

Study of $\tau^- \rightarrow \Lambda \pi^$ at Belle II Experiment

¹Yingjun Chen, ²Mingze Li,³ Wenpeng Yan, ⁴Kairui Huang

¹Liaoning Normal University Dalian

²Jilin University, Changchun

³Henan Normal University, Xinxiang

⁴Fudan University Shanghai

Date: 2024.11.29

Belle II China Winter School

Outline

- ➤ Motivation
- ➢ Dataset
- ➢ Signal MC generation
- \succ Event reconstruction and selection
- Signal Region
- ➤ Summary

Motivation

- Puzzle ! Asymmetry of matter and anti-matter
 - Baryon number violation (BNV)
 - CP violation
 - Departure from thermal equilibrium
- Standard Model (SM)
 - Baryon number (B)
 - Lepton number (L)

$\succ \tau$ decays

- Clean physics environment and Known initial state
- In previous BNV analysis of τ decays, the lepton number and flavor are also violated (LNV & LFV)

sensitive probe for new physics beyond SM!

 $\succ \tau^- \rightarrow \Lambda \pi^-$

- Previous Belle result ^[2]
- Updated study at Belle II

[1] BELLE2-NOTE-PH-2023-012 [2] Y. Miyazaki, et al., (Belle Collaboration), Phys. Lett. B 632, 51 (2006).

The schematic diagram of the reconstructed $\tau^- \rightarrow \Lambda \pi^- (\Lambda \pi^-)$ signal event ^[1]

Dataset

Dataset		Version
Signal MC	1M (MC15ri)	light-2409-toyger
Generic MC	$40 f b^{-1} (\mathbf{MC15ri})$ (qqbar & tautau)	

Signal MC Generation

- The KKMC software package used for $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$ simulation
- The TAUOLA software package used for τ decay simulation

$\tau^- o \bar{p}^- \eta$	325
$\tau^- o \bar{p}^- K^0$	326
$ au^- o e^- \eta'$	327
$ au^- ightarrow \mu^- \eta'$	328
$\tau^- o \pi^- \Lambda$	329
$\tau^- o \pi^- \overline{\Lambda}$	330
$\tau^- \to K^- \Lambda$	331
$\tau^- \to K^- \bar{\Lambda}$	332
$\tau^- \to e^- K^*$	333
-	

• 0.5M signal MC for τ^+ and τ^- respectively (total 1M)

08711		<pre>* c*tau(tau life time) (mm)</pre>
1		* switch for long lived (1:no decay, 0:decay)
1		<pre>* switch for KKMC-JETSET (1:on, 0:off)</pre>
*******	Above is for	basf *******
BeginX		
*******	**********	***************************************
*	ACTUAL D	DATA FOR THIS PARTICULAR RUN
*******	***********	***************************************
*indx	cccc	022222222222222222222222222222222222222
* Cent	er-of-mass ene	ergy [GeV]
1	10.58D0	CMSene =xpar(1) Average Center of mass energy [GeV]
2	0.007e0	DelEne =xpar(2) Beam energy spread [GeV]
*******	***********	***************************************
* 61	0.7071d0	spin1x polarization vector beam 1
* 62	0d0	spinly polarization vector beam 1
* 63	0.7071d0	spinlz polarization vector beam 1
* 64	0d0	spin1x polarization vector beam 2
* 65	-0.7071d0	spinly polarization vector beam 2
* 66	0.7071d0	spinlz polarization vector beam 2
*******	***********	***************************************
* Defi	ne process	
415	. 1	KFfin, Tau
*******	**********	***************************************
901	4	Ihvp ! =1,2,3,4
*******	******	***************************************
2001	0e0	Jak1 =xpar(71) First Tau decay mask (tau-)
2002	329e0	Jak2 =xpar(72) Second Tau decay mask (tau+)
*******	**********	***************************************
2900	1e0	BBB 0: ORIG 1: BBB
2901	0e0	EQUALBR
2902	2e0	FF2PIRH0
2903	1e0	IRCHL3PI
2904	0e0	IFKPIPI
2905	0e0	IFCURR4PI
*******	******	***************************************
EndV		

Baseline Selection

- $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$
 - $\succ \tau^- \rightarrow \Lambda \pi^- \rightarrow p \pi^- \pi^-$
 - $\succ \tau^+ \to e/\mu/\pi\, \nu\, \nu$
 - Charged Tracks
 - Within the detector acceptance range (-0.8660 < $\cos\theta$ < 0.9536)
 - Transverse momentum ($p_t > 0.1 \text{GeV}/c^2$)
 - For hadron tracks (nCDCHits > 0)
 - γ
- Photon energy (E > 0.1GeV)
- Within the detector acceptance range (-0.8660 < $\cos\theta$ < 0.9536)
- clusterNHits > 1.5

• PID

- Electronic veto : electronID < 0.9 for three tracks in the signal side
- protonID > 0.5
- $\mathcal{L}(p/\pi) < 0.6 \text{ and } \mathcal{L}(K/\pi) < 0.4$
- ≻ Tag side :
 - pidChargedBDTScore_e > 0.9 regarded as electron
 - pidChargedBDTScore_e < 0.9 and muonID_noSVD > 0.9 regarded as muon
 - Tracks with $\mathcal{L}(p/\pi) < 0.6$ and $\mathcal{L}(K/\pi) < 0.4$ regarded as pion

The schematic diagram of the reconstructed $\tau^- \rightarrow \Lambda \pi^- (\Lambda \pi^-)$ signal event^[1]

• Other criteria

- Treefit to signal τ candidates
- nGoodTrack = 4

A reconstruction

 $\succ \tau^- \rightarrow \Lambda \pi^- \rightarrow p \pi^- \pi^-$

 $\succ \Lambda \rightarrow p\pi^{-}$

- Nominal mass: $1.1156 \text{ GeV}/c^2$
- Mass windows approximately $\pm 6 \text{ MeV}/c^2$ (corresponding to 3σ)

 $\varepsilon = 12.69\%$

(Signal events scaled to half the number of Bkg events for better comparison)

τ reconstruction

$\succ \tau^- \rightarrow \Lambda \pi^-$

• Nominal mass: $1.777 \text{ GeV}/c^2$

Signal Region

- $\succ \tau^- \rightarrow \Lambda \pi^-$
 - Ture signal events locate around $(m_{\tau}, 0)$ point on the $M_{\tau} \Delta E$ plane

➢ Motivation

➤Generate Signal MC

Event Reconstruction

➢ Basic Event Selection

≻Signal Region

≻Gains ...

Thanks for your attention!