Lectures on perturbative computations in the Color Glass Condensate
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e Kovchegov and Levin’s book of High Energy QCD [1]. Comprehensive review of small-x physics, follows
the light-cone perturbation theory approach.

e Lappi’s doctoral training notes for ECT*. Excellent discussion on the initial conditions for heavy-
ion physics (not discussed in these lectures). https://indico.ectstar.eu/event/14/sessions/58/
attachments/259/330/Lappi_dtp_notes.pdf

e Classic reviews on the Color Glass Condensate [2] and [3]. More recent review with extended discussion
of phenomenology at HERA, RHIC, LHC and the EIC [4]

e Conception of the classical description of Color Glass Condensate and the separation of degrees of
freedom: [5-7]. The renormalization of the classical theory: JIMWLK equations [8-13]. A projectile
perspective on renormalization: the Balitsky-Kovchegov equation and Balitsky hierarchy [14, 15]

e You can also find online lectures by Iancu https://www.youtube.com/watch?v=f-4tRHjwmns&t=372s
and Venugopalan https://www.youtube.com/watch?v=LyjSYjEeGOU

e Seminal paper on the relation between CGC and TMDs [16]


https://indico.ectstar.eu/event/14/sessions/58/attachments/259/330/Lappi_dtp_notes.pdf
https://indico.ectstar.eu/event/14/sessions/58/attachments/259/330/Lappi_dtp_notes.pdf
https://www.youtube.com/watch?v=f-4tRHjwmns&t=372s
https://www.youtube.com/watch?v=LyjSYjEeG0U

I. LECTURE I: CGC BASICS

We begin this section by reviewing the light-cone coordinates and QED+QCD Feynman rules that will
be used throughout these lectures. We then introduce the basic elements of the CGC EFT: separation of
degrees of freedom into sources and fields. In the classical approximation, we relate sources and fields by
solving the Yang-Mills equations for a fast-moving current along the light cone. We close this lecture by

deriving the effective vertices for the interaction of quarks and gluon in the presence of the classical color
field.

A. Conventions
1. Lightcone coordinates

We work in lightcone coordinates,
x+:i(0+x3) x*:i(xo—x?’) (1)
V2 ’ V2

with the transverse momenta components the same as Minkowski space. Four-vectors are defined as a* =
(a*,a",a,), where a; denote the two-dimensional transverse components. The magnitude of the two-
dimensional vector a is denoted as a,. Following these conventions, the scalar product of two vectors is
a,bt =atb” +a bt —ay - by

The same convention is used for the gamma matrices v and ~~, with the anti-commutation relations
satisfying

{v" 7"} =2¢"14, (2)
where the only non-zero entries in the metric are gt~ = ¢~+ =1 and ¢¥ = —6%.
We will define two light-cone vectors:
nt =gt (3)
nt =6 . (4)

Note n.n =1 and n.n = n.n = 0.
We will denote the transverse components of a vector as ar:

a% = (07 Oa aL) ) (5)
hence, ar,af = —a? .
Throughout these notes we will assume the proton/nucleus with momentum P moves always along the
plus light-cone direction (we will neglect its mass):

Pr = pPtpt, (6)

2. QCD+QED Feynman Rules

We will label below spinor and vector indices respectively as (o, §) and (u,v), and color indices in SU(3)
in the fundamental and adjoint presentation as (4,5) and (a, b, ¢) respectively. It will be convenient to work
in a light-cone gauge n.A = 0.

The free massless quark and gluon Feynman propagators are,

ilaE

0 — _laos s
Sosis() = 57500 (7)
i1, (1
Ghoa(l) = = ()5ab, (8)
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We also define the gluon polarization tensor II,,, which appears in the free gluon propagator as

Ln, +n,l,
() = —guw + % : 9)

The polarization vector for an on-shell gluon with non-zero transverse momentum I is

efl g +1
Eu(laA: :I:l) = 17_7076J_ ) (10)

where we only have the two physical transverse polarizations. For circularly polarized photons, the 2-

dimensional vector ei is given by

et = i(uA) (11)

V2

The photon quark-antiquark and the gluon-quark-antiquark vertices read

V/Z?qu = —ieqy (’VM)UL? ; Vi’%qéflij = ig(’Yu)zﬁtgj ) (12)
where e is the electromagnetic coupling constant, g; is the fractional charge of the quark, g is the strong
coupling, and ¢7; is a generator in the fundamental representation. At one loop order in our computation we
do not need the cubic and quartic gluon vertices except in the cubic coupling of gluons to the background
field, represented below by the gluon effective vertex.

