real numbers R*4)                                      |  |  |  |
| $7 \times (n-1) + 1$                                         | particle description encoded as:                                                        |  |  |  |
|                                                              | part. id $\times 1000$ + hadr. generation <sup>85</sup> $\times$ 10 + no. of obs. level |  |  |  |
| $7 \times (n-1) + 2$                                         | px, momentum in x direction in GeV/c                                                    |  |  |  |
| $7 \times (n-1) + 3$                                         | py, momentum in y direction in GeV/c                                                    |  |  |  |
| $7 \times (n-1) + 4$                                         | pz, momentum in -z direction in GeV/c                                                   |  |  |  |
| $7 \times (n-1) + 5$                                         | x position coordinate in cm                                                             |  |  |  |
| $7 \times (n-1) + 6$                                         | y position coordinate in cm                                                             |  |  |  |
| $7 \times (n-1) + 7$                                         | t time since first interaction (or since entrance into atmosphere) <sup>86</sup>        |  |  |  |
|                                                              | in nsec                                                                                 |  |  |  |
|                                                              | [for additional muon information: z coordinate in cm]                                   |  |  |  |
|                                                              | for $n = 1 39$                                                                          |  |  |  |
|                                                              | if last block is not completely filled, trailing zeros are added                        |  |  |  |

Run header Event header

Particle information (39particle)

如果选择了THIN选项,则每个sub-block为8word,最后一个为权重

## Cherenkov data sub-block

| Cherenkov photon data sub-block : (up to 39 bunches, 7 words each) |                                                                                   |    |  | Run header   |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|----|--|--------------|
| No. of words                                                       | Contents of word (as real numbers R*4)                                            |    |  |              |
| $7 \times (n-1) + 1$                                               | number of Cherenkov photons in bunch                                              |    |  | Event header |
|                                                                    | [in case of output on the particle output file:                                   |    |  |              |
|                                                                    | $99.E5 + 10 \times \text{NINT}(\text{number of Cherenkov photons in bunch}) + 1]$ | 12 |  | Cherenkov    |
| $7 \times (n-1) + 2$                                               | x position coordinate in cm                                                       |    |  | information  |
| $7 \times (n-1) + 3$                                               | y position coordinate in cm                                                       |    |  | (39narticle) |
| $7 \times (n-1) + 4$                                               | u direction cosine <sup>87</sup> to x-axis                                        |    |  |              |
| $7 \times (n-1) + 5$                                               | v direction cosine <sup>87</sup> to y-axis                                        |    |  |              |
| $7 \times (n-1) + 6$                                               | t time since first interaction (or since entrance into atmosphere) <sup>86</sup>  |    |  |              |
|                                                                    | in nsec                                                                           |    |  |              |
| $7 \times (n-1) + 7$                                               | height of production of bunch in cm                                               |    |  |              |
|                                                                    | for $n = 1 39$                                                                    |    |  |              |
|                                                                    | if last block is not completely filled, trailing zeros are added                  |    |  |              |

•
## EventEnd sub-block

| Event end sub-block : (once per event) |                                                               |  | Run header  |
|----------------------------------------|---------------------------------------------------------------|--|-------------|
| No. of word                            | Contents of word (as real numbers R*4)                        |  | Event       |
| 1                                      | 'EVTE'                                                        |  | header      |
| 2                                      | event number                                                  |  | Cherenkov   |
|                                        | statistics for one shower :                                   |  | information |
| 3                                      | weighted number of photons arriving at observation level(s)   |  | (39panicie) |
| 4                                      | weighted number of electrons arriving at observation level(s) |  |             |
| 5                                      | weighted number of hadrons arriving at observation level(s)   |  |             |
| 6                                      | weighted number of muons arriving at observation level(s)     |  |             |
| 7                                      | number of weighted particles written to particle output file  |  |             |
|                                        | MPATAP. (This number includes also Cherenkov bunches,         |  |             |
|                                        | if Cherenkov output is directed to MPATAP, but excludes       |  | Event End   |
|                                        | additional muon information.)                                 |  | Run End     |

