



Geminga

# **Tev Halos and RELATED PHYSICS**



Gwenael Giacinti – 贾鸿宇 (TDLI & SJTU)

**PSR B06** 



Shanghai Pudong New Area

(c) 2017 HAWC Collaboration on Image: (c) Gregory H. Revera



# HAWC observ. of Geminga & Monogem



→ Inverse Compton from
 ~ 100 TeV electrons.
 → γ-ray range: 8 – 40 TeV.



#### 'HALOS': e<sup>-</sup> E density << E density ISM => <u>Electrons have ESCAPED the PWN</u>.

Giacinti et al., A&A 636, A113 (2020)

PSR B0656+14

(c) 2017 HAWC Collaboration Creative Commons Altribution Share Alike 3.0 Moon Image: (c) Gregory H. Revera



# HAWC observ. of Geminga & Monogem





#### Geminga

#### Electrons are not in the (bow shock) PWN any more

(c) 2017 HAWC Collaboration Creative Commons Attribution Share Alike 3.0 Moon Image: (c) Gregory H. Reven



### **TeV Halo detected by LHAASO**

#### Extended Very-High-Energy Gamma-ray Emission Surrounding PSR J0622 + 3749 Observed by LHAASO-KM2A



LHAASO Collaboration, PRL (2021)

# **Summary of firmly detected TeV Halos**

Liu, IJMPA (2022)

| Pulsar                      | Р     | P            | $	au_c$ | d          | $L_s$                      | $L_s/4\pi d^2$               |
|-----------------------------|-------|--------------|---------|------------|----------------------------|------------------------------|
|                             | (s)   | $(10^{-14})$ | (kyr)   | (kpc)      | $(10^{34} \mathrm{erg/s})$ | $(10^{-10}  \rm{erg/cm^2s})$ |
| PSR J0633+1746 <sup>a</sup> | 0.237 | 1.097        | 342     | $0.25^{c}$ | 3.2                        | 43                           |
| PSR B0656 $+14^{b}$         | 0.385 | 5.494        | 111     | 0.29       | 3.8                        | 38                           |
| PSR J0622+3749              | 0.333 | 2.542        | 208     | $1.6^d$    | 2.7                        | 0.88                         |



