Study of $\tau^- \rightarrow \pi^- \pi^0 v_\tau$ decay

Yijia Chen, <u>Yiwei Huang</u>, Yipu Liao, Wenjie Liu

The 1st Bellel Winter School, Nankai University November 28,2024

Outline

1. Motivation

2. Dataset

3. Event selection

4. Final distribution

5. Summary

6. Contribution

Motivation

• Measuring $\mathcal{B}(\tau^- \to \pi^- \pi^0 v_{\tau})$ and spectral function of $M_{\pi^{\pm}\pi^0}$ can calculate the contribution to $a_{\mu}^{had,LO}$ of 2π system; It seems there is a systematic discrepancy between a_{μ}^{τ} and $a_{\mu}^{e^+e^-}$

- $\bullet {\rm Determine}$ the resonance parameters of $~\rho^{\,\prime}{},~\rho^{\,\prime\prime}{}$ states
- •Combination with $\tau^- \rightarrow (n\pi^-)(m\pi^0)v_{\tau}$ can calculate the value of a_s at m(τ)
- The main background to measure $\mathcal{B}(\tau^- \to K^- \pi^0 v_{\tau})$, which is the main channel for Inclusively measuring V_{us} matrix element

Dataset

• Signal MC sample:

DIY-MC(KKMC+Tauola): 1 million for τ^+ and τ^- each

 $\tau^{\pm} \rightarrow \text{inclusive}, \ \tau^{\mp} \rightarrow \pi^{\mp} \pi^{0}(\gamma) v_{\tau}$ (Amp from Belle fitting)

• Generic MC sample

- 1. Run-independent MC: $40 \pm ? \text{ fb}^{-1}$
- 2. qqbar(uubar, ddbar, ssbar, ccbar), charged(B^+B^-), mixed($B^0\overline{B}^0$)

Event selection

- **1. Track level**: $|d_r| < 1 \text{ cm}$, $|d_z| < 3 \text{ cm}$, $p_T > 0.1 \text{ GeV}/c$, $Q_{tot} = 0$, $N_{trk} = 2$
- **2.** τ revent: $m(\tau)^{\text{tag/sig}}_{\text{candidate}} < 1.8 \text{ GeV/ } c^2, \cos\theta_{trust}^{\text{tag}} \cdot \cos\theta_{trust}^{\text{sig}} < 0$
- **3**. **PID**: $R_e^{SVD+TOP} > 0.9$, $R_{\mu}^{SVD} > 0.9$ (for tag side), $R_{\pi} > 0.95$ & E/p < 0.8 (for signal side)
- 4. π^0 selection: pi0cutsTauOpt (0.115 < m($\gamma\gamma$) < 0.152 GeV/ c^2 and 1C fit)
- 5. Further requirements:

1. $N_{\pi^0}^{\text{tag}} \leq 1$, $E_{\gamma}^{\text{tag}} < 2$ GeV; $N_{\pi^0}^{sig} = 1$, $N_{\gamma \notin \pi^0}^{sig} = 0$ to reduce π^0 -related tau background 2. (see next)

Further selection

Final distribution

Background analysis

BG mode	events	
Total	15716	
1	58	
2	90	
3	137	
4	175	
110	845	$* \tau^- \rightarrow \pi^- \pi^0 \gamma v_{\tau}$
111	10844	$\tau^- \to \pi^- \pi^0 \pi^0 v_\tau$
112	35	
116	166	
127	485	$\tau^- \to \pi^- \pi^0 K^0_L v_\tau$
165	142	
226	210	
227	169	
2024/11/29	2237	$\tau^- \rightarrow \pi^- v_{\tau}$

	ε	Signal purity
$\tau^+\tau^-$	$13.67 \pm 0.02\%$	98.7%
$\tau^- \to \pi^- \pi^0$	$30.84 \pm 0.09\%$	88.7%

- 1. The photons from the π^0 may merge into a single or be missed/misidentified as fake
- 2. The K_L^0 will not leave any information in the detector, so it is effectively equivalent to a neutrino.
- 3. Fake photons may be misidentified and combined to form a fake π^0 .

* The process cannot be distinguished from the signal process in ⁸ our work.

Branching faction from generic MC

$$B(\tau^{-} \rightarrow \pi^{-} \pi^{0} v_{\tau}) = \frac{N_{\pi^{-} \pi^{0}}^{sig} \cdot p_{\tau^{+} \tau^{-}} \cdot p_{\pi^{-} \pi^{0}}}{\varepsilon_{\text{signal}}} \times \frac{1}{2 \cdot \mathcal{L} \cdot \sigma_{\tau^{+} \tau^{-}}} = (19.45 \pm 0.47_{\text{MC}})\%$$

Purity:
1.
$$\tau^+ \tau^- - 98.7\%$$

2. $\tau^- \to \pi^- \pi^0 v_{\tau} - 88.7\%$
Efficiency:
1. $\tau^- \to \pi^- \pi^0 v_{\tau} - 4.24 \pm 0.02\%$

- Inclusive tag side, and $\tau^- \rightarrow \pi^- \pi^0 v_{\tau}$ as signal side
- Assume $\mathcal{L} = 40 \text{ fb}^{-1}$
- Also test the signal MC sample with only electron as tag side. The BR result is $(26.38 \pm 0.27_{MC})\%$.

TABLE III. Branching fractions for $\tau^- \rightarrow h^- \pi^0 \nu_{\tau}$ measured by different experiments.

Experiment	$\mathcal{B}_{k\pi^{0}}(\%)$	Reference
CLEO	$25.87 \pm 0.12 \pm 0.42$	[21]
1.3	$25.05 \pm 0.35 \pm 0.50$	[24]
OPAL	$25.89 \pm 0.17 \pm 0.29$	[23]
ALEPH	$25.924 \pm 0.097 \pm 0.085$	[19]
DELPHI	$25.740 \pm 0.201 \pm 0.138$	[25]
This work	$25.67 \pm 0.01 \pm 0.39$	A

measurement [48] to obtain the result $\mathcal{B}_{K^-\pi^0} = (0.428 \pm 0.015)\%$. Subtracting this from our $\tau^- \rightarrow h^-\pi^0 \nu_{\tau}$ result gives a $\tau^- \rightarrow \pi^-\pi^0 \nu_{\tau}$ branching fraction of $\mathcal{B}_{\pi\pi^0} = (25.24 \pm 0.01 \pm 0.39)\%$, (10)

Summary

- 1. Using 40 fb⁻¹ generic MC samples, signal of $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$ is selected.
- 2. Branching fraction $\mathcal{B}(\tau^- \to \pi^- \pi^0 \nu_{\tau})$ is calculated, but the efficiency is not so reliable. More checks are needed.

Contribution:

- Yijia Chen: MC sample generation
- Yiwei Huang: Drawing and event selection
- Yipu Liao: Analysis algorithm
- Wenjie Liu: Drawing and slide preparation