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- Fokker-Planck Equation
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Radiation

Feature particle distribution radiation process absorption
Spectrum ¢ ¢ ¢

Morphology ¢ 4 4

Time Variability ¢ 4 ¢

Polarization 4 ¢ 4

where ¢ means a “strong dependence”

For interpretation of non-thermal emission an accurate description of the
particle spectrum is as important as accurate calculation of the emission. When
particles lose energy by radiating this influences the particle distribution thus
the description of the particle spectrum should include the impact of radiation.
However, non-radiative processes may also have a substantial influence on the
particle spectrum and spatial distribution.



Description of non-thermal particles
Distribution of high energy particles
depends on some parameter(s):
- Energy: 𝑑𝑁 = 𝑓𝑑𝐸

- Momentum: 𝑑𝑁 = 𝑓𝑑3𝑝
- Coordinate: 𝑑𝑁 = 𝑓𝑑𝐸𝑑𝑥
- Coordinates: 𝑑𝑁 = 𝑓𝑑𝐸𝑑3𝑟
- Phase-space coordinates:

𝑑𝑁 = 𝑓𝑑3𝑟𝑑3𝑝
Here 𝑓 is distribution function, and its
definition may vary depending on the
context. For each problem one needs
to select an adequate distribution
function that allows accounting for
all relevant processes.

NAIMA, Zabalza 2015

Aharonian&Atoyan 1998
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Description of Non-Thermal Particles
If one ignores the particle spin –which
still might be important in some as-
trophysical conditions, e.g., in pulsar
magnetosphere– the phase-space distri-
bution function provides the most com-

plete description: 𝑑𝑁 = 𝑓𝑑3𝑟𝑑3𝑝

There is a quite simple equation for
the distribution function, Boltzmann
Equation:
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What about particle collisions?!!!

There is a quite simple equation for
the distribution function, Boltzmann
Equation:
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Boltzmann Equations
∂𝑓
∂𝑡 + v

∂𝑓
∂r + F

∂𝑓
∂p = [

∂𝑓
∂𝑡 ]

col

- The collision integral [
∂𝑓
∂𝑡 ]

col
accounts for many

processes:
- particle injection
- acceleration
- scattering
- energy losses

etc – i.e., for ALL plasma and radiation physics
- In the simplest case, the Boltzmann collision integral is

[
∂𝑓𝑎
∂𝑡 ]

st
= ∑

𝑏
∫ 𝑑3𝑝1𝑣rel𝑑𝜎 (𝑓𝑎(𝑥′)𝑓𝑏(𝑥′

1) − 𝑓𝑎(𝑥)𝑓𝑏(𝑥1))



Boltzmann Collision Integral in Astrophysics

[
∂𝑓𝑎
∂𝑡 ]

st
= ∑

𝑏
∫ 𝑑3𝑝1𝑣rel𝑑𝜎 (𝑓𝑎(𝑥′)𝑓𝑏(𝑥′

1) − 𝑓𝑎(𝑥)𝑓𝑏(𝑥1))

- Boltzmann collision integral is widely used in kinetics of
neutral gases, e.g., to describe an admixture propagation

- In astrophysics the collision integral in this form is used to
describe, e.g., the electromagnetic cascading:

∂𝑓𝑒
∂𝑡 + v

∂𝑓𝑒
∂r + F

∂𝑓𝑒
∂p = ∫ 𝑑𝛾𝑐 𝑑�̄�𝛾𝛾𝑓𝛾(𝑝𝛾) − 𝑐�̄�𝑖𝑐𝑓𝑒

∂𝑓𝛾

∂𝑡 + c
∂𝑓𝛾

∂r = ∫ 𝑑𝑒𝑐 𝑑�̄�𝑖𝑐𝑓𝑒(𝑝𝑒) − 𝑐�̄�𝛾𝛾𝑓𝛾



Boltzmann Equation

∂𝑓
∂𝑡 + v

∂𝑓
∂r + F

∂𝑓
∂p = [

∂𝑓
∂𝑡 ]

col

- Equation with the collision integral [
∂𝑓
∂𝑡 ]

col
cannot be solved for

astrophysical applications
- It is possible to divide the physics included in the collision integral in two
parts: complex (e.g., acceleration) and simple (cooling, which can be treated
under the continuous-loss approximation )

- Also in the most cases particles are isotropic in some system, thus particle
energy is a good parameter