#### **PWNe & Potential TeV Halos** in LHAASO Catalogue

| Source name         | PSR name                              | Sep.(°) | d (kpc) | $\tau_c$ (kyr) | $\dot{E} \text{ (erg s}^{-1}\text{)}$ | $P_c$   | Identified type in TeVCat |
|---------------------|---------------------------------------|---------|---------|----------------|---------------------------------------|---------|---------------------------|
| 1LHAASO J0007+7303u | PSR J0007+7303                        | 0.05    | 1.40    | 14             | 4.5e + 35                             | 7.3e-05 | PWN                       |
| 1LHAASO J0216+4237u | PSR J0218+4232                        | 0.33    | 3.15    | 476000         | 2.4e + 35                             | 3.6e-03 |                           |
| 1LHAASO J0249+6022  | PSR J0248+6021                        | 0.16    | 2.00    | 62             | 2.1e + 35                             | 1.5e-03 |                           |
| 1LHAASO J0359+5406  | PSR J0359+5414                        | 0.15    | -       | 75             | 1.3e + 36                             | 7.2e-04 |                           |
| 1LHAASO J0534+2200u | PSR J0534+2200                        | 0.01    | 2.00    | 1              | 4.5e + 38                             | 3.2e-06 | PWN                       |
| 1LHAASO J0542+2311u | PSR J0543+2329                        | 0.30    | 1.56    | 253            | 4.1e+34                               | 8.3e-03 |                           |
| 1LHAASO J0622+3754  | PSR J0622+3749                        | 0.09    | -       | 208            | 2.7e + 34                             | 2.5e-04 | PWN/TeV Halo              |
| 1LHAASO J0631+1040  | PSR J0631+1037                        | 0.11    | 2.10    | 44             | 1.7e + 35                             | 3.5e-04 | PWN                       |
| 1LHAASO J0634+1741u | PSR J0633+1746                        | 0.12    | 0.19    | 342            | 3.3e + 34                             | 1.3e-03 | PWN/TeV Halo              |
| 1LHAASO J0635+0619  | PSR J0633 + 0632                      | 0.39    | 1.35    | 59             | 1.2e + 35                             | 9.4e-03 |                           |
| 1LHAASO J1740+0948u | PSR J1740+1000                        | 0.21    | 1.23    | 114            | 2.3e + 35                             | 1.4e-03 |                           |
| 1LHAASO J1809-1918u | PSR J1809-1917                        | 0.05    | 3.27    | 51             | 1.8e + 36                             | 6.2e-04 |                           |
| 1LHAASO J1813-1245  | PSR J1813-1245                        | 0.01    | 2.63    | 43             | 6.2e+36                               | 6.3e-06 |                           |
| 1LHAASO J1825-1256u | PSR J1826-1256                        | 0.09    | 1.55    | 14             | 3.6e + 36                             | 1.6e-03 |                           |
| 1LHAASO J1825-1337u | PSR J1826-1334                        | 0.11    | 3.61    | 21             | 2.8e + 36                             | 2.8e-03 | PWN/TeV Halo              |
| 1LHAASO J1837-0654u | PSR J1838-0655                        | 0.12    | 6.60    | 23             | 5.6e + 36                             | 2.2e-03 | PWN                       |
| 1LHAASO J1839-0548u | PSR J1838-0537                        | 0.20    | -       | 5              | 6.0e + 36                             | 6.1e-03 |                           |
| 1LHAASO J1848-0001u | PSR J1849-0001                        | 0.06    | -       | 43             | 9.8e + 36                             | 1.2e-04 | PWN                       |
| 1LHAASO J1857+0245  | PSR J1856+0245                        | 0.16    | 6.32    | 21             | 4.6e + 36                             | 3.1e-03 | PWN                       |
| 1LHAASO J1906+0712  | $\mathrm{PSR}\ \mathrm{J1906}{+}0722$ | 0.19    | -       | 49             | 1.0e + 36                             | 5.9e-03 |                           |
| 1LHAASO J1908+0615u | PSR J1907 + 0602                      | 0.23    | 2.37    | 20             | 2.8e + 36                             | 6.8e-03 |                           |
| 1LHAASO J1912+1014u | PSR J1913+1011                        | 0.13    | 4.61    | 169            | 2.9e + 36                             | 1.5e-03 |                           |
| 1LHAASO J1914+1150u | PSR J1915+1150                        | 0.09    | 14.01   | 116            | 5.4e + 35                             | 1.8e-03 |                           |
| 1LHAASO J1928+1746u | PSR J1928+1746                        | 0.04    | 4.34    | 83             | 1.6e + 36                             | 1.6e-04 |                           |
| 1LHAASO J1929+1846u | PSR J1930 + 1852                      | 0.29    | 7.00    | 3              | 1.2e + 37                             | 2.6e-03 | PWN                       |
| 1LHAASO J1954+2836u | PSR J1954 + 2836                      | 0.01    | 1.96    | 69             | 1.1e + 36                             | 1.6e-05 | PWN                       |
| 1LHAASO J1954+3253  | PSR J1952 + 3252                      | 0.33    | 3.00    | 107            | 3.7e + 36                             | 6.7e-03 |                           |
| 1LHAASO J1959+2846u | PSR J1958 + 2845                      | 0.10    | 1.95    | 22             | 3.4e + 35                             | 2.8e-03 | PWN                       |
| 1LHAASO J2005+3415  | PSR J2004 + 3429                      | 0.25    | 10.78   | 18             | 5.8e + 35                             | 9.9e-03 |                           |
| 1LHAASO J2005+3050  | $\operatorname{PSR}J2006{+}3102$      | 0.20    | 6.04    | 104            | 2.2e + 35                             | 9.2e-03 |                           |
| 1LHAASO J2020+3649u | PSR J2021 + 3651                      | 0.05    | 1.80    | 17             | 3.4e + 36                             | 1.5e-04 | PWN                       |
| 1LHAASO J2028+3352  | PSR J2028 + 3332                      | 0.36    | -       | 576            | 3.5e + 34                             | 8.0e-03 |                           |
| 1LHAASO J2031+4127u | PSR J2032 + 4127                      | 0.08    | 1.33    | 201            | 1.5e + 35                             | 1.0e-03 | PWN                       |
| 1LHAASO J2228+6100u | PSR J2229+6114                        | 0.27    | 3.00    | 10             | 2.2e+37                               | 2.2e-03 | PWN                       |
| 1LHAASO J2238+5900  | PSR J2238+5903                        | 0.07    | 2.83    | 27             | 8.9e + 35                             | 3.0e-04 |                           |