The polarization vector for a photon with virtuality Q% = —¢? with momentum
q= <—2Qq27q_70L) (13)
is given by
(g, A=0) = (ﬁ,0,0l> , (14)
(g, A = £1) = (0,0,€T") , (15)

where A = 0 denotes the longitudinal polarization, A = +1 denote the two transverse polarizations, and the

two-dimensional vector efl = % (1, £4). Observe that the longitudinal polarization vector vanishes for real

photons @ = 0.

B. Degrees of freedom: Sources and fields

The CGC is an effective field theory for high-energy QCD. For a hadron moving in the plus light-cone
direction with large momentum PT probed at the scale zoP', with g < 1, the CGC separates the partonic
content of hadrons according to their longitudinal momentum k+ = x Pt where x refers to the longitudinal
momentum fraction of the parton probed in the nucleus/nucleon. Partons carrying large longitudinal mo-
mentum fraction x 2 xo (large-z partons) are treated as static and localized color sources p. Heisenberg’s
uncertainty principle justifies this view: the degree of localization of partons Az~ is much smaller than the
longitudinal resolution 1/(xgP%) of the probe:

1 1 1
Az o~ — = —— K ——— . 16
S iy (16)
Similarly, the time scale Az* for the evolution of these large-z partons is much larger than the time scale of
21}0P+
ki

the probe 7 ~ , where k| is the transverse momentum of the produced quark:

2kt B 20 Pt 2z Pt
KLk kL

1
Azt~ — = 1
“ k= (17)



From the point of the small-x partons, large-z partons are localized in the longitudinal direction z~ and
frozen in light-cone time 2T. Large-z partons (z 2> o) are integrated out and their net effect is effec-
tively treated by introducing a stochastic color charge density p which is described by a non-perturbative
gauge invariant weight functional Wy, [p]. The partons possessing a small momentum fraction z < z¢ are
treated as a delocalized dynamical field A*%(z) (small-z partons) generated by the color charge current p.
Mathematically this is achieved by the following path-integral formulation:

zo Pt i P
J7 [pAJOLAJeS A 1} 8)

((0)) = / [Dp] W, [p] { fﬂcop+ [’DA]eiS[AW]

where O is an observable of interest (e.g. correlator, scattering amplitude, cross-section, etc). The invariance
of the expectation value ({O)) on the separation scale choice of zq leads to the RG evolution of the weight-
functional.

The action S[A4, p] is the Yang-Mills action endowed with the coupling of the gauge field with the sources

p:
Sl Al =S4+ i [ A (@) (e) (19)

Thus the computation of an observable follows a two-step process:

1. Compute the path integral (with cut-off 2o P in the plus longitudinal momentum) for a given config-
uration of color sources p representing the large-x partons (with longitudinal momentum k* > zoP™).

S5 [DAJO[A]eiSIA )
fff(]P+ [DA]@iS[A’p]

(20)

The sources are sampled from a (non-perturbative) gauge invariant weight functional W, [p].

2. Average over the gauge invariant weight functional (so called CGC average).

C. Semi-classical approximation

For a hadron/nucleus moving close to the light-cone in the plus direction, these sources generate a current
independent of the light-cone time z7:

J(z) = M p* (27, 21), (21)

where the support of p along the minus light-cone direction is localized near the origin.
The gauge field A* representing small-z partons can be obtained by solving classical Yang-Mills equations:

(D, F*] =J" (22)

The classical treatment of the gauge field is justified when the occupation number of color charge density is
large. This approximation is appropriate when z is sufficiently small and/or when the nucleus is large so
that the large-x partons that have been integrated out form a large current.

The independence of z* of the current in Eq. (21) is consistent with the conservation equation [D,,, J#] = 0
when working in an appropriate gauge (A~ = 0). For this choice of gauge condition, the classical gauge field
adopts a simple solution:

AG(z) =" a (27, 21), (23)

where o (27, z ) satisfies the two-dimensional Poisson equation V2 a® = —p® (for more details see Sec. IE.).
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FIG. 1. In the CGC EFT partons are organized as color sources or fields according to their longitudinal momentum
fraction x relative to the characteristic momentum fraction of the probe zg. Sources are stochastic and their dis-
tribution is characterized by a gauge invariant weight functional Wy, [p] (represented in blue). The gauge field is a
solution to Yang-Mills equations in the presence of the sources (represented in red).