Significant simplification in the case of energy losses

Distribution function & Injection

d𝑁 = 𝑓(𝐸, 𝑡) d𝐸 d𝑁 = 𝑞(𝐸, 𝑡) d𝐸 d𝑡
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𝑡0

𝐸0 + �̇� d𝑡
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𝐹(𝐸, 𝑡) =
∞
∫
𝐸

𝑓(𝐸 ′ , 𝑡)d𝐸 ′

𝐹(𝐸 + �̇�d𝑡, 𝑡 + d𝑡) =

𝐹(𝐸, 𝑡) + d𝑡
∞
∫
𝐸

𝑞(𝐸 ′ , 𝑡)d𝐸 ′

Fokker-Planck Equation

∂𝑓
∂𝑡 +

∂(�̇�𝑓)
∂𝐸 = 𝑞(𝐸, 𝑡)



Significant simplification in the case of energy losses

𝐹(𝐸 + �̇�d𝑡, 𝑡 + d𝑡) = 𝐹(𝐸, 𝑡) + d𝑡
∞
∫
𝐸

𝑞(𝐸 ′ , 𝑡)d𝐸 ′

𝐹(𝐸, 𝑡) + ∂𝐹∂𝐸�̇�d𝑡 + ∂𝐹∂𝑡 d𝑡 = 𝐹(𝐸, 𝑡) + d𝑡
∞
∫
𝐸

𝑞(𝐸 ′ , 𝑡)d𝐸 ′

∂
∂𝐸 ⟹

accounting for ∂𝐹
∂𝐸

= −𝑓 ∂
∂𝐸

∞
∫
𝐸

𝑞(𝐸 ′ , 𝑡)d𝐸 ′ = −𝑞

Fokker-Planck Equation

∂𝑓
∂𝑡 +

∂(�̇�𝑓)
∂𝐸 = 𝑞(𝐸, 𝑡)



Fokker-Planck Equation Solution

𝑓(𝐸, 𝑡) = 1
�̇�

𝐸eff
∫
𝐸

𝑞(𝐸 ′) d𝐸 ′ , where 𝑡 =
𝐸eff
∫
𝐸

d𝐸 ′

�̇�(𝐸 ′)

�̇� = �̇�syn + �̇�ic + �̇�ad + 𝑒𝑡𝑐/�̇�syn + �̇�𝑝𝑝 + �̇�𝑝𝛾 + 𝑒𝑡𝑐

Fast Cooling (Saturation)
𝐸eff → ∞

𝑓(𝐸) = 1
�̇�

∞
∫
𝐸
d𝐸 ′ 𝑞(𝐸 ′)

Slow Cooling
𝐸 ≈ 𝐸𝑒𝑓𝑓 𝑖.𝑒. 𝑡 ≪ 𝐸

�̇�

𝑓(𝐸, 𝑡) = 𝑞(𝐸) ⋅ 𝑡



Spectral Breaks: Particle Distribution
Solution of the Fokker-Planck Equation:

𝑓(𝐸, 𝑡) = 1
�̇�

𝐸eff

∫
𝐸

𝑞(𝐸 ′) d𝐸 ′ , where 𝑡 =
𝐸eff

∫
𝐸

d𝐸 ′

�̇�(𝐸 ′)

Let us consider the simplest case:

𝑞(𝐸, 𝑡) = 𝜃(𝐸 − 𝐸min)𝜃(𝐸max − 𝐸)𝐸−𝛼 , where �̇� ∝ 𝐸𝛽

Cooling energy is 𝐸𝑐 = �̇�(𝐸𝑐)𝑡, where 𝑡 is the source age

𝐸𝑐 > 𝐸min then break at 𝐸𝑐 and range of
energy is from 𝐸min to 𝐸max:

𝑓(𝐸) ∝ {
(𝐸−𝛼+1 − 𝐸−𝛼+1

max )𝐸−𝛽

𝐸−𝛼

𝐸𝑐 < 𝐸min then break at 𝐸min and range of
energy is from 𝐸𝑐 to 𝐸max

𝑓(𝐸) ∝ {
(𝐸−𝛼+1 − 𝐸−𝛼+1

max )𝐸−𝛽

𝐸−𝛽
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Cooling break
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In case with pure power-law
injection and cooling the par-
ticle distribution may have one
break and three different
slops:

- 𝐸−𝛼−𝛽+1

- 𝐸−𝛼

- 𝐸−𝛽

here 𝛼 and 𝛽 are the power-
law indexes of the accelera-
tion spectrum and the cooling
rate.