Table 4. 1LHAASO sources associated pulsars

LHAASO Collaboration, ApJS 271, 25 (2024)

#### **Evolutionary stages of a PWN :**

Giacinti, Mitchell, Lopez-Coto, Joshi, Parsons & Hinton, A&A 636, A113 (2020), arXiv:1907.12121:



#### **Evolutionary stages of a PWN :**

Stage 1 : e.g. Crab Nebula (0.94 kyr)



#### **Evolutionary stages of a PWN :**

#### Stage 2 : e.g. G327.1-1.1 (17 kyr)



# **Evolutionary stages of a PWN :** Stage 3



# **TeV Halos as probes of ISMF properties**



2 orders of magnitude smaller than value from B/C ratio!

1017 HAWC Collaboration Itribution Share Alike 3.0 ge: (c) Gregory H. Revera





# Simplified Milky Way seen edge-on :



# Simplified Milky Way seen edge-on :



# Simplified Milky Way seen edge-on :



**Grammage :**  $X = c\rho h H/D_z \sim \text{several g/cm}^2$  at GeV

D ~ 10<sup>28</sup> cm<sup>2</sup>/s at GeV for H ~ several kpc



Assuming the same D in our local environment, Geminga and Monogem cannot explain the local positron flux.

*Di Mauro et al.(2019)*: GeV halo around Geminga (Fermi)  $\rightarrow$  <20% e<sup>+</sup> flux.

#### Problems to solve :

- $\rightarrow$  How can we now explain the B/C ratio ?
- → How can we now explain electron and positron spectra at Earth ?

#### H.E.S.S. (2017) all-electron spectrum

Power-law between 1 and 20 TeV. Index ~ 3.8



Hooper & Linden (2018): Cannot be explained with known pulsars and HAWC's D coeff. => Slow diffusion regions must be small.

#### **Possible solutions :**

 $\rightarrow$  **Two-zone models**: - Fang et al. (2018) :



- Profumo et al. (2018) :



- $\rightarrow$  Small pocket of reduced D, then larger D outside
- $\rightarrow$  "likely still within the PWN." ???

**Evoli, Linden & Morlino (2018)**: Alfven waves from escaping **e**<sup>+/-</sup> generate a region of low D around pulsars



=> Relaxes too rapidly to confine e<sup>-</sup> around Geminga.

→ **Fang, Bi & Yin (2019)** : No, Geminga is too weak to generate enough  $e^{+/-}$  to generate turbulence. May be downstream of the SNR shock.

#### => STILL INSIDE SNR (?)



... Similar to definition of Sudoh et al., arXiv:1902.08203 :

More likely explanation:

Outside the SNR, but CRproton-driven instabilities



Schroer et al. (2023): PIC simulations



Lopez-Coto & Giacinti, MNRAS (2018):

Individual particles propagated numerically in 3D synthetic turbulence.



=> HAWC findings agree with theoretical expectations :

(a) For a **strongly turbulent** magnetic field (i.e. regular B negl.),

(b) For coherence lengths  $\sim$  a few pc.

# **But is CR diffusion (ever) isotropic ?**



# **But is CR diffusion (ever) isotropic ?**



# **Predicted y-ray surface brightness**

Lopez-Coto & Giacinti, MNRAS (2018) [arXiv:1712.04373]

- → Propagate individual  $e^{-}$  in 3D synthetic turbulence, taking into account synchrotron + IC losses
- $\rightarrow$  Calculate  $\gamma$ -ray emission, Compare with HAWC.