D. The gauge invariant weight functional

The most widely used choice for the weight function is the McLerran-Venugopalan (MV) model [5, 6]. For
a sufficiently large nucleus, the MV model invokes the central limit theorem, thus constructing a distribution
following Gaussian statistics (for a detailed exposition see [17]):

Wao ] =/\/exp{—;/dgc—ol?acl pa(x_’i;)g(;”_’“)} : (24)

The function A;,(x~) is related to the transverse color charge density distribution inside the nucleus. An
energetic probe will interact coherently with the partons encountered along its longitudinal trajectory. Con-
sidering the contribution from the valence quarks only one finds the quantity

B 2rg? A

A

u? = /dx‘AIO (z7) ~ A1/3, (25)

where A is the nuclear mass number, R4 ~ A'/3 is the nuclear radius and g is the strong coupling constant.
This new quantity p? is closely related to the saturation scale Q2 as we will see in section II where we
introduce the high energy correlators.

E. Classical solution to Yang-Mills equations

The YM equations are
(D, F™) = J” (26)

where the covariant derivative is D, = 0,, —igA,,, and F" = 9FrA¥ — 0" A* 4 ig[ A, AY]
Let’s solve them for a current of the form:

JH(z) = 0"Tp(z", 21) (27)
Ansatz:
AP (2) =8 a(z,2]) (28)
Then
Fii=F~=0
FT==-0"A%(z",2,)=0

Ft =0d'a(z7,2,) (29)



The equations for v = — or v = j are trivially satisfied. For v = +
[D,, FF) = 0, F'"" = 9;0'a(2",z1) = p(z~,21) (30)
Hence, the equation for the field « is simply the two-dimensional Poisson’s equation
Via(z7,z1) = —p(7, z1) (31)

Notice that this solution satisfies the Lorenz gauge condition

0, A" =0 (32)
and also the so called light-cone gauge condition A~ = 0. Note that in this gauge, the current (covariant)
conservation is trivially satisfied

D,J" =04p(2,21)=0. (33)

F. Derivation of quark CGC effective vertex

We begin with the generic effective vertex for the interaction of a quark with a classical background field
AL (2):
cl

VALY = igy, A% (1 —1)te (34)

where g‘c‘la(q) the Fourier transform (momentum space) of the classical field:

ﬁgl’a(q) = /dQZJ_e_“U'ZL /derei‘fZ+ /dz_equerAgl’a(z). (35)

1. One scattering with the background field
For a back-ground field of the form A" (z) = 6"t A% (27,2 ), independent of z* we find
A (q) = 2md(g") / d2zy eI / Az AT 2. (36)

where the delta function §(¢~) arises since the background field is independent of z*. Then the interaction
vertex for one scattering takes the form

l+7l/+

VALY = 276(17 — 1)y~ / A2zy e Bt 21 () / dz— el VA AN (2, 2z )t (37)

In the eikonal approximation I ,!', < I~, we make the approximation W ="~ 1: hence

Vi) =20~ 1)y [@aie ot ny) [ Al Gn a6

2. Two scatterings with the background field

The effective vertex for two scatterings is defined as

4
VALl = / (‘; ;)14 VEALL)S (L)V I (1, 1) (39)



Inserting the expressions:

VAL :/ di 517 — z—)yfiih S(Iy =17y~
2 (2m)4 ! 2 +ie !
X 27r(ig)/dzzzJ_e_i(li_l“)‘z“ /dzf i lj)z’;Az’a(z;zzl)t“
x 27(ig) /d2z1J_e_i(lu_ll)'zu /dzfei(lf_w)zf AP z ) (40)

Integrate over [; with the help of the delta function, and use v~ [y~ = 2l; v~

VML) =~ s 1y [@rasetoms [asets [ty etioe [aents

2 illJ_~(22J_721J_) dli‘r QZZI_ 77,lf'(z2_7zl_)A+,a — A+,b — ab
X (27‘(‘)2 d l]_J_e gme cl (22 ,ZzJ_) cl (Zl ,ZlJ_)t t ,
(41)
The integration over /] is performed via contours employing Cauchy’s theorem, we find
+ 07— —il (25 —z7 + L o—ilf (25 —2]
%211162 1(-2 1) :/% 1€ 1 (25 1) :6(2572;)6_i1§l£2(z2__21_)' (42)
21 12 + ie 2 |:li'r -~ Luél#}

Mathematically, the step function ©(z, —z; ) appears because the pole is the lower-half plane (since [~ > 0),
and when z, < z; the contour can be closed in the upper half plane, only when 2z, > z; the integral can be
closed in the lower half plane. Physically, the quark propagating in the minus light-cone direction imposes
an ordering in the interactions with the background field (note that this is also a result of the eikonal
approximation).

