

CEPC TPC机械设计与探测器研究进展

祁辉荣

会信,常悦,张锦闲,邓智,纪全,张俊嵩,张建 代表CEPC TPC探测器研究小组

> 中国科学院高能物理研究所 CEPC机械及MDI研讨会洛阳,河南, 8月, 2024

- 时间投影室技术-TPC
- CEPC TPC机械结构设计及分析
- CEPC TPC研究进展现状
- 小结

时间投影室技术

时间投影室技术优势:

- **性能优势**: 极低物质量(~0.1X₀), 精确位置测量(~100μm), 动量分辨高, 优异模式识别能力(Pattern Recognition)
- 粒子鉴别能力:提供带电粒子能损dE/dx或原初电离簇团dN/dx信息,提供粒子鉴别(Particle Identification)
- 应用研究: 许多大型粒子物理实验(ALICE,STAR,PEP4)为主径迹探测器, 中微子探测领域也有广泛应用

时间投影室应用于环形正负电子对撞机

- 时间投影室TPC探测技术,为未来正负电子对撞机 (CEPC, FCCee)的主径迹探测器重要选型
- CEPC物理和探测器技术设计报告(Phys.&Det. TDR)中, 硅+气体探测器作为<mark>径迹探测(Tracker)以及提供粒子鉴别(PID)</mark>
- 时间投影室已作为CEPC物理和探测器技术设计报告中主径迹探测器基准选型

Circular Electron Positron Collider (CEPC) & Detector layout in CEPC ref-TDR

Future Circular Collider (FCCee)

https://arxiv.org/abs/2203.08310

CEPC ref-TDR中TPC主要参数

CEPC探测器概念设计报告(CDR)与技术设计报告(TDR)中TPC几何参数对比

- 内径:0.30m (CDR) → 0.60m (TDR)
- 外径:1.80m (CDR) → 1.80m (TDR)

CEPC TPC layout in CDR(left) & CEPC TPC layout in ref-TDR(right)

CEPC ref-TDR中TPC主要设计参数

	CEPC TPC探测器	主要参数		
	读出模块数量/单端盖	248个/单端盖		
	单读出模块尺寸	206mm×224mm×161mm		
	外形尺寸	内径: 1.2m 外径: 3.6m 探测器长度: 5.9m		
	阴极高压	– 62,000 V		
	工作气体	T2K: Ar/CF4/iC4H10=95/3/2		
	腔体内漂移时间	34μs @ 2.75m		
	读出模块类型	像素型读出Micromegas		
5.8m E 2.8m 总质量 1500Kg				

TDR中时间投影室径迹探测器端盖设计

CEPC ref-TDR中TPC主要设计参数

- 低物质量桶部设计 (蜂窝板结构 → 低物质碳纤维桶部设计) (~2% X₀)
- 超轻物质量桶部设计 (材料: QM55 碳纤维): 0.59% X₀
 - 端盖部的低物质量设计及机械优化设计(此次会议讨论的重点)
 - 有限元计算分析: 对于承重外部径迹探测器(100kg)的形变量~0.2mm, 结果确认

Cooling

Power cables

4%

2%

9%

- TPC应用于正负电子对撞机研究进展

- TPC设计及超轻物质量
- TPC击中率及占空比
- 空间电荷效应及径迹畸变
- 正离子反馈IBF控制
- TPC原型机研制成果

CEPC TPC机械结构及超轻物质量

- TPC结构应力分析结果满足安装运行需求:
 - 桶部最大形变177.6μm, 端盖最大形变34.3μm
- CEPC TPC桶部采用300µm超轻碳纤维支撑材料
 - 桶部物质量~0.6% X₀,端盖15% X₀

Material budget of TPC barrel

Layer of the barrels	D[cm]	X ₀ [cm]	d/X ₀ [%]
Copper shielding	0.001	1.45	0.07
CF outer barrel	0.020	25.28	0.08
Mirror strips	0.003	1.35	0.19
Polyimide substrate	0.005	32.65	0.02
Field strips	0.003	1.35	0.19
CF inner barrel	0.010	25.28	0.04
Sum of the r	0.59		

CEPC TPC机械有限元分析结果

- 筒部和端盖处的应力计算→端盖和筒部的进一步优化
 - 端盖: 2.1毫巴(2190N)下的挠度为 0.19mm, 满足端盖设计要求
 - 桶部: 均匀载荷时最大应力2MPa, 满足剪切应力形变的安全量

TPC设计参数已更新至CEPCSW

- 所有最新的TPC参数已全部更新至CEPCSW软件模拟框架.
 - 更新的MDI与background数据可用于分析探测器性能参数

高亮度对撞中: TPC事例及空间电荷来源分析

高对撞亮度下TPC中的hit以及空间电荷来源:

- > 物理事例(Z→qq)直接产生
- > 束流本底效应间接产生
 - **Beamstrahlung** (Luminosity related)
 - Beam-Gas, Beam Thermal Photon, SR...(Single Beam)
- ▶ 读出MPGD的正离子反馈
- 对于Z-pole模式~40MHz对撞频率(23ns时间间隔):
 - ➢ 每次对撞, BeamStrahlung过程将产生~650 e⁺/e⁻ pairs
 - > 束流本底效应是TPC灵敏体积内击中hit density,空间 电荷产生的主要来源
 - > 研究高粒度读出TPC读出像素Hit density和空间畸变