Cooling break
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In particular, particle dis-
tributions cannot have two
breaks. More complicated par-
ticle distributions are allowed
if

- the injection spectrum is not
a power-law (e.g., each
acceleration spectrum has a
high-energy cutoff);

- (ii) the loss rate has a
non-power-law dependence on
energy



Used simplifications
- Phenomenological treatment of the acceleration
process

- High energy cut-off may depend on the loss rate and
the source age

- Some acceleration processes cannot be treated as a
power-law injection, e.g. converter mechanism by
Derishev

- Energy losses might be non-power law
- Particles lose energy by small fractions, which is
not true for some processes, e.g. IC in the
Klein-Nishina regime

- The Fokker-Planck equation describes a
one-zone model



Spectral Breaks: Particle Distribution
Solution of the Fokker-Planck Equation:

𝑓(𝐸, 𝑡) = 1
�̇�

𝐸eff

∫
𝐸

𝑞(𝐸 ′) d𝐸 ′ , where 𝑡 =
𝐸eff

∫
𝐸

d𝐸 ′

�̇�(𝐸 ′)

Let us consider the simplest case:

𝑞(𝐸, 𝑡) = 𝜃(𝐸 − 𝐸min)𝜃(𝐸max − 𝐸)𝐸−𝛼 , and �̇� ∝ {
𝐸𝛽1 𝑓𝑜𝑟 𝐸 < 𝐸∗
𝐸𝛽2 𝑓𝑜𝑟 𝐸 > 𝐸∗

Cooling energy is 𝐸𝑐 = �̇�(𝐸𝑐)𝑡, where 𝑡 is the source age. There should be four
different cases:

- 𝐸𝑚𝑎𝑥 < 𝐸𝑐
- 𝐸∗ < 𝐸𝑐 < 𝐸𝑚𝑎𝑥

- 𝐸𝑚𝑖𝑛 < 𝐸𝑐 < 𝐸∗
- 𝐸𝑐 < 𝐸𝑚𝑖𝑛
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max
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Cooling break

𝐸

𝑑𝑁
𝑑𝐸

𝑑𝑁/𝑑𝐸 ∝ 𝐸 −𝛼+1−𝛽1

𝑑𝑁/𝑑𝐸 ∝
𝐸 −𝛼+1−𝛽2

𝐸𝑚𝑖𝑛 𝐸∗ 𝐸𝑚𝑎𝑥

𝑑𝑁
/𝑑

𝐸
∝

𝐸
−

𝛽 1

𝐸𝑐

Two break particle spec-
tra can be realized if one
break is cooling break and the
second one is caused by the
change of the cooling regime.
The breaks are then

- 𝛽2 − 𝛽1

- 𝛽1 − 1 or 𝛼 − 1

here 𝛼 is the injection spec-
trum and 𝛽1/𝛽2 is the power-
law dependence of the cooling
rate.



Continuous Loss Approximation for Klein-Nishina regime

Klein-Nishina and Continues Loss approximation

- Particles lose energy by small
fractions, which is not true for
some processes, e.g. IC in the
Klein-Nishina regime

Solid line: 𝑐𝜎ic𝑓(𝛾) = 𝑞(𝛾) + 𝑐
∞
∫
𝛾
d𝛾 ′𝑓(𝛾 ′) d𝜎

d𝐸𝛾
(𝛾 ′ ,𝛾 ′ − 𝛾)

Dash-dotted line: 𝑓(𝛾) = 1
�̇�ic

∞
∫
𝛾
d𝛾 ′𝑞(𝛾 ′)



Transport Equation with Diffusion and Escape
∂𝑓
∂𝑡 +

∂(�̇�𝑓)
∂𝐸 + ∇ (𝐷∇𝑓) +

𝑓
𝜏 = 𝑞(𝐸, 𝑡)

also can be solved analytically for homogeneous diffusion (see e.g.
Ginzburg’s “Astrophysics of Cosmic Rays”) or numerically (e.g., lecture
by Gwenael Giacinti). The latter case is most likely relevant for inter-
preting gamma-ray observations