, - I e
qu’A(l,l/) = (ig)?2mo(1= = 1'"" )y~ /dzzu_e*”i'z“ /dzzu_e“i'z“ /dz;elﬁz2 / dzye e

X Az’a(zg, Zzl)Aji’b(Z;, Z]_J_)tatb

(21)2 /d2llLeil1J_‘(ZzJ_—zu_)e—ilél%z(Z;—Zf) (43)
i

19,2, -
In the eikonal approximation we can neglect the phase ¢ i (2 ) o 1, this allow to easily perform

the integration over l;,, which results in a delta function. Physically, this implies that in the eikonal
approximation, the quark does not change its transverse location between the interactions.

VQq’A(lvl/) (ig)*2mo(l= —1'7) /dQ,zzJ_e_”l z“‘/dQZlJ_edL L /dz_ell %2 / dzye -l
X AL (25, 220 )AL (27, 210 )t°t76 P (221 — 211). (44)
Performing the integral over zo we find
VALY = 2m8(1” — 1) /d zy etz (jg) /dz el / dzy e 5 AL (2, 211 )AL (21, 20 )t
(45)

Within the eikonal approximation, we can also ignore the phases el =2 , e~ ~ 1 With the help of the
path ordering function we find

‘/'Z%’iﬁ(l,l’) =2m6(1- —=1'7) /d221J_€ -t )z“P{ (ig) /dz2 /dz1 +.a (29 ,zlJ_)A+’b(zf,z1J_)t“tb}
(46)



8. Multiple scatterings with the background field and resummation

It is easy to observe that for an n number of interactions

VL) = 2617 — U7 )y~ / d2zue—“h—li>'m7>{ (ig) H / Az AL ( zk,zmtk} (47)

Now, it is evident that the resummation of multiple scatterings of a quark with the background field (including
no scattering) can be exponentiated. The derivation for the scattering of the anti-quark with the background
field is almost identical. One finds:

TULY =275 —1"")y sgn(l™) /dzzlLe*i(li*ll)'z“ngn(l_)(zu_) ) (48)
where
o
V(z11) = Pexp (zg/ dz” AL C(2, zlL)tC> . (49)
—o0

4. CGC Feynman rules

We define lightlike Wilson lines in the fundamental and adjoint representations appearing in the effective
CGC vertices are given by the SU(3) matrices

Vij(z1) =Pexp (zg/ dz_Ajl’c(z_, zl)tfj> , (50)
Uuwp(z1) = Pexp (zg/ dz_A:rl’c(z_,zJ_) §b> , (51)

where t7; and Ty, are the generators of SU(3) in the fundamental and adjoint representations respectively.

Al is the back-ground gauge field of the classical small = gluon field in Lorenz gauge. Here P stands for
path ordering such that the operator at z = —oo is in the rightmost position, while that at z = +oco is in
the leftmost position.

Note that the Wilson lines (at a fixed transverse position) are unitary color matrices:

V(ZJ_)VT(ZJ_) = VT(ZJ_)V(ZJ_) = ]lNc s (52)
U(z1)UN(21) =UT(21)U(21) = Ly2_1 . (53)
The CGC effective vertices for the eikonal interaction of the quark (moving with large minus lightcone

momentum component) with the background of the nucleus (moving with large plus light-cone momentum
component) is given by

T, (L) = (27)6(17 — 1" )y, sgn(l”) / A2z et zyenl ey ) (54)

oo’ ij

and similarly the eikonal interaction of the gluon (moving with large minus lightcone momentum component)
with the background of the nucleus (moving with large plus light-cone momentum component) reads

T4, (1) = —(2m)6(1~ —1")(21 ) g sen(l™) / A2z etttz (5 ), (55)

where [ and I’ are the incoming and outgoing momenta of the quark/gluon. The superscript sgn(l~) denotes
the color matrix or its inverse V*1(z,) = V(z,) and V~1(z,) = VT(z, ), where the latter follows from the
unitarity of V(z_ ), and similarly for U(z_).



G. Exercises

e Compute the effective vertex gluon scattering. What happens with the four-gluon QCD vertex?
e Show that the propagators or vertices between two effective CGC propagators are now allowed.

e Start from MV model correlator for sources and derive the correlator for the dipole.

10
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II. LECTURE II: COMPUTATION OF OBSERVABLES

In this lecture, I will review the computation of two classical observables in the CGC EFT: i) single-
inclusive hadron production in proton-nucleus collision, and deep inelastic scattering, and show that they
both feature the two-point correlator of Wilson lines. Then, I will discuss the computation a semi-inclusive
dijet production in DIS which will feature a new correlator: the quadrupole.

