

CEPC Calorimetry System

Yong Liu (IHEP), for the CEPC Calorimeter Working Group 2024 CEPC Mechanics Workshop, Luoyang, Henan August 23, 2024

High granularity calorimetry

- Future Higgs/EW/top factories
 - Requires unprecedented energy resolution for jet measurements
 - A major calorimetry option: highly granular (imaging) + particle flow algorithms (PFA)
- PFA calorimetry: various options explored in the CALICE collaboration in past 20 years
- New technical options with crystal/glass: being explored by CEPC calorimetry teams

Calorimetry options in CEPC Reference TDR

- High-granularity calorimetry with particle flow
 - Boson Mass Resolution: 3 4 %
 - Pursuit of optimal EM/had. energy resolution
- Electromagnetic calorimeter
 - Crystal option: 3D-positioning and timing
 - To improve EM energy resolution from $\sim 16\%/\sqrt{E}$ (CEPC-CDR) to $\sim 3\%/\sqrt{E}$
- Hadron calorimeter
 - Scintillating glass (dense and bright): in shape of tiles to achieve high granularity (PFA-compatible)
 - To improve hadron energy resolution from $\sim 60\%/\sqrt{E}$ (CEPC-CDR) to $30\%\sim 40\%/\sqrt{E}$

CEPC Reference Detector

Calorimeters: crystal ECAL and ScintGlass HCAL

CEPC ECAL option selection

Technical Option	Silicon-Tungsten ECAL	Scintillator-Tungsten ECAL	Crystal ECAL
EM energy resolution	$\sigma_E/E = 17\%/\sqrt{E(GeV)}$	$\sigma_E/E = 13\%/\sqrt{E(GeV)}$	$\sigma_E/E = 3\%/\sqrt{E(GeV)}$
Particle-Flow Algorithm(s)	Arbor; Pandora	Arbor; Pandora	New dedicated PFA (ongoing developments)
Jet Performance (with a full detector)	Bos		
Technical Readiness Level (prototypes, beamtests)	Physics Prototype (2006-2010) Technological Prototype (2011- now)	Physics Prototype (2007) Technological Prototype (2016 - 2021)	First Physics Prototype (2022- 2024)
Novelty Level	ILD (proposed in <u>ILC TDR, 2013</u>), followed by several detector concepts: <u>CLICdp CDR (2012)</u> , <u>CEPC CDR</u> (2018), <u>FCC CDR</u> (2019)		A completely new concept proposed by the CEPC team
Crystal ECAL, as a novel option, can significantly improve CEPC discovery			Selected as a baseline option

potentials with photons as a portal for new physics beyond Standard Model

Selected as a baseline option for the CEPC reference detector

CEPC Crystal ECAL

- Homogenous calorimeter based on crystals
 - High granularity in longitudinal and transverse directions
 - Optimal EM performance: $\sigma_E / E = 3\% / \sqrt{E}$
 - Compatible for PFA: Boson Mass Resolution (BMR) 3 4 %
- Long crystal bars in orthogonal arrangement
 - Minimal dead materials in longitudinal layers
- Dedicated R&D activities
 - Crystal calorimeter prototypes and beamtests: EM performance
 - A new algorithm particle-flow reconstruction: jet performance

- BGO bars in $1 \times 1 \times \sim 40 \ cm^3$
- Effective granularity 1×1×2 cm³
- Modules with cracks not pointing to IP (with an inclined angle of 12 degrees)

- Separation power of close-by particles: key performance in PFA
 - $\gamma \gamma$ separation: 100% efficiency for distance > 20mm
 - $\gamma \pi$ separation : 100% efficiency for distance > 50~100mm

Based on a new and dedicated PFA for crystal ECAL (CyberPFA)

- - Full simulation and digitization, with energy correction in crack regions

Physics performance in simulation: $H \rightarrow gg$

- Physics process: ee
 ightarrow ZH
 ightarrow
 u v gg in $\sqrt{s} = 240$ GeV
 - Full reconstruction of two gluon jets in the full CEPC detector
 - Dedicated developments of PFA for long crystal bars

8

Crystal Calorimeter: First Physics Prototype

Beam tests: Crystal Calorimeter Prototype

2023 CERN beam test at PS-T9

- Successful system commissioning
- Clear MIP signals for all channels

2024 CERN beam test at PS-T9: finished in July 10th

- Promising EM resolution with 1-5 GeV/c e^- beam
- Data analysis is still ongoing: detailed calibrations, shower profiles

Crystal Calorimeter Prototype: mechanics

- Special considerations of mechanics for crystals
 - Weight of crystals (density= $\sim 7g/cm^3$) needs to be decoupled with readout boards
 - Many holes in readout boards: reserved for support structure
 - 3D-printed plastics for light-weighted and custom-designed support structure
 - Tolerances of crystal dimensions (production + polishing) and reflector wrapping
- Still a long way ahead towards full crystal modules
 - Full integration of readout electronics and cooling

Observed significant deformation in 3D-printed structures in the long run

- Stereo design with long crystal bars inclined
 - Longitudinal segmentation by tilting crystal bars
 - Single-end readout: 50% less readout channels than crossed bars (two-sided readout)

Simulation studies on reconstruction: promising separation power of two particles