𝜈𝐹𝜈 peak gives the luminosity

𝜈𝐹𝜈 peaking distribution

𝜈𝐹𝜈 = 𝐸2𝛾
d𝑁𝛾
d𝐸𝛾

𝜈

𝜈𝐹𝜈

𝐿0

𝜈0

𝑑𝑁
/𝑑𝜈

∝ 𝜈−
𝛼

𝑑𝑁/𝑑𝜈 ∝ 𝜈 −𝛽

𝐿𝛾 = ∫ d𝜈 𝜈d𝑛d𝜈 =
𝜈0
∫

𝜈min
d𝜈 𝜈1−𝛼 +

𝜈max
∫
𝜈0

d𝜈 𝜈1−𝛽

𝜈min ≪ 𝜈0 ≪ 𝜈max

𝐿𝛾 = 𝐿0 (
1

2 − 𝛼 +
1

𝛽 − 2)

For 𝛼 = 1.5 and 𝛽 = 2.5

𝐿𝛾 = 4𝐿0



Radiation Production

Emission of a Particle (two channels)

𝜈

𝜈𝐹𝜈

𝐿1

𝜈1

𝐿2

𝜈2

Single particle spectra:
d𝑁𝑖
d𝜈 = 𝐾𝑖 (𝜈, 𝐸0)

Total luminosity (per particle):

𝐿 = �̇�1(𝐸0) + �̇�2(𝐸0)

Luminosity per channel:

𝐿𝑖 =
�̇�𝑖

�̇�1 + �̇�2
𝐿

Ratio of the humps:

𝐿1
𝐿2

=
�̇�1
�̇�2

=
𝑤𝐵
𝑤𝑝ℎ



Lorentz Transformation
Lorentz transformations relate physical quantities in different inertia reference frames.
Lorentz transformations are essential for radiation process in two important ways:

- Emitting particles move with relativistic
speed, thus all the processes occurring in
the co-moving frame or the
center-of-mass frame are a subject for
Lorentz transformation

- If the emission is produced in
relativistically moving media, then
one needs to transform it to the
observer frame

𝑡′ = Γ(𝑡 − 𝑉

𝑐2
𝑧) , 𝑧′ = Γ (𝑧 − 𝑉𝑡) , 𝑥′ , 𝑦 ′ = 𝑥, 𝑦

�⃗�

𝑥, 𝑥′

𝐾
𝐾 ′

𝑦, 𝑦 ′

𝑧, 𝑧′ 𝑡 = 𝑡′ = 0

𝑥′

𝐾 ′
𝑦 ′

𝑧′

�⃗�

𝑥
𝐾 𝑦

𝑧 𝑡 ≠ 0



Lorentz transformation: Vector Form

𝑡′ = Γ(𝑡 − 𝑉

𝑐2
𝑧) , 𝑧′ = Γ (𝑧 − 𝑉𝑡) , 𝑥′ , 𝑦 ′ = 𝑥, 𝑦

but what to do if the relative speed is not aligned with a coor-
dinate axis?!!!

�⃗�

𝑥, 𝑥′

𝐾
𝐾 ′

𝑦, 𝑦 ′

𝑧, 𝑧′ 𝑡 = 𝑡′ = 0

𝑥
𝐾 𝑦

𝑧 𝑡 ≠ 0

𝑥′

𝐾 ′
𝑦 ′

𝑧′

�⃗�



Lorentz transformation: Vector Form

(

𝑡′

𝑥′

𝑦 ′

𝑧′

) = 𝑅−1𝐿𝑅 (

𝑡
𝑥
𝑦
𝑧

)

Superposition of three linear transformations: 𝑅 is rotation and
𝐿 is Lorentz transformation. Trivial or even boring...

�⃗�

𝑥, 𝑥′
𝑥𝑟 , 𝑥′

𝑟
𝐾
𝐾 ′

𝑦, 𝑦 ′

𝐾
𝑟 ,𝐾 ′

𝑟 𝑦𝑟 , 𝑦 ′
𝑟

𝑧, 𝑧′
𝑧𝑟 , 𝑧′

𝑟
𝑡 = 𝑡′ = 0

𝑥, 𝑥𝑟

𝐾 𝑦
𝐾

𝑟 𝑦𝑟

𝑧 𝑧𝑟
𝑡 ≠ 0

𝑥′ , 𝑥′
𝑟

𝐾 ′
𝑦 ′𝐾 ′

𝑟

𝑦 ′
𝑟

𝑧′
𝑧′
𝑟

�⃗�



Lorentz transformation: Vector Form

𝑡′ = Γ(𝑡 − 𝑉

𝑐2
𝑧) , 𝑧′ = Γ (𝑧 − 𝑉𝑡) , 𝑥′ , 𝑦 ′ = 𝑥, 𝑦

Let us look at this problem from somewhat different point of

view: 𝑧 = �⃗� ⃗𝑟/𝑉 and ⃗𝑒𝑧 = �⃗�/𝑉 . Then

𝑡′ = Γ(𝑡 − �⃗� ⃗𝑟

𝑐2
)