A. From amplitude to cross-section

For a (semi)-inclusive process of the form:

Po(q) + A(Pa) = > Pulpr) + X (56)
k

1. Compute the scattering amplitude S[p] in the presence of the background field representing the nucleus
A using the momentum space Feynman rules (endowed with the CGC effective vertices) outlined in
the previous lecture.

2. Subtract the non-scattering contribution (setting all Wilson lines to unity) and factorize an overall
minus momentum conserving delta function.

N; Ny
26 | Y05 — S pic | Mol = Slp = 0] - Sl (57)
j=1 k=1
3. The unpolarized cross-section for the semi-inclusive process: Py(q) + A(Pa) = > Pr(pr) + X is given
by
.- 1 17 dpr pis
do=2mé ¢ — Zp; Gy Z <M[P]MT[P]>$O H 16_73 (58)
k=1 (2q ) color k=1 2pk (27T)
- . =

spin

flux factor

momentum conserving phase space factor

delta function amplitude squared

For the special cases:

® Py(q)+ A(Py) = Pi(p) + X

B 1 dp—d?
do = 2m3(q™ = p7)g= | > (MM [e]),, ﬁ (59)
color
spin

amplitude squared

do B 1
dzd?p,  4q p-

L D MMy, | 6(1—2) (60)

color
spin

amplitude squared

where z = p~ /¢~ is the light-cone momentum fraction of the initial particle carried by the final state
particle.

. Po(q) + A(PA) — Pl(k') + PQ(p) + X
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B. Single inclusive hadron production in proton-nucleus collisions

The scattering amplitude is given by

Slp] = u(p, )T (p,q)u(g, 5) (62)

The physical amplitude (subtracting no scattering contribution and factoring an overall conserving minus
momentum delta function)

Mp] = a(p, s)v " ulq, 5)/d2zle*“”f‘“)'“ (V(z1)—1) (63)
Then
2]1\[0 > (MlpIM[p] ), = QLNCTr [P a7 /dQZLszle"'(”L“”)'(“‘zlm V(z)VI(Z)] +C6P(p, —q.)
colors (64)
—4pq- /d?bL /dQTLe_i(pi_qL)'”S@) (bL + %,bL - %) (65)

where the contribution that arises from zero or one Wilson has been separated, we will ignore this contribu-
tion. We have defined the dipole correlator:

S (b + Tt - ) = (T VeV, ))),, (66)

The differential cross-section is given by

dzjigm —s- | d"‘l();:;m e i g (b, 4 Ty, 1LY (67)
Thus
S 51— )8 (g, ~p) (68)
dzd?p |
where
5@ (g, —p,) = /%e—im—quns(z) (bat Thby L) (69)
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C. Total cross-section in deep inelastic scattering (DIS)

Optical theorem

PRUMY AT AL, ] = 20707, (70)
We will work in a frame where
Q> _
= ——— 0 1
q < 2q_,q ;01 (71)

The forward scattering amplitude reads:

Sl = (-1) / %%Tﬂsf’a)(—ieemm, NS — )T (L — g,1' — @S — q)(—iees¢* (q. \)S° )T (I, 1)

(72)
Reduced amplitude:
(2m)d(q~ — g7 )M [p] = S*p = 0] = S*[4] (73)
(Mg =(207 )N [ dbLr Dl b AN r) (74)
where color correlator
D(ri,b)=1-8? (bL + %,bL - %) (75)
C (eey)® [ M v (2¢7)8(1~ — I7)ette=tm AN 1)
AA(TL) T orn / (2m)3 (2m)3 [I2 4 ie] [(I — q)% + ie] [I”2 4+ ie] [(' — q)% + i€] (76)
and
A1) = ﬁmmq, N~ v (= ¢ (@ N (77)

Note that despite the fact that this is a leading order computation, notice that it requires the evaluation of
a loop. This is a consequence of multiple scattering. In what follows we perform the integration over the
loop momentum [. First, we will do the integration over [~, then I, and finally over 1, .

1. Integrating over I~ and I

Integration over I’~ can be carried out easily using the delta function. We define z =1~ /¢~ then we have

1 2 27/
dz [d<l d°l, . /
A — 2 L L l(lL_lL)A/\ ..U
A (T.J_) (eef) /O 471_/ (27‘(’)4 € (J_v J_az)
(2¢7)

drt - ar* (2¢7)
X / 21 12 +ie] [(1 — q)? + i€] / 21 (12 + €] [(I' — q)2 + i€] (78)

where we used the fact that A*(l,1’) is independent of [T and I'T. Using

dit (297) o
/ 2 (12 +iel (1 — )2 +1i€] Q2+ ? (79)
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Thus
dzlLd2 1(lJ_—l’L)rJ_A>\(lL7l/ ,Z)
AN (cer) / / ot Q2+ 3] [Q2 + l’é] (80)
1L 1
where
Q* = 2(1-2)Q (81)
-