高亮度环境下TPC不同事例来源

高亮度对撞中: 束流本底导致TPC击中率研究

- 基于<u>CEPCSW</u>软件框架完成Higgs/Z-pole两种运行模式下**束流本底效应**导致原初电 离的Hit density分布模拟
- 两种运行模式下TPC读出像素击中率和占空比:
 - ~2.25k hits/sec/ch @Z-pole, ~0.35k hits/sec/ch @Higgs
 - ▶ 高亮度Z下读出像素占空比<1%
 - > TPC读出单元击中率和占空比满足探测和物理需求

Simulation flow of CEPC Beam Backgrounds

两种模式下束流本底在xy平面hit分布(左)和沿半径方向离子数密度 $\rho_{ion}(r)$ 分布

高亮度对撞中: TPC空间电荷效应及畸变研究

完成Z-pole和Higgs运行模式下TPC中束流本底效应导致空间电荷密度模拟
 相比于KEK Daniel Jeans FCCee模拟结果, CEPC TPC中空间电荷密度小~50倍
 基于Green's function, 求解电场畸变和空间畸变, 两种模式下最大畸变分别为 150µm@Z-pole, 20µm@Higgs, 基本满足CEPC物理和探测需求

高亮度对撞中:正离子反馈IBF抑制实验研究

- CEPC TPC两端采用模块化微结构气体探测器(MPGDs)设计, 共7层 248×2=496
 个读出模块, 灵敏区域覆盖~96%, 易于实际安装, 调试, 维护
- GEM+MicroMegas混合型读出模块成功研制:
 - IBF×Gain~1 @ Gain=2000 (原初离子水平)
 - 实现对连续正离子反馈抑制到~0.1% (无门控)

研制现状:集成紫外激光径迹TPC原型机实验研究

- 传统pad型读出TPC→高颗粒度像素型读出TPC实验研究
 - 已完成集成266nm紫外激光径迹TPC原型机研制
 - 空间位置分辨: σ_{ro} < 100 μm @ 50 mm 漂移距离,满足CEPC Higgs运行模式</p>
 - dE/dx分辨: <3.6% @1.2 m径迹长度 (与CEPC Ref-TDR一致)

Publications by CEPC TPC group in 2018-2024:

- https://doi.org/10.1088/1748-0221/18/08/E08002
- <u>https://doi.org/10.22323/1.449.0553</u>
- https://doi.org/10.1016/j.nima.2022.167241
- https://doi.org/10.1109/NSS/MIC44867.2021.9875566
- https://doi.org/10.1109/NSS/MIC44845.2022.10399097
- https://doi.org/10.1088/1748-0221/15/09/C09065
- https://doi.org/10.1088/1748-0221/15/05/P05005
- https://dx.doi.org/10.1142/S0217751X20410146 https://doi.org/10.1088/1674-1137/41/5/056003
- https://doi.org/10.1088/1748-0221/15/02/T02001
- https://doi.org/10.1088/1748-0221/12/07/P07005

研制现状:像素型读出芯片的研究

■ 像素型TPC读出芯片研发进展

- 像素型 TPC ASIC芯片研发
- 第二版wafer设计已经完成,正在测试中
- TOA+TOT模式
- 设计电子学噪声:100e
- 时间分辨: 14bit(5 ns bin)
- 功耗:~100mW/cm²

通道间不一致性-增益测试结果

不同通道定时情况——均值小于1LSB

研制现状: 束流实验验证模块研制

- 在DESY的大型原型TPC通用束流测试平台上进行实验测试
- 基于通用大型TPC测试凭条完成模块实验研究
- 单个MicromegasTPC模块+一个备用模块
 - 3000通道 500 µm× 500 µm/channel

研制现状:积极良好的国际合作

- 与国际LCTPC合作组保持良好积极地合作
- 最新的原型机束流实验与原型机研制,积极合作(测试模块与此测试平台相同)
 - 研究生(佘信、常悦、张锦闲)参与DRD1 MPGD School @2023年和2024年

ArXiv. (2023)2006.08562 NIM A (2022) 167241 ArXiv (2022)2006.085 JINST 16 (2021) P10023 JINST 5 (2010) P10011 NIM A608 (2009) 390-396

小结

CEPC TPC机械设计研究进展

- CEPC TDR的总体设计参数已确认,开始有限元FEA等分析工作。
- 借鉴已有大型TPC,开始优化设计TPC探测器的安装方案。

■ TPC应用于未来正负电子对撞机研究进展

- 基于CEPCSW软件框架,CEPC不同运行模式TPC读出像素击中率,占空比以及空间畸变基本满足 探测和物理需求。
- 完成集成紫外激光标定系统TPC原型机研制,为CEPC Ref-TDR原型研制提供重要参考
- 研制像素型读出单元芯片和束流验证探测器模块。