⃗𝑟′ = 𝑥 ⃗𝑒𝑥 + 𝑦 ⃗𝑒𝑦 + 𝑧 ⃗𝑒𝑧 + (Γ (𝑧 − 𝑉𝑡) − 1) ⃗𝑒𝑧

⃗𝑟′ = ⃗𝑟+Γ�⃗�𝑡+(Γ − 1)
�⃗� ⃗𝑟
𝑉

�⃗�
𝑉
= ⃗𝑟+Γ�⃗�(𝑡 + �⃗� ⃗𝑟

𝑐2
Γ
Γ+1)



Lorentz transformation: Vector Form

𝑡′ = Γ(𝑡 − 𝑉

𝑐2
𝑧) , 𝑧′ = Γ (𝑧 − 𝑉𝑡) , 𝑥′ , 𝑦 ′ = 𝑥, 𝑦

Let us look at this problem from somewhat different point of

view: 𝑧 = �⃗� ⃗𝑟/𝑉 and ⃗𝑒𝑧 = �⃗�/𝑉 . Then

𝑡′ = Γ(𝑡 − �⃗� ⃗𝑟

𝑐2
)

⃗𝑟′ = 𝑥 ⃗𝑒𝑥 + 𝑦 ⃗𝑒𝑦 + 𝑧 ⃗𝑒𝑧 + (Γ (𝑧 − 𝑉𝑡) − 1) ⃗𝑒𝑧

⃗𝑟′ = ⃗𝑟+Γ�⃗�𝑡+(Γ − 1)
�⃗� ⃗𝑟
𝑉

�⃗�
𝑉
= ⃗𝑟+Γ�⃗�(𝑡 + �⃗� ⃗𝑟

𝑐2
Γ
Γ+1)

This is a very useful method, which
is substituting quantities in “invari-
ant form”. Here we are dealing with
the rotation transformations, so the
form is “rotation invariant”, but it
is also an extremely useful tool to
deal with Lorentz transformations.

Γ−1
𝑉2

= 1
𝑐2

Γ2

Γ+1

used

here



Mastering Lorentz Transformations (LTs)
LTs is an essential element of high-energy astrophysics. Even they are
fundamental and basic, it is still a source of often confusion and mistakes.
There are two essential methods to master LT, which are worthy of learning
and practicing:

- Using Lorentz invariant quantities

- Relating physical parameters through
quantities that have clear transformation
properties



Mastering Lorentz Transformations (LTs)
LTs is an essential element of high-energy astrophysics. Even they are
fundamental and basic, it is still a source of often confusion and mistakes.
There are two essential methods to master LT, which are worthy of learning
and practicing:

- Using Lorentz invariant quantities

- Relating physical parameters through
quantities that have clear transformation
properties

That is a trivial question, but illustrates the method:

- The photon’s energy is 𝜈 ′ in the co-moving frame, then
it equals to the following Lorentz invariant expression:

𝜈 ′ = 𝑘′𝑢′ , where 𝑘′ is 4-momentum of the photon and
𝑢′ is 4-speed of the jet.

- In the lab frame we obtain 𝜈 ′ = 𝑘𝑢 = 𝜈(1 − 𝛽 cos 𝜃)

If a photon momentum makes an angle 𝜃 to the jet bulk
speed, what is its energy in the co-moving frame?

jet

Γ

isotropic
photon field

Γ = 1
√1−𝛽2



Mastering Lorentz Transformations (LTs)
LTs is an essential element of high-energy astrophysics. Even they are
fundamental and basic, it is still a source of often confusion and mistakes.
There are two essential methods to master LT, which are worthy of learning
and practicing:

- Using Lorentz invariant quantities

- Relating physical parameters through
quantities that have clear transformation
properties
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Γ
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Mastering Lorentz Transformations (LTs)
LTs is an essential element of high-energy astrophysics. Even they are
fundamental and basic, it is still a source of often confusion and mistakes.
There are two essential methods to master LT, which are worthy of learning
and practicing:

- Using Lorentz invariant quantities

- Relating physical parameters through
quantities that have clear transformation
properties

Why is this complicated?

