

The Southern Wide-Field Gamma-ray Observatory (SWGO), and its science

Gwenael Giacinti - 贾鸿宇 (TDLI, SJTU)

For the SWGO Collaboration (www.swgo.org)

Current & near-future observatories

LHAASO PeVatrons:

Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 y-ray Galactic sources

- Access to the Galactic plane and Galactic center,
- Complementary with LHAASO and HAWC \rightarrow Niche for SWGO.

Site candidates for SWGO

The Andes provides a number of highaltitude plateaus and high-altitude lakes that constitute suitable sites for a particle array aiming to extend the low-energy frontier for Wide-Field Observatories.

h

The Concept

Extended energy range

→ From c. 100 GeV to the PeV scale

o Design Elements

- → water Cherenkov detector (WCD) units
- → Large (80,000 m²) high-fill factor core
- → Low-fill factor outrigger covering at least an area of 200,000 m²

Site

- → Deployed at high-altitude in the Andes
- → Above 4,4 km a.s.l.

The Science Case for SWGO

- o Detection of short-timescale phenomena
 - Low-energy threshold for detection of short-timescale (< 1hr) transient events down to 100 GeV

Search for PeVatrons

• Improved sensitivity up to a few 100s TeV to search for PeV Galactic particle accelerators.

PWNe and Gamma-ray Halos

- Unique potential for accessing the high-energy end of the Galactic Population.
- o Dark Matter and Diffuse Emission
 - Unique access to the Galactic Center and Halo at the high-energy end of the spectrum.

o Cosmic-rays

- Unique complement to LHAASO for anisotropy studies, with capability to reach low-angular scale.
- Good muon tagging implies good mass resolution for composition studies up to the knee.

The Science Case for SWGO

Detection of sl

Low-energy thr

Search for PeV

Improved sensi

PWNe and Ga

o Unique potenti

o Dark Matter ar

Onique access

o Cosmic-rays

- Onique comple
- Good muon tag

Design Implications

- Decreasing of the low-energy threshold to c. 100 GeV, at ~10⁻¹¹ erg/cm².s (5-year)
 - Combination of Improved design and background rejection, plus high-altitude site > 4.5 km a.s.l.
- Large array (> 200.000 m²) to achieve good sensitivity > 100 TeV
 - Aim is to push sensitivity <10⁻¹³ erg/cm².s in the range 100-300 TeV.
- Muon counting capability
 - For cosmic-ray studies and background subtraction.
- Improved angular (0.2 deg) and energy resolutions (<30%) above 10 TeV.

nts down to 100 GeV

e accelerators.

tion.

he spectrum.

each low-angular scale. up to the knee.

The SWGO Collaboration

Member Institutes **Supporting Scientists** SWGO partners → 14 countries, 66 institutes

 \rightarrow + supporting scientists

Argentina Brazil Chile China Croatia Germany

Italy Mexico Peru Portugal South Korea Czech Rep. United Kingdom United States

The Chinese Consortium

Signed by 65 faculty members, postdocs, and grad students from 12 institutes

Statement of Interest to		中国科学院高能物理研究所 (Institution of High Energy Physics, CAS)
Establish a Consortium of Chinese Institutes		曹臻 常劲帆 陈明君 陈松战 冯少辉 高博 顾灵始 李骁
in Research and Development Towards a		Zheelee 章功帆 除析序 陈志好 美小探 高峰 顶足垢 孝 想.
Southern Wide-Field Gamma-ray Observatory		李凯 刘佳 魯东大学 (Ludong University)
Preamble a) The scient ground-ba current ge Northern 1 Milky Way acceleratir the South for PeVatro emission s multi-wave significant b) The South to PeVatro b) The South for PeVatro b) The South for South countries towards a Researchh interested consortium - A gard detect field of - Locate - At an a	 Covering an energy range beyond 1 PeV and potentially extended to lower energies. Excellent gamma/hadron separation power Based primarily on existing techniques, e.g. scintillators and water Cherenkov detectors. With an array of detectors with multi-kilometer^2 area considerably larger than UHAASO. With the possibility of extensions and/or enhancements. Modular and scalable. With close scientific coordination with CTA, recognizing the synergy and complementarity between these instruments. Article 1: Goals of the R&D programme Artotyping activities will be pursued as appropriate to demonstrate feasibility and to establish the cost and performance of tesearch and performance of elements. Protyping activities at candidate sites, and/or other high-altitude test sites must be coordinated freques or resources. The execution of this programme will be a detailed proposal for the construction and operation of an obserytory value of a the programme of a source presentery as coultined in the preamble is under the framework of the SWGO collaboration. The is and complement to allow as the mediated proposal for the construction of an observatory as outlined in the preamble, under the framework of the SWGO collaboration. 	本地 支持 支持 支持 支持 支持 一 二 大学 清华大学 (Tsi 素大学 本好 市 高子林・ 高子林・ 素大学 中国科学院空 吉特 张远 弓静 张远 句子章 本子 (Manjing University) 如志思。王祥玉 张海明 何末天 (Manjing University) 如志思 王祥玉 张海明 何末天 (Manjing University) 如志思 王祥玉 张海明 中国科学技术大学 (University of Science and Technology of China) 安共 曹文明 曹姑 李剑 泰家平 唐泽波 杨春菊· 上海交通大学 (Shanghai Jiao Tong University) 边稳想 陈尚明 Gwenael Giacinti Samy Kaci 李元物 本子物 本子物 本子物 大好 本子物 本子物 本子和 唐春秋 唐春秋 小子子 中国地学技术大学 (China University of Geosciences) 里卡格 林大起 [*] 刘富初 万井丞 王逸案 現于他 静永起 [*] 刘富初 万井丞 王逸素 現于他 静永起 [*] 刘富初 万井丞 王逸素 現于他 静永起 [*] 刘富初 万井丞 王逸素