Kolmogorov, B<sub>rms</sub>=3 μG, **L<sub>c</sub> = 5 pc** 

OK



# **Predicted y-ray surface brightness**

Lopez-Coto & Giacinti, MNRAS (2018) [arXiv:1712.04373]

#### Large coherence lengths ( > 10 pc) ruled out (Too asymmetric):

Kolmogorov, B<sub>rms</sub>=3  $\mu$ G, L<sub>c</sub> = 10 pc

**ALMOST** 

**INCOMPATIBLE** 

WITH HAWC

**MEASUREMENTS** 



# **Predicted y-ray surface brightness**

Lopez-Coto & Giacinti, MNRAS (2018) [arXiv:1712.04373]

#### Large coherence lengths ( > 10 pc) ruled out (Too asymmetric):

Kolmogorov, B<sub>rms</sub>=3  $\mu$ G, L<sub>c</sub> = 40 pc

#### INCOMPATIBLE WITH HAWC MEASUREMENTS



# **Best fit to HAWC measurements (χ²/ndf<1)**

#### Kolmogorov / Kraichnan, B = $3 \mu$ G, L = 1 pc



Lopez-Coto & Giacinti, MNRAS (2018) [arXiv:1712.04373]

USE OF  $\gamma$ -RAY DATA TO PROBE ISMFs !

# Or could the local $L_c$ be >> 40 pc ?





Fang et al., PRD (2023)

# And the electon spectrum, and B/C constraints ?

#### An undiscovered pulsar in the Local Bubble as an explanation of the local high energy cosmic ray electron spectrum

R. López-Coto,<sup>1,2,\*</sup> R.D. Parsons,<sup>2</sup> J.A. Hinton,<sup>2</sup> and G. Giacinti<sup>2</sup>

Phys. Rev. Lett. 121, 251106 (2018)



Consistent with known population.

*Breitschwerdt+, Nature (2016)*: SN 2.2 Myr ago at 60 – 130 pc.

*Fang+, arXiv:1906.08542*: PSR B1055-52, if d ~ 90 pc (??)



d=50 pc,  $\dot{E} = 1.3 \times 10^{33}$  erg/s,  $\alpha = 2.4$ , B = 3  $\mu$ G.

# **B/C** ratio

- $\rightarrow$  Probes CR propagation on **kpc scales.**
- => Small D in the disc viable if CRs escape the Galaxy quickly, with **faster diffusion in the halo (or advection)**.

=> Quick escape by parallel diffusion along a large-scale field ?





# **Or Impact of a regular B field ?**

→ Liu, Ge, Sun & Wang (2019) : Discrepancy between IC  $\gamma$ -rays and X-ray synchrotron (Chandra/XMM) in a small region around Geminga. => B field aligned towards us?





$$P = \frac{2q^4B^2\gamma^2\beta^2\sin^2\alpha}{3m^2c^3}$$

 $B \lesssim 0.8 \mu \text{G}$ 

# **Or Impact of a regular B field ?**

 $\rightarrow$  Liu, Yan & Zhang (2019) : sub-Alfvenic turbulence, with such a large-scale B field  $\rightarrow$  Find no need for a small D.



 $\rightarrow$  Impact field line wandering=> Ruled out for Lopez-Coto& GG (2018)'s turbulence. Does it work for another? Need to check in this model.

Mean B field around other pulsar halos cannot be always aligned with LOS. Then why elongated halo is not observed?