- One needs to account for the transformation of energy
and volume

- Energy of different photons transformed differently
to the co-moving frame

Energy density of an external photon field in relativistic jet

jet

Γ

isotropic
photon field

Γ = 1
√1−𝛽2



Mastering Lorentz Transformations (LTs)
LTs is an essential element of high-energy astrophysics. Even they are
fundamental and basic, it is still a source of often confusion and mistakes.
There are two essential methods to master LT, which are worthy of learning
and practicing:

- Using Lorentz invariant quantities

- Relating physical parameters through
quantities that have clear transformation
properties

If 𝑇𝑖𝑗 is energy-momentum tensor, then 𝑇00 is energy density.
In the photon gas “rest frame” the tensor has a simple form:

𝑇𝑖𝑗 = (

𝜀 0 0 0
0 𝜀/3 0 0
0 0 𝜀/3 0
0 0 0 𝜀/3

)

jet

Γ

isotropic
photon field

Γ = 1
√1−𝛽2



Mastering Lorentz Transformations (LTs)
LTs is an essential element of high-energy astrophysics. Even they are
fundamental and basic, it is still a source of often confusion and mistakes.
There are two essential methods to master LT, which are worthy of learning
and practicing:

- Using Lorentz invariant quantities

- Relating physical parameters through
quantities that have clear transformation
properties

Tensors have clear transformation properties

𝑇′ 𝑖𝑘 = 𝐿𝑖
𝑚𝐿𝑘

𝑙𝑇𝑚𝑙

thus we immediately obtain

𝜀′ = 𝐿00𝐿
0
0𝜀 + 𝐿03𝐿

0
3

𝜀
3 = Γ2𝜀(1 +

𝛽2

3 )

jet

Γ

isotropic
photon field

Γ = 1
√1−𝛽2



Mastering Lorentz Transformations (LTs)
LTs is an essential element of high-energy astrophysics. Even they are
fundamental and basic, it is still a source of often confusion and mistakes.
There are two essential methods to master LT, which are worthy of learning
and practicing:

- Using Lorentz invariant quantities

- Relating physical parameters through
quantities that have clear transformation
properties

We can also use (kind of) the first approach and add the
bulk speed, 𝑢𝑖 = (1, 0, 0, 0)to the expression of the tensor:

𝑇𝑖𝑘 = 𝑤𝑢𝑖𝑢𝑘 − 𝜂 𝑖𝑘𝑝

Here 𝑤 = 𝜀 + 𝑝, 𝑝 = 𝜀/3, and 𝜂 𝑖𝑗 is metric tensor

jet

Γ

isotropic
photon field

Γ = 1
√1−𝛽2



Mastering Lorentz Transformations (LTs)
LTs is an essential element of high-energy astrophysics. Even they are
fundamental and basic, it is still a source of often confusion and mistakes.
There are two essential methods to master LT, which are worthy of learning
and practicing:

- Using Lorentz invariant quantities

- Relating physical parameters through
quantities that have clear transformation
properties

if 𝑢 = (Γ, 0, 0, 𝛽Γ) the component is

𝑇00 = 𝑤Γ2 − 𝑝 = Γ2𝜀(1 +
1
3
Γ2 − 1
Γ2 )

𝜀′ = Γ2𝜀(1 +
𝛽2

3 )

jet

Γ

isotropic
photon field

Γ = 1
√1−𝛽2



Inverse Compton Emission from Jets jet

Γ

isotropic
photon field

𝑒±

Γ = 1
√1−𝛽2Relativistic electron(-positron) gas confined

in a jet, which moves with bulk Lorentz factor
Γ. Photon gas has a know energy-momentum
distribution in the Lab frame (e.g, thermal
isotropic). How to compute IC emission in the
direction of the observer?
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Inverse Compton Emission from Jets jet

Γ

isotropic
photon field

𝑒±

Γ = 1
√1−𝛽2Relativistic electron(-positron) gas confined

in a jet, which moves with bulk Lorentz factor
Γ. Photon gas has a know energy-momentum
distribution in the Lab frame (e.g, thermal
isotropic). How to compute IC emission in the
direction of the observer?