秦家军 唐泽波 杨睿智* 赵雷

春露 300 m 杨睿智 赵雪

李天扬 罗宇

李扬 罗宇

Status & Plan

	SWGO R&D Phase Milestones
M1	R&D Phase Plan Established
M2	Science Benchmarks Defined
M3	Reference Configuration & Options Defined
M4	Site Shortlist Complete
M5	Candidate Configurations Defined
M6	Performance of Candidate Configurations Evaluated
M7	Preferred Site Identified
M8	Design Finalised
M9	Construction & Operation Proposal Complete

R&D Phase

- → Kick off meeting Oct 2019
- → Expected completion 2025
 - Site and Design Choices made

→ Then:

Preparatory Phase

- Detailed construction planning
- → Engineering Array
- (Full) Construction Phase

<mark>→</mark>2027+

Roadmaps

- → US Decadal Review
- → SNOWMASS, APPEC, Astronet

INITIAL site candidates

💡 Alto Tocomar (Argentina)	Q Lake
💡 Cerro Vecar (Argentina)	💡 Ima
잊 Chacaltaya (Bolivia)	💡 Sun
AAP Pajonal (Chile)	Peru
• AAP Pampa La Bola (Chile)	O Yan

- Lake Sibinacocha (Peru)
- Imata (Peru)
- Sumbay (Peru)
- Peru National Observatory
- Yanque (Peru)

Site now CHOSEN!

Potential Lakes

Lake Sibinacocha

Lake Suches

Deployment in Lake

Simulation for a Lake Array

Unit detector simulation

The baseline

detector concept

- **Core:** Ø 320 m, FF = 80% 5,700 WCD units
- Outer: Ø 600 m, FF = 5% 880 WCD units
- Altitude: 4,700 m a.s.l.

3.82 m

Analysis & Simulations

- Simulations to compare different detector concepts,
- Build on the analysis & simulations framework from HAWC.

Sensitivity range (exploration)

Angular resolution

Hofmann (2020) Astroparticle Physics 123, 102479 0.25 Angular resolution [deg.] 0.2 phase Current space **IACTs** exploration SWGO 0.15 inner array HAWC 0.1 Fermi CTA Pass 8 South 0.05 Theoretical limit 0 10² 10-2 10⁻¹ 10

Energy E[TeV]

 Goal:

To have an unprecedented resolution for such a wide field VHE-UHE observatory.

Core Science Cases & Benchmarks for SWGO

Science Case	Design Drivers	Benchmark Description
Transient Sources:	Low-energy sensitivity &	Minimum integration for 5σ detection:
Gamma-ray Bursts	Site altitude ^a	$F(100 \text{ GeV}) = 10^{-8} \text{ erg/cm}^2.\text{s},$
		PWL index = -2., F(t) $\propto t^{-1.2}$
Galactic Accelerators:	High-energy sensitivity &	Maximum exp-cutoff energy detectable
PeVatron Sources	Energy resolution ^b	at 95% CL in 5 years for:
		F(1TeV) = 5 mCrab, PWL index = -2.3
Galactic Accelerators:	Extended source sensitivity &	Maximum source angular extension de-
PWNe and TeV Halos	Angular resolution ^c	tectable at 5 σ in 5-yr integration for:
		$F(>1TeV) = 5 \times 10^{-13} \text{ TeV/cm}^{-2}.\text{s}$
Diffuse Emission:	Background rejection	Minimum diffuse cosmic-ray residual
Fermi Bubbles		background level.
		Threshold: $< 10^{-5}$ level at 1 TeV.
Fundamental Physics:	Mid-range energy sensitivity	Maximum energy for <i>bb</i> thermal-relic
Dark Matter from Galactic Halo	Site latitude ^d	cross-section limit at 95% CL in 5-years,
		for Einasto profile.
Cosmic-rays:	Muon counting capability ^e	Maximum dipole energy at 10 ⁻³ level;
Mass-resolved dipole/multipole		Log-mass dipole resolution at 1 PeV –
anisotropy		goal is to achive A={1, 4, 14, 56}; Max-
		imum multipole scale > 0.1 PeV