2. Perturbative factor

Useful identities

iqo— i b i
I¢(g, X = £1)(] — ¢)y~ = -2 Iy (efl + 57 e i1’]) +Ciy (83)
* — *,m 1 n_.m *,71 — m oM —
("= )¢ (@ N =£1)]'y~ = -2 <6f1’ + 5" >l’v + CFy™y (84)
Then
=L ) = ol Ty | [y (€ 4 et ) (ebtem o Lonom i) g
15b1,2) = Q)2 L+ 7ol€eL QZV’YeL € 9, 1T €L v
1 . 1
:2221 l/JT_nT |:( i11+2277 Efl’j> <6T1*,m+27n,ym +1x%, n>:| (85)
Using
Tr {(ei Zy ’Yjei’j> <ei +2—7 ~ ei )]
2 *,m
=3 {22 +(1- z)ﬂeilei (86)
Then
AT 2) =4[22 4 (1= 2% (- )T - €)) (87)
Thus

3 Yz A2l et ity - €)) [ e V(U - €))
)= teer? gl 0] [ G g | A

Using

= —QK:(Qry) (89)

/ d2lJ_ eilLrLlL iy
@2m) 1A +Q2] 71

Qemed 1 dz -€ -€7") = ~
ANy = 20D [ [y 1) e ) e (%0)
0

T 47 i

where ae,, = e%/(4n)

_ 2aeme; [1d . ~
= A== R o1
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Finally
O, =(2q) 2T [ @vidrirb | a0t o
Thus
- O””;?”N / 2, d%r  2D(r 1, b.) /0 1 %Zr 2+ (- 22| @K @r) 93)

e Discuss interpretation in terms of LCPT

e Plot LCWF of photon to qgbar, role of virtuality as transverse resolution scale

D. Universality

e Point out the universality of dipole amplitude

e Model for the dipole: GBW and MV model, basic properties of the dipole distribution: color trans-
parency and saturation

e Pheno of DIS: geometric scaling
E. Semi-inclusive dijet production in DIS
1. Amplitude
Let z = k=~ /q~. We denote the longitudinal polarization as A = 0, and the two transverse polarization as

A= =*1. Assume ¢~ >0, k= >0, and p~ > 0.
The scattering amplitude for dijets at LO is given by

Sixlpl = /(sgﬂ(kﬁ)ﬂ(/ﬁl)so(l) (—ieepd(a, 1) S~ )Tl — g, —p)v(p. 5) (94)
Subtracting the non-interaction piece and factoring and overall delta function in longitudinal momenta
(2m)a(k™ +p~ — a7 )M = Sklp = 0] - Sklp] (95)
We have
M = 207) [ daidy e hes e (e y, )N ) (99)
with color structure
Clery)=[1-V(@)Vi(y,)] (97)
and perturbative factor
N ) = —ieey) [ sseiters SO 1) (99
N20) = G [k 51y @ N = 977009 (99)

Again N (1) is independent of [+ then

d2lj_ eili'riNs)‘g(lJ_7Z)

A = —i(ee —
Ns§(TJ_)_ ( f)/(27.r)2 li+Q2

(100)



2. Differential cross-section

dk=d%k, dp~d®p,
zo 2k~ (2m)3 2p—(2m)3

do=27n6(q~ — k= —p") ZL Z <M qu\s) o ]>

s3,colors

Then

do? /\ 1
Qodgad?k o p, ~ 01 —272) 2D <M M) [p]>

s§,colors

S (MU M) ) = (20 P m) [Pty daldy et e )

s§,colors
X E(mL7 Y, y/J_a wlj_)HA(rLa rlj_)

where

E’(mLayL;ylaml):175(2)(mLayL)7S( (yLa ) S( (mL7ylay/L7m/L)

eef)?N. [ A2 A2l etrrre iDL T 2)

Wi rt) = G5 AR L) (W) =

w )Tt T @@
and
P LL2) = o T [ I N0 = (= 0 @ )]y
= I [0 0 - 970~ 0 @)
Then
PN 2) = 421 = 2) |22+ (1= 20 (- )T - €))
Thus
W) = S [ - o] DD g @iy
W rt) = 25 2 [ - 2] T g @@
Thus
dyqdyqj;’;ldQPL 61—z / d*z, d% (;Td)%' LY ik @) i (v, v )

xE(@L,y YL, ) H (re, )