Yan, Liu et al. 2022

Larger inclination angle -> more diffuse



#### Sky at 25 TeV – 1 PeV with LHAASO

#### LHAASO Collaboration, ApJS 271, 25 (2024)

#### Many extended sources w/ irregular shapes:



Table 4. 1LHAASO sources associated pulsars

# Large offsets between sources & center emission:

| Source name            | PSR name         | $\operatorname{Sep.}(^{\circ})$ | d (kpc) | $\tau_c ~({ m kyr})$ | $\dot{E} \text{ (erg s}^{-1}\text{)}$ | $P_c$   | Identified type in TeVCat |
|------------------------|------------------|---------------------------------|---------|----------------------|---------------------------------------|---------|---------------------------|
| 1LHAASO J0007+7303u    | PSR J0007+7303   | 0.05                            | 1.40    | 14                   | 4.5e + 35                             | 7.3e-05 | PWN                       |
| 1LHAASO J0216+4237u    | PSR J0218+4232   | 0.33                            | 3.15    | 476000               | 2.4e + 35                             | 3.6e-03 |                           |
| 1LHAASO J0249+6022     | PSR J0248 + 6021 | 0.16                            | 2.00    | 62                   | 2.1e + 35                             | 1.5e-03 |                           |
| 1LHAASO J0359+5406     | PSR J0359+5414   | 0.15                            | -       | 75                   | 1.3e + 36                             | 7.2e-04 |                           |
| 1LHAASO J0534+2200u    | PSR J0534+2200   | 0.01                            | 2.00    | 1                    | 4.5e + 38                             | 3.2e-06 | PWN                       |
| 1LHAASO J0542+2311u    | PSR J0543+2329   | 0.30                            | 1.56    | 253                  | 4.1e + 34                             | 8.3e-03 |                           |
| 1LHAASO J0622+3754     | PSR J0622+3749   | 0.09                            | -       | 208                  | 2.7e + 34                             | 2.5e-04 | PWN/TeV Halo              |
| 1LHAASO J0631+1040     | PSR J0631 + 1037 | 0.11                            | 2.10    | 44                   | 1.7e + 35                             | 3.5e-04 | PWN                       |
| 1LHAASO J0634+1741u    | PSR J0633+1746   | 0.12                            | 0.19    | 342                  | 3.3e + 34                             | 1.3e-03 | PWN/TeV Halo              |
| 1LHAASO J0635+0619     | PSR J0633 + 0632 | 0.39                            | 1.35    | 59                   | 1.2e + 35                             | 9.4e-03 |                           |
| 1LHAASO J1740 $+0948u$ | PSR J1740+1000   | 0.21                            | 1.23    | 114                  | 2.3e + 35                             | 1.4e-03 |                           |
| 1LHAASO J1809-1918u    | PSR J1809-1917   | 0.05                            | 3.27    | 51                   | 1.8e + 36                             | 6.2e-04 |                           |
| 1LHAASO J1813-1245     | PSR J1813-1245   | 0.01                            | 2.63    | 43                   | 6.2e + 36                             | 6.3e-06 |                           |
| 1LHAASO J1825-1256u    | PSR J1826-1256   | 0.09                            | 1.55    | 14                   | 3.6e + 36                             | 1.6e-03 |                           |
| 1LHAASO J1825-1337u    | PSR J1826-1334   | 0.11                            | 3.61    | 21                   | 2.8e + 36                             | 2.8e-03 | PWN/TeV Halo              |
| 1LHAASO J1837-0654u    | PSR J1838-0655   | 0.12                            | 6.60    | 23                   | 5.6e + 36                             | 2.2e-03 | PWN                       |
| 1LHAASO J1839-0548u    | PSR J1838-0537   | 0.20                            | -       | 5                    | 6.0e+36                               | 6.1e-03 |                           |
| 1LHAASO J1848-0001u    | PSR J1849-0001   | 0.06                            | -       | 43                   | 9.8e + 36                             | 1.2e-04 | PWN                       |
| 1LHAASO J1857+0245     | PSR J1856+0245   | 0.16                            | 6.32    | 21                   | 4.6e + 36                             | 3.1e-03 | PWN                       |
| 1LHAASO J1906+0712     | PSR J1906+0722   | 0.19                            | -       | 49                   | 1.0e + 36                             | 5.9e-03 |                           |
| 1LHAASO J1908+0615u    | PSR J1907+0602   | 0.23                            | 2.37    | 20                   | 2.8e + 36                             | 6.8e-03 |                           |
| 1LHAASO J1912+1014u    | PSR J1913+1011   | 0.13                            | 4.61    | 169                  | 2.9e + 36                             | 1.5e-03 |                           |
|                        |                  |                                 |         |                      |                                       |         |                           |

#### **Peculiar source/halo:** Aligned sources? No counterpart?



LHAASO Collaboration (arxiv:2305.17030)

#### "Mirage" sources and large offsets: Asymmetric CR diffusion around sources

#### Works from Yiwei Bao

References:

Bao, Giacinti, Liu, Zhang & Chen, arXiv:2407.02478 (Submitted to PRL) Bao, Liu, Giacinti, Zhang & Chen, arXiv:2407.02829 (Submitted to PRD) Bao et al., In prep.