Radiation
in Lab RF
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Field in
Lab RF
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Lorentz Invariant distribution function jet

Γ

isotropic
photon field

𝑒±

Γ = 1
√1−𝛽2Distribution function in the phase space is a

Lorentz invariant:

d𝑁 = 𝑓( ⃗𝑟, ⃗𝑝) d3𝑟 d3𝑝

𝑓( ⃗𝑟, ⃗𝑝) = 𝑓′( ⃗𝑟′ , ⃗𝑝′)

here ( ⃗𝑟, ⃗𝑝) and ( ⃗𝑟′ , ⃗𝑝′) are related by the LT

d𝑁 = 𝑛 d3𝑟 d𝐸 = ∫ dΩ𝑝 𝑓 d3𝑟 d3𝑝

d𝑁 = 𝑛 d3𝑟 d𝐸 = 4𝜋𝑓 d3𝑟 𝑝2 d𝑝

𝑓 = [
𝑐2

4𝜋𝑝𝐸]𝑛
𝐸2 − 𝑚2𝑝2 = 𝑚2

𝐸 d𝐸 = 𝑚2𝑝 d𝑝



Synchrotron Radiation
- Single Particle Spectrum:

d𝐼syn
d𝜔 =

√3
2𝜋

𝑒3𝐵
𝑚𝑐2

𝐹 (
𝜔
𝜔c

)

where 𝜔c =
3𝑒𝐵𝛾2

2𝑚𝑐
and 𝐹(𝑥) = 𝑥

∞
∫
𝑥

𝐾5/3(𝑥
′)d𝑥′

- Energy Losses: �̇�syn = −4
3
𝑈B𝑐𝛾2

- Spectrum transformation: 𝛼 ⇒ Γ = 𝛼+1
2

Acceleration of non-thermal particle pro-
ceeds in magnetized media therefore accel-
erated particles unavoidable interact with
magnetic field generating non-therm emission
– synchrotron radiation



Inverse Compton Scattering
- Single Particle Spectrum:

d𝐼ic
d𝜔 =

𝑟2𝑜𝜋𝑚3e 𝑐4𝜅𝑇2

3ℏ3𝐸 [
(𝜔/𝐸)2

2(1 − 𝜔/𝐸) + 1]

- Energy Losses: �̇�syn = −4
3
𝑈ph𝑐𝛾2

- Spectrum transformation: 𝛼 ⇒ Γ = 𝛼+1
2

Background photons should present in
any source, in many cases IC scat-
tering appears to be comparable to
the synchrotron radiation.



Inverse Compton Scattering
- Single Particle Spectrum:

d𝐼ic
d𝜔 =

𝑟2𝑜𝜋𝑚3e 𝑐4𝜅𝑇2

3ℏ3𝐸 [
(𝜔/𝐸)2

2(1 − 𝜔/𝐸) + 1]

- Energy Losses: �̇�syn = −4
3
𝑈ph𝑐𝛾2

- Spectrum transformation: 𝛼 ⇒ Γ = 𝛼+1
2

Background photons should present in
any source, in many cases IC scat-
tering appears to be comparable to
the synchrotron radiation.

The slope transformation is the same as
for synchrotron radiation

Γ =
𝛼 + 1
2

Does this implies a very simple range of
synchrotron-IC spectra?



Spectral slope of IC component

- Let’s assume that there is a power-law distribution of relativistic
electrons, d𝑛𝑒 / d𝐸𝑒 ∝ 𝐸−𝛼

𝑒 . What is the slope of the IC component?
- There is a standard answer from the textbook: it depends on the
scattering regime

d𝑛𝛾
d𝜔 ∝ {

𝜔−(𝛼+1)/2 Thomson regime
𝜔−(𝛼+1) Klein-Nishina regime

- However, this rule of thumb doesn’t
work if the target photon field is a
broadband power-law,
d𝑛ph / d𝜀 ∝ 𝜀−𝛽

- What is the spectral slope in this
case? 𝜀

d𝑛ph
d𝜀

Thomson Klein-Nishina

𝜀 −𝛽



Anatomy of IC scattering
+ Using 𝛿-functional approximation one can study the properties of IC

scattering on a power-law target analytically:

d�̇�𝛾
d𝜔 = |

�̇�
𝜔 |𝛿(𝜔 − �̄�)

- This approach allows
obtaining the position of
spectral breaks and
expected slopes

- IC component can
feature up to three
physically motivated
breaks!