Ongoing designs on mechanics, cooling and integration

- <u>Mechanics</u> hereby has a more general meaning
 - Support structure for crystal modules integrated with a cooling system
- High granularity with a compact design
 - Minimum space for system integration (support, cabling, cooling)
- Scintillating crystals
 - Fragile: requires dedicated mechanical protection for long-term stability
- Crystal ECAL performance: optimal energy resolution
 - Light-weighted support structure: ensures low material budget and high strength
 - Stable temperature control: crystals and photosensors are temperature dependent

- Sampling HCAL: scintillator (sensitive) + steel (absorber)
- Two major HCAL options based on scintillator
 - *Plastic Scintillator*: mature technology, CEPC-AHCAL full-scale prototype developed
 - *Glass Scintillator*: new technology, no full-scale prototype yet

CEPC HCAL prototype: developments and beamtests

1 full layer: 3 HBUs + cassette

Beamtest Setup

- CEPC HCAL prototype with *plastic scintillator* tiles
 - Transverse size 72×72 cm², 40 longitudinal layers (~4.6 λ_I)
 - 12960 readout channels, SPIROC2E (360 chips), ~5 ton in weight
 - Developed during 2018 2022 (IHEP, SJTU, USTC; Shinshu, Tokyo)

CEPC HCAL prototype: developments and beamtests

- Muons: 10 GeV (PS-T9), 108/160 GeV (H8), 120 GeV (H2)
- Electrons/positrons: 0.5 5 GeV at PS; 10 120 GeV at SPS (also up to 250 GeV)
- Pions: 1 15 GeV at PS, 10 120 GeV (also 150 350 GeV) at SPS
- Hadron energy resolution: $56.2\%/\sqrt{E} \oplus 2.5\%$ (expected $60\%/\sqrt{E} \oplus 3\%$)

Glass Scintillator HCAL

- Glass Scintillator HCAL (GSHCAL)
 - Expect significantly better hadronic energy resolution than the Plastic Scintillator option
 - Glass scintillator tiles as sensitive components: fine segmentation for PFA compatibility
- Dedicated R&D activities
 - Glass scintillator R&D: high density (~6 g/cc), bright (>1000 ph/MeV), fast scintillation, cost effective
 - HCAL performance studies in simulation and tests of glass tiles

Glass Scintillator Collaboration

- Glass Scintillator Collaboration established in Oct. 2021
- GS R&D activities with 3 CAS institutes, 5 universities, 3 industrial partners

Glass scintillator in beam/cosmic tests (2023-2024)

11 glass tiles tested at CERN (May 2023)

MIP response: 60 – 70 p.e.

9 glass tiles tested at DESY (Oct. 2023)

MIP response: 80 – 90 p.e.

4 glass tiles tested at IHEP (Apr. 2024)

MIP response: 50 – 60 p.e.

CEPC HCAL: plastic vs glass scintillator

PCB 2mm

- Share many similarities and synergies
 - Sampling structure
 - Similar SiPM and electronics
 - Almost the same thickness
- \rightarrow replace plastic with glass tiles
- Challenges to mechanics
 - More weight with glass tiles
 - Thinner steel absorber plates

- <u>Mechanics</u> hereby has a more general meaning
 - Support structure for HCAL modules integrated with a cooling system
- High granularity with a compact design
 - Minimum space for system integration (support, cabling, cooling)
- Sampling structure with glass scintillator
 - Control of deformation due to higher density glass and thinner steel absorber
- Steel absorber plates
 - Low magnetic permeability: within 2 3 T magnetic field
 - Production quality/cost: thickness tolerance control over square-meter steel plates
- HCAL performance: optimal energy resolution
 - Stable temperature control: glass and photosensors are temperature dependent

Summary and planning

- Overview of CEPC calorimeter options and dedicated R&D activities
- Calorimeter option selection for the CEPC reference detector
 - ECAL option: crystal
 - HCAL option: glass scintillator and steel
- More efforts to address critical issues for CEPC Ref-TDR
 - System integration with mechanics (+cooling) and readout electronics
 - Beam-induced backgrounds and data throughput
 - Calibration schemes (on-board designs for in-situ): SiPM, crystal, ASIC

Backup

Readout electronics for CEPC ECAL

Readout electronics for CEPC HCAL

Higgs physics benchmarks

- Physics potentials with crystals
 - Photons and jets
- Boson Mass Resolution (BMR)
 - Jets $(H \rightarrow gg)$: 3.8 % \rightarrow 3.6%
 - Photons $(H \rightarrow \gamma \gamma)$: 2.1% \rightarrow 1.2%

- Crystal ECAL
 - Higher sensitivity to photons and much better EM resolution
- Potentials for π^0/γ in flavor physics

Mass Resolution of pi0

<u>B0 to pipi @CEPC(CEPC Flavor Physics/New Physics/Detector</u> <u>Technology Workshop, Fudan, 2023), Yuexin Wang</u>

ECAL Resolution	σ_{m_B} (MeV)	$B^0 \to \pi^0 \pi^0$	$B^0_s \to \pi^0 \pi^0$
$17\%/\sqrt{E}\oplus 1\%$	170	$\sim 1.2\%$	$\sim 21\%$
$3\%/\sqrt{E}\oplus 0.3\%$	30	$\sim 0.4\%$	$\sim 4\%$