F. Exercises

e Compute DIS for longitudinally polarized case (MUST DO)

e Integrate one particle to compute SIDIS. Momentum and coordinate space (MUST DO)

16

(101)

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)
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e Compute total DIS cross-section from two-particle production in DIS by integrating out the phase
space (proof of optical theorem)

e Compute quark + photon production in pA collision (MUST DO)
e Compute heavy-quark pair production

e Compute dijet production in proton-nucleus collisions. There are three channels: ¢ — qg, g — q¢ and
9—499



III. LECTURE III: CGC TRANSVERSE MOMENTUM DEPENDENT (TMD)
FACTORIZATION

Change of variables:
P, =(1-2ki—2p,
q. =k +p;
The corresponding coordinate space conjugates:

L= —Y,
by =zx, +(1-2)y,

! ! !
r, =T —Y,

b =za +(1-2)y,

Then we can write the cross-section as

A 2 2 21’ 32
dO' _ (5(1 _2_2)/ d bJ_d 'I"J_d bJ_d Ir/le_iPJ-'(TJ-_T/J_)e_iqL'(bJ._bl)
dy,dyzd?k  d?p (2m)4

xE(bL+ 1 —2)r,bl —zr;b) —2r' b+ (1—2)r ) H N ro, 7))

A. Dijet production in momentum space expression

A 2 2 2 2
do =6(l—z— 2)/ &', %, d°a) dy) e~k (@) —ip, (¥, —Y))
dygdyzd?k  d%p (2m)4
2N, [ A2 d2) et e TN 1) 2)
X = x|, : ’ 713/ (eef) C / 1 1 _ : 1
( 1 yj_ yJ_ J_) A (271—)4 (li +Q2)(l/f+Q2)
Can be written as
do? d2t, a2 d?x, d?y A%z, A%y’
G — L L L L= Y, /
dy,dysd*k. d*p 1=z )/ (2m)* / (2m)* (@1, Y1590, 2))

(eef)QNc I"\(lJ_,l’J_,z)
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~ o~~~ —~
[ N = S
= = e =
S O s W
S N N SN N

(118)

(119)

% e_i(kL_lL)'mL"I‘i(kL_ll)'mle_i(pL+lL)'yL+i(pL+ll)'yl

dm (11 + Q)T + Q)

Change of variables:

e+ g 1 s, =P

2
Lk -l sl =P,
Then
do? d2e, d2¢’
=0(l—z2z—2 - L 0. f P.oo .l
dygdypdhdip, 0077 Z)/ ami Lt EH(Q Pt )
where

M(PL—2,,P, -1 ,2)
[(PL )+ Q?] [(PL —0) Q?]

HA(Q? PL;ELaZIL) = O‘emefch

(120)

(121)

(122)

(123)

(124)
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A2z, A%y | A%z, %y, _
6. e = [ LI Y ey, 2l
(2)
i) i)l i)y, ()Y, (125)
or
A2b, d2r | d2b, d2r/ , o .
Gas .. 8) = [ ST s gy el e el (1)

The perturbative coeflicient for transversely polarized:
22(1—2)[22—1—(1—2)2} (PL—¢,) (PL.—1))

{(Pl ey Q?} [(PL —0) Q?]

HT(Q? PJ_;KJ_ae/J_) - O‘emeiNc (127)

Discuss convolution momenta very difficult to grasp flow. Motivate the momentum change of variables,
violation of kT factorization.

B. TMD expansion: the WW gluon TMD

Discuss the physical situation and kinematics, in relation to experiments.
Consider the limit g2, Q? < Q?, P? . Explain physically why [, +q, /2| ~ |€| £ q, /2| ~ Qs. Taylor
expand perturbative factor around Ei ~ O,Z’f ~ 0, then

do?

e e

_ A . ,
dygdy,d?k d%p | =0(l—-z—-2)H (Q,PL,O,O)/ (2m)? (g, 2., )+... (128)
Observe
d%¢ ,
/ (2,”; e—zlJ_"r'J_ — 6(2) (’I"J_) (129)
d2e, d2¢ d2b, 20, _ e
/Wg(QLvﬂLvel) /(27{.>4:‘(bl7bl;bl7bl)6 q.-(bi-b) (130)

since Z(b,, b, ;b , b’ ) = 0 due to unitarity of Wilson lines. Linear term also vanishes, need quadratic term
in expansion £, £/ :

de PHNQ, P L€, 0)) aze a2, ,
— 51—z 3) Puity, /l———A4WWQ@,eL£)+“.
dygdya @2k dZp, o€, o' PO L
(131)
Using
d2£ i —ily T 12
/ Grptie T =i0160(r) (132)
Then
d2e, d2, ; , d2b, 4%, 1 . v ad i T i (be—bl)
Wﬁﬁg(th,ﬁ) = - WETY [(V(bL)aJ_V(bJ.D (V(bﬁaﬂ/(bﬂﬂ e