Tab. 1 SWGO Science Benchmarks. ^aSite altitude parameter to enter design discrimination as altitude-dependent IRFs. ^bEnergy resolution not constraining as long as O(30%) throughout energy range. ^cAngular resolution not constraining as long as $\sim 0.2^{\circ} - 0.3^{\circ}$ throughout energy range. ^dSite latitude not severely constraining, but sites closer to 30° South are slightly favoured. ^eCapability for individual muon identification to play important role in mass-discrimination.

Transients with SWGO (GRBs)

- Short-timescale sensitivity of ground-particle detectors is much worse than IACTs at low E! But room for improvement < 1 TeV
 - 1 min sensitivity:
 - Fermi-LAT: 10⁻⁷ erg/cm²/s @ 1 GeV
 - SWGO: 10⁻⁹ erg/cm²/s @ < 500 GeV
 - CTA: 10⁻¹¹ erg/cm²/s @ 100 GeV

- o And a number of other advantages...
 - → 100% duty cycle → higher rate and monitoring capability of transients
 → bridging the gap with satellite facilities
 - → Serendipitous view observation of onset / prompt emission of GRBs
 - A trigger instrument!
 - Blind searches and offline checks for afterglow triggers
 - Critical synergy with IACTs and other MWL + MM instruments

SWGO can bring the 10s deg² error boxes (GBM, GW) down to ~ deg²

Transients with SWGO

 Energy threshold is crucial for variability studies, in particular short-transient events such as GRBs

Number of detectable PeVatrons

Results for E > 100 TeV SWGO Detections

Results are given for 1-year observation time

Coverage of nearby TeV halos

Nearby → more likely to be extended Latitudes > 15° South preferred for optimum coverage

← Includes all nearby pulsars that could produce a halo.

Coverage of nearby TeV halos

Nearby → more likely to be extended Latitudes > 15° South preferred for optimum coverage

28

Diffuse emission and Fermi Bubbles

Projected significance for the observation of the Galactic diffuse emission with 1 yr based on an extrapolation of the Fermi diffuse model.

Diffuse emission and Fermi Bubbles

Diffuse emission from the Galactic Plane up to PeV energies:

 \rightarrow A wide-field instrument with an excellent background rejection will be optimal for the detection of such very extended, dim emission.

Fermi Bubbles:

 \rightarrow Their (non-)detection at TeV energies will allow to disentangle between a number of theoretical scenarios.

Dark Matter targets in SWGO's FoV

HAWC skymap with SWGO view (shaded) overlaid

WIMP Annihilation

 Reaching critical sensitivity: Thermal relic WIMP annihilation signature accessible over a very wide mass range (Galactic Center/Halo observations at VHE).

NB Sensitivity improving for both CTA + SWGO – analysis improvements

SWGO + CTA + Fermi will explore thermal WIMPs from 5 GeV to 100TeV.

Cosmic rays

Anisotropy Studies

- Complementary to LHAASO, HAWC, IceCube for dipole studies at the highest energies
- Low-scale anisotropy, and understanding of ISM turbulence and local CRs
- Unprecedented mass-separation potential
 - For composition studies
 - Joint mass-dependent anisotropy studies

Cosmic-ray TeV dipole skymap

arXiv: 1812.05682

Cosmic rays

- A probe of the dipole (10⁻³ amplitude) will be achievable up to energies of at least 3 PeV.
- At 10 TeV (100 TeV), a probe of multipoles up to l~20 (l~6) will be possible (strawman).
- Muon tagging will allow for 4 mass groups between proton and iron to be resolved. (Equal logarithmically-spaced (σ_{InA}≃1) possible at > 3 TeV.)

log₁₀(E_{em} /GeV)

Conclusions

The southern sky needs a wide-field VHE-UHE gamma-ray observatory:

Unique view of the Galaxy and its center

◎ A strong Science Case from 100 GeV to PeV:

→ PeVatrons, Galactic sources (incl. extended, e.g. halos), VHE diffuse emission, (extragalactic) transients, physics beyond the SM, CR physics,...

R&D phase under way. Choice of site completed.

 SWGO China involved in a possible lake site extension, especially useful for PeVatron science