Under the 𝛿-function approximation, we can (ap-
proximately) compute the spectrum of gamma-ray
emission:

�̇�𝛾 ≈ 𝜔−𝛽

(2𝛽 − 𝛼 − 1)(�̃� (2𝛽−𝛼−1)
𝑚𝑎𝑥 − �̃� (2𝛽−𝛼−1)

𝑚𝑖𝑛 )

where

�̃�𝑚𝑎𝑥 = min(𝐸𝑚𝑎𝑥 , √
𝜔

𝜀𝑚𝑖𝑛
)

�̃�𝑚𝑖𝑛 = max(𝜔, 𝐸𝑚𝑖𝑛 , √
𝜔

𝜀𝑚𝑎𝑥
)



Anatomy of IC Scattering

𝜔

�̃�max
𝜔√ 𝜔

𝜀min

𝜔
= 𝜀min 𝐸 2min

𝜔
= 𝜀min 𝐸 2max

𝜔
= 𝐸

max

𝐸min

𝐸max

�̃�max = √
𝜔

𝜀min

�̇�T𝛾 ∝ 𝜔−(𝛼+1)/2

�̃�max = 𝐸max

�̇�T𝛾 ∝ 𝜔−𝛽

←
HE

cutoff:
𝐸
max =

𝐸
min

LE
cutoff:

𝐸
max =

𝐸
min →

�̇�𝛾 ≈
𝜔−𝛽�̃� (2𝛽−𝛼−1)

𝑚𝑎𝑥
(2𝛽 − 𝛼 − 1)

�̃�𝑚𝑎𝑥 = min(𝐸𝑚𝑎𝑥 , √
𝜔

𝜀𝑚𝑖𝑛
)



Anatomy of IC Scattering

𝜔

�̃�max
𝜔

𝐸max > 𝜀−1
min

√ 𝜔

𝜀min

𝜔
= 𝜀min 𝐸 2min

𝜀−1
min

𝜔
= 𝜀 −1min

𝜔
= 𝐸

max

𝐸min

𝐸max

�̃�max = √
𝜔

𝜀min

�̇�T𝛾 ∝ 𝜔−(𝛼+1)/2

𝑛
KN𝛾

∝
𝜔

−
(𝛼+1)

←
KN

cutoff:
𝐸
max =

𝐸
min

HE
cutoff:

𝜔
=

𝐸
max

LE
cutoff:

𝐸
max =

𝐸
min →

�̇�𝛾 ≈
𝜔−𝛽�̃� (2𝛽−𝛼−1)

𝑚𝑎𝑥
(2𝛽 − 𝛼 − 1)

�̃�𝑚𝑎𝑥 = min(𝐸𝑚𝑎𝑥 , √
𝜔

𝜀𝑚𝑖𝑛
)



Anatomy of IC Scattering

𝜔

�̃�min 𝜔

√ 𝜔

𝜀max

𝜀−1
max

𝜔
= 𝜀 −1max

𝜔
= 𝐸

min

�̃�min = 𝐸min �̃�min = 𝜔

�̇�T𝛾 ∝ 𝜔−𝛽 �̇�T𝛾 ∝ 𝜔−𝛼+𝛽−1

𝐸min

�̇�𝛾 ≈
𝜔−𝛽�̃� (2𝛽−𝛼−1)

𝑚𝑖𝑛
(𝛼 + 1 − 2𝛽)

�̃�𝑚𝑖𝑛 = max(𝐸𝑚𝑖𝑛 ,𝜔, √
𝜔

𝜀𝑚𝑎𝑥
)



Anatomy of IC Scattering

𝜔

�̃�min 𝜔

√ 𝜔

𝜀max

𝜔
= 𝜀 −1max

𝜀−1
max
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Anatomy of IC scattering: Example



Summary

- When one models non-thermal emission, it is often more important to
implement a physically justified description for particle distribution than
include an accurate treatment of the emission processes

- Of course, there are significant uncertainties in particle acceleration
processes, and we cannot implement a self-consistent model for particles.
However, there are certain spectral features, which properties are firmly
determining by the basic theory (such as cooling breaks), and they should
not be ignored in modeling

- If you plan to model emission from relativistic sources, don’t neglect
mastering Lorentz transformations: better understanding of relativistic
physics will help you to avoid mistakes and find more efficient way for
computing radiation

- Even the most simple radiation process, such as IC scattering, may appear
complex enough if one start looking into details