#### **Appearance of "mirage" sources:**

→ Convolve the simulation results with LHAASO PSF
 → Try to identify the source by calculating the TS value (as done w/ LHAASO data)



 $L_{c} = 40pc$ ;  $B_{turb} = 3 \mu G$ ;  $B_{reg} = 0 \mu G$ ; Kolmogorov turbulence; (8192 particles)

#### Large offsets:



 $B_{turb} \sim 1 \ \mu G$ ;  $B_{reg} = 0 \ \mu G$ ;  $L_{c} = 200 \ pc$ ; Kolmogorov turbulence ; (8192 particles)

# **Our simulations vs LHAASO source**



**Assumptions here:** BSPWN, injection from 180 degree

The additional source is a "**mirage**", where the magnetic field bends inwards/outwards

Our fitting parameters:  $L_c = 267 \text{ pc}$  $B_{reg} = 1.16 \mu\text{G}$  $B_{turb} = 0.95 \mu\text{G}$ Kolmogorov  $\alpha = 2.2$  $E_{cut} = 1 \text{ PeV}$  Contribution of TeV Halos to the diffuse Galactic UHE gamma-ray background ?

## The sky at ~ 10 TeV – 1 PeV: Diffuse Galactic emission from LHAASO



#### Comparing $\nu$ and $\gamma$ observations



 The flux sum of LHAASO diffuse and 1LHAASO sources excluding pulsars, PWNe, TeV halos is comparable to IceCube flux above ~30 TeV —> LHAASO diffuse emission mainly comes from hadronic interactions at these energies

KF & Murase ApJL 2307.02905

Slide from Ke Fang



#### Yan, Liu, et al., Nature Astronomy (2024)



#### Pulsars in ATNF catalogue that may produce a TeV halo

#### Flux and longitudinal profile Yan, Liu, et al., Nature Astronomy (2024)



#### Leptonic contribution to the diffuse y-ray background

Samy Kaci, Giacinti & Semikoz, arXiv:2407.20186



**Figure 1.** Summary of the source generation procedure. Panel (a) shows the ATNF pulsars with age from 0 to 10 Myr in the region (between the two dashed lines) used to extract their statistical properties. Panel (b) shows the ATNF and the synthetic pulsars generated with the same statistical properties. Histogram (c) shows the age distribution of the ATNF pulsars in the sampling region shown in panel (a). Panel (d) shows the relationship between the age of pulsars and their spindown power. Panels (e) and (f) respectively show the relationship between the spindown power and the reference flux and the spindown power and the spectral index reported by KM2A in Cao et al. (2024).

#### Leptonic contribution to the diffuse $\gamma$ -ray background

Samy Kaci, Giacinti & Semikoz, arXiv:2407.20186



Figure 2. Gamma-ray flux of unresolved sources (without cut in spindown power) above 10 TeV in the (l, b) plane for the inner Galaxy (upper panel) and outer Galaxy (lower panel). The white regions represent the masks of LHAASO from Cao et al. (2023). The upper bound of the color-bar represents the sensitivity of LHAASO to a point source located at a declination of  $-10^{\circ}$  and the lower bound of the color-bar represents 0.1% of its upper bound.

#### Leptonic contribution to the diffuse $\gamma$ -ray background

Samy Kaci, Giacinti & Semikoz, arXiv:2407.20186



Figure 3. Contribution of unresolved sources to the diffuse gamma-ray background measured by LHAASO. The upper left (right) panel shows the diffuse flux measured by KM2A and the flux of unresolved sources in the inner (outer) Galaxy. The lower left (right) panel shows the relative contribution of unresolved sources to the diffuse flux measured by LHAASO in the inner (outer) Galaxy.

# **Conclusions and perspectives**

- Halos: Relativistic e<sup>-</sup> energy density subdominant (test particles in the ISM).
- HAWC measurements compatible with e<sup>-</sup> in ISM turb. :

$$B_{rms} \sim 3 \,\mu G$$
  $L_{c} < ~ 5 \,p c$ 

- Or impact of a regular B field to match lack of X-ray synchrotron ?
- TeV halos as a probes of :
  - → Turbulent interstellar magnetic fields
  - → CR-driven instabilities around hadronic sources?
- Contribution to UHE diffuse background unclear Might be small

```
Analyses w/ LHAASO: \rightarrow 2D on sky,
\rightarrow function of E<sub>y</sub>?
```