

Analysis the decay for $\Xi_c^0 \rightarrow \Xi^- K^+$

Xinyue Zhao¹ Lin Zhu² ,Yuewen Zhong³ ,Haoyu Yan⁴

- 1. Xi`an Jiaotong University
 - 2. Jilin University
 - 3. Fudan University
- 4. LiaoningNormal University

11/29/2024, NKU冬季学校结课工作报告

Outline

a brief introduction

Directory

- ✓ Motivation
- ✓ Data Set
- ✓ Example Selection
- Presentation of Relevant Distributions
- ✓ Summary

Teamwork

- Analyze the background of the topic and collect relevant papers. Lin Zhu
- Run the program to generate Monte Carlo (MC) simulations.
- Plot the invariant mass spectrum.Yuewen
- Analyze the signal from the Monte Carlo (MC) simulations.
- Create a PowerPoint presentation for reporting and sharing

Lin Zhu ;Xinyue Zhao YueWen Zhong ;Haoyu Yan;

Motivation

updated measurement of $Br(\Xi_c^0 - > \Xi^- k^+)$

- Weak decays of charmed baryons provide a useful test of many theoretical models and approaches, which include external/internal W-emission and W-exchange processes. e.g. Ξ⁰_c->Ξ⁻k⁺ has W-exchange and external Wemission contributions.
- Belle observed (SCS) $\Xi_c^0 \Xi^- k^+$ based on 711 /fb of data: 2.75 ± 0.51 ± 0.25 % ×B($\Xi_c^0 \Xi^- \pi^+$)
- preciser BR result are promissing at Belle with full data set (980 /fb);
- theoretical predictions [PRD 101, 014011 (2020) vs SU(3) PLB7 94, 19(2019)] :B($\Xi_c^0 \Sigma^- k^+$) = 3.9× 10⁻³ vs

 $(1.28\pm0.06) \times 10^{-3}$ much larger than current experimental result: B($\Xi_c^0 \rightarrow \Xi^- k^+$)PDG =(4.2±1.0) × 10^{-4}

• very recently, predicts $B(\Xi_c^0 \rightarrow \Xi^- k^+) = (4.7 \pm 0.8) \times 10^{-4}$ sing SU(3) relations. This global analysis shows the

deviation is reduced to within 1σ level

Motivation

motivation (II): Ξ_c^0 SCS decay asymmetry parameter

- using $\alpha_{\Xi^-} = -0.376 \pm 0.008$ and $\alpha_{\Xi^+} = 0.371 \pm 0.007$ from BESIII [arXiv:2105.11155] as input;
- Theoretical predictions, taking SU(3)F approach for example,
 - $SU(3)_F: \alpha(\Xi_c^0 \to \Xi^- \pi^+) = -0.95 \text{ vs. } \alpha(\Xi_c^0 \to \Xi^- K^+) = -0.97 \text{ [PRD 101, 014011 (2020)]}$ $\alpha(\Xi_c^0 \to \Xi^- K^+) = -1.00^{+0.01}_{-0.00} \text{ [PLB7 94, 19(2019)]}$ $\alpha(\Xi_c^0 \to \Xi^- K^+) = -0.60 \pm 0.33 \text{ [arXiv:2112.10556]}$
 - SU(3)_F symmetry, $\alpha(\Xi_c^0 \to \Xi^- K^+) = \alpha(\Xi_c^0 \to \Xi^- \pi^+)$. Significant bias indicate SU(3)_F symmetry violation.
- re-measurement of $\alpha(\Xi_c^0 \to \Xi^- \pi^+)$, already reported at Belle in 2021. \Rightarrow directly open box to validate our analysis/fitting codes. (Lin ZHU has done this check, we can give double check.)

Data and MC Samples

Signal MC:

Belle: Generated 1M events for each decay mode using EvtGen generators under basf software framework.

Inclusive MC:

Belle: Official charged, mixed, charm, anduds samples. $(\Upsilon 4S)$ Their luminosities are 4 times to the data samples.

- 限于时间
- 之前分析里面采用的Belle上数据
- →在basf2上对belle的信号MC进行模拟
- →相关文件如图左所示

→2 M的MC样本

MC simulation

Alias myanti-Lambda0 anti-Lambda0 Alias myXi- Xi-Alias myanti-Xi+ anti-Xi+ ChargeConj myLambda0 myanti-Lambda0 ChargeConj myXi- myanti-Xi+ Decay vpho duscbt e mutau 1.000 PYCONT 000100 00000; Enddecay Decay Xi c0 1.0 myXi- K+ PHOTOS PHSP; Enddecay Decay anti-Xi c0 1.0 myanti-Xī+ K-PHOTOS PHSP; Enddecay Decay myXi-1.0 myLambda0 pi-PHOTOS PHSP; Enddecay CDecay myanti-Xi+ Decay myLambda0 1.00 p+ pi- PHOTOS PHSP; Enddecay CDecay myanti-Lambda0

Event Selection Criteria

Λ candidates	goodBelleLambda > 0	stdLambdas and $L_{dec}/L_{\sigma}(\Lambda) > 10$
	$R(p \pi) > 0.6, R(p K) > 0.6$ for proton, $ M_{p\pi} - m_{\Lambda} < 3 \text{ MeV}/c^2$	
Ξ^- candidates	stdXi- requires $R(p \pi) > 0.2$ and $R(p K) > 0.2$ for proton; $ dM_{\Lambda} < 3.5 \text{ MeV}/c^2$,	
	$\cos \theta_{<\vec{p},\vec{r}_{\rm vtx}>}(\Lambda)>0, dr^2+dz^2 (\Lambda)>0.35 \ {\rm cm}; 1.295 < M < 1.35 \ {\rm MeV}/c^2$	
	goodXi- requires treeFit with Λ mass constraint,	
	$\cos\theta_{<\vec{p},\vec{r}_{vtx}>}(\Xi) > 0, 0 < dr^2 + dz^2 (\Xi) < dr^2 + dz^2 (\Lambda)$	
	$L_{dec}/L_{\sigma}(\Xi^{-}) > 5$, and $ M_{\Lambda\pi^{-}} - m_{\Xi^{-}} < 6.5 \text{ MeV}/c^2$	
Prompt charged tracks	$dr < 0.5$ cm, $ dz < 2$ cm; $R(\pi K) > 0.6$ for π ; $R(K \pi) > 0.6$ for K	
Ξ_c^0 candidates	treeFit with IP constraint and	hyperon $(K_{\rm s}^0, \pi^0)$ mass constraint (chiProb>0.001)
	$\chi^2 < 40$	

Distribution of $M(\Lambda \pi^{-})$

$$|M_{\Lambda\pi^-}-m_{\Xi^-}| < 6.5~{
m MeV}/c^2$$

Distribution of $M(\Xi^-K^+)$

Data and MC Samples

没有看到显著的含Xic0贡献的本底过程!

→后续会进一步确认

Summary and Outlook

Summary

- ✓ A study on the event selection criteria for the process $\Xi_c^0 \rightarrow \Xi K +$.
- \checkmark Drawing from related analyses, we have preliminarily established the conditions to reduce the
- ✓ background noise.
- ✓ After the final selection criteria, the distribution in the generic MC is essentially smooth, with no significant background processes containing contributions from Ξ0c being observed.

Outlook

Learning tools such as ROOT, LaTeX, and Python to carry out tasks like plotting graphs and writing experimental memos.

- **Studying to optimize event selection criteria.**
- □ Learning to estimate systematic errors.
- □ Selecting the process $\Xi 0 c \rightarrow \Xi \pi + as$ a control sample to validate the research strategy.

Thanks!