1

= o ®Cibw (aL) (133)
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Then we have

do?
, P 134
where
1 2HMNQ, Py £y, 2
Q. P.) = 2ol -z — 5 TG PLELE) (135)
oe, ot} =, =0
Using
TR S T P 1. -
o, |(PL—€.)?+@Q? 0o P34+ Q2 (P +Q?)
for transversely polarized we find
2(1—2)|224+ (1 —2)2 402Pt pI
HYQ,PL) = astemerd(l — 2 — %) L = } 59 — % (137)
(P +@?)? (P +@?)?

1. Unpolarized vs linearly decomposition and correlations

Decompose the WW into trace and traceless pieces, corresponding to unpolarized and linearly polarized
contributions:

j i 1 2qiqi ij
Giywl(gL) = *5 Gww(g,)+ 5 3 | T =0 hwwi(q.) (138)
Then we have
do” T et i et b Lt
= Qs@emesNO(l — 2 — Z _
dy,dyzd? P d?%q | f ( ) (P% + Q2
2Q0%P?
G (a,) - Q+ L (e cos(2p., )| (139)

Discuss physical meaning of unpol and lineary polarized contributions. Bound h < G.

e Numerical results for difference between TMD and full CGC

C. TMD expansion: dipole TMD

The differential cross-section for quark+photon production in pA reads:

do _ Qem (1 - Z)Zz 1+ (1 - Z)2 (p +p )2
du-du-d2p . d2 2 Ze Tafarp()SP (L + Py ) [ ] = -7l (140)
badyn *p, &Py 2w (2(pL +Py ) —Pyy ) PAA
where z = p [k~
TMD expansion:
do Ozsozemeg (1 — z)z2 [1 + (1 — 3)2]
dy,dy,d2P, d2q, Xq: Tqfa/p(2q) N, Pi aip(q 1) (141)
where
N ~
asGaplaL) = 5-5915% (a1 (142)

272
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D. Gauge link structure: dipole vs WW gluon TMD

e Discuss the difference gauge link structure due to initial vs final state interactions
e Show that CGC definition of WW coincides with operator definition

e Show the difference between dipole and WW type (focus un unpolarized), and the dilute limit they
are equal. Show results for evolution/geometric scaling.

e Mention more complicated gauge link structure for other processes

E. Beyond Leading Order

e Discuss joint small-x and Sudakov resummation, need for kinematical constraint. Numerical results.

e Give counting for the coefficient of the double log (anomalous dimensions?)

F. Exercises

e TMD factorization for SIDIS

e Repeat above considering massive quarks

e Determine the small-x TMD operators by examining the gauge link structure
e Take the correlation limit for dijet production in the proton-nucleus collision

e Consider the Improved TMD factorization
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IV. LECTURE IV: SMALL-X EVOLUTION
A. Dipole evolution: the Balitsky-Kovchegov equation

e Start from dipole consider real and virtual emissions in the slow gluon limit (briefly mention Low’s
theorem)

e Obtain BK equations for dipole. Discuss properties. Fixed points, cancellation of divergences. Pro-
portional to Nc. Physical meaning of the virtual and real terms.

e Obtain BFKL equation in the dilute limit

B. Running coupling and kinematic constraint?

e Balitsky prescription for running of the coupling. Other prescriptions.

C. Solutions to the BK equation
D. Multi-pole evolution: the JIMWLK hierarchy

e Combinatorics for JIMWLK equation
e Shift kernel for WW emission

e Langevin equation for JIMWLK equation for Wilson line. Walk in SU(3) space. RGE of gauge field
or sources.

E. Numerical results
F. Exercises

e Analytic solutions?
e Derive BK equation from pA single inclusive (universality)

e Derive evolution equation for the monopole and quadrupole
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V. LECTURE V: DIFFRACTION

A. Basics

e Color singlet, rapidity gap, HERA observations. Coherent vs incoherent in the Good-Walker picture.
Impact parameter dependence (ansatz for evolution, IR regulator)

B. Classic observable: DVCS
e Compute DVCS following forward scattering amplitude result
e Discuss t-dependence and bT, tomography. Connection to GPDs?
C. Vector meson production, dijet production
e Pheno result for vector meson production, massive quarks
e Dijet production and connection to Wigner in appropriate limit
D. Diffractive TMD factorization

e SIDIS diffractive factorization
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Appendix A: Useful two-dimensional integrals
